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For only few fundamental physical quantities experi-
ment [1] and theory [2] agree that well as for the g factor
of the free electron. It can therefore be considered as a
precision test of quantum electrodynamics (QED) for free
particles. To test QED also in the presence of strong elec-
tric fields, measurements on the g factor of an electron
bound in a hydrogenlike system are one possible way. In
12C5+, a value of g = 2.001 041 596(5) was measured [3]
which has to be compared to the theoretical prediction of
g = 2.001 041 591(7) [4]. This measurement is therefore
the most stringent comparison of QED theory and experi-
ment in any system heavier than hydrogen up to now. The
major uncertainty of the experimental value results from
the mass ratio me/m12C5+ , taken from [5], and an only
slight improvement in the theoretical precision would al-
low to determine the electron mass more accurately. Here,
the current limits to theory are presented and discussed.

The value given in [4] includes the g factor of the free
electron including all QED corrections to that value, and
in addition the corrections due to the binding to a heavy
nucleus:
1. the binding correction itself which can be characterized
as a transition from the spin quantum number to the total
angular-momentum quantum number that is the only ob-
servable in a central field. It describes the deviation of g
from the Dirac value of 2 for the free electron and is given
by gj = (2/3)[1 + 2

√
1− (Zα)2] for the 1s state. This

applies only to point-like nuclei. For extended nuclei, the
wave function of the electron is slightly modified.
2. The finite nuclear-size correction which takes into ac-
count the extension of the nucleus is about 4 × 10−10 for
carbon but amounts up to 1×10−3 for uranium where the
uncertainty of the nuclear radius itself affects the predic-
tion already on the 10−7 level.
3. The not-infinite nuclear mass causes the nucleus to
move itself when orbited by the electron. A correct rela-
tivistic treatment has to consider nuclear recoil to all or-
ders in the coupling constant Zα where Z is the charge of
the nucleus. The exact form of this correction is not yet
known and an existing expansion in Zα [6,7] yields reliable
results only for light systems. For carbon it amounts to
87.5× 10−9 with an estimated uncertainty of 1 % because
of the expansion. This uncertainty should be considered
to be 10 % of the value already for calcium. The com-
plete relativistic recoil correction was calculated only for
the Lamb shift up to now [8] and it seems to be much
more complex for the g factor and the hyperfine structure
splitting.
4. Another quantity connected with nuclear properties is
that of nuclear polarization, i.e, the virtual excitation of
nuclear degrees of freedom by exchange of at least two vir-
tual photons with the electron. For the g factor, no inves-
tigations were carried out up to now. The works of G. Plu-

nien and G. Soff [9] deal with the influence on the Lamb
shift in the approximation of Coulomb-photon exchange,
and only recently the problem of transverse-photon ex-
change which is crucial for magnetic interactions was con-
sidered at least for the Lamb shift case [10]. However, we
expect this effect to be even weaker than for the Lamb shift
because the typical matrix element for g factor measure-
ments is 〈r〉, compared to 〈1/r〉 for the Lamb shift, and
therefore the inner parts of the electronic wave function
that contribute most to the nuclear polarization are less
pronounced. It should be mentioned that this is not the
case for the hyperfine structure splitting where the typical
matrix element is given by 〈1/r2〉. In that case, however,
the effect is screened by other nuclear uncertainties (for a
recent overview see [11]).
5. The most interesting quantities related to the g factor
are the bound-state QED corrections. Those of first order
in (α/π) (i.e. one virtual photon line in the corresponding
Feynman diagram) are depicted in Fig. 1. They were eval-
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Fig. 1. Feynman diagrams representing the QED contributions

of order (α/π) to the g factor of a bound electron. The wavy

lines denote photons, which mediate the interaction with the

external magnetic field represented by a triangle. In each di-

agram there is also one virtual photon. The solid double line

indicates the electron and on the right side also virtual leptons

in the electron-positron loops. The diagrams on the left are

the self-energy-like corrections, those on the right the vacuum-

polarization-like corrections. For the free electron, only the

diagram similar to diagram a contributes.



uated in detail to all orders in Zα in [4]. They contain also
the contribution to the g factor of the free electron of the
same order, given by α/π ≈ 2.323×10−3. For comparison,
the effect of binding in C5+ amounts only to 8.442×10−7.
In uranium the binding effect is 3× 10−3 and therefore in
particular heavy systems form an excellent base for inves-
tigations of bound-state QED.
The QED corrections of second order in (α/π) were never
investigated beyond the first term in the Zα expansion.
It can be shown for all orders of (α/π) that the lead-
ing term of the corresponding Zα expansion is given by
2×A(n)× (Zα)2/6 where A(n) is the expansion coefficient
for the nth power of (α/π) in the series for gfree/2 [12], i.e.,
A(1) = 1/2. The next term in the Zα expansion is at least
of the order (Zα)4, and therefore the Zα expansion allows
to estimate the bound-state (α/π)2 contributions with an
uncertainty of about 50 % for the case of carbon. This un-
certainty increases rapidly for increasing Z, and we expect
the error to be at least 100 % in the case of calcium al-
ready, where the leading term of the expansion for the first
order in (α/π) already deviates for about 70 % from the
non-perturbative value. The whole set of 50 diagrams for
the order (α/π)2 is shown in Fig. 2. For the order (α/π)3,
the number of diagrams exceeds 500. The 50 diagrams
shown in Fig. 2 can be obtained by fixing the magnetic
interaction to each point of the 10 diagams contributing
to the Lamb shift of order α2 in hydrogenlike atoms (e.g.,
[13]). The calculation is slightly more complex because
for each diagram the magnetic interaction and one addi-
tional electron propagator with the corresponding integra-
tion has to be considered. As there are problems already
for some of the Lamb-shift diagrams, an evaluation of the
set shown in Fig. 2 can not be expected without consid-
erable effort. In particular, the diagrams that contribute
most to the g factor in lighter systems are those with two
self-energy loops in the upper rows of Fig. 2, and unfor-
tunately exactly their counterpart, the so-called two-loop
self-energy graphs, cause the major problems in the recent
calculations for the Lamb shift (e.g., [14] and references
therein). The situation would be different in muonic atoms
where the vacuum-polarization contributions are strongly
enhanced compared to those from self-energy-like graphs.
An additional experiment on a muonic system therefore
could provide valuable additional information. However,
in muonic systems the nuclear polarization can expected
to be as large as the QED corrections of order (α/π).

All theoretical contributions to the g factor of the elec-
tron bound in hydrogenlike carbon are given in Table 1.
Together with the experimental value, this leads to an
independent new value for the electron mass [15], me =
5.485 799 092× 10−3 u. A detailed discussion about the
corresponding measurement and evaluation procedure is
to be found elsewhere in this report [16].
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Fig. 2. Diagrams contributing to order (α/π)2 to the g factor
of a bound electron. Only seven diagrams of this order have to
be considered for the g factor of a free electron, similar to these
of the first row.

Table 1. Known theoretical contributions to the g factor of
an electron bound in the ground state of 12C5+. All values
are given in units of 10−9. If no error is given, it is less than
0.5× 10−10. The error for the “total” value is a linear addition
of the three errors given in order not to underestimate any
systematic effect.

Contribution numerical value (in 10−9)

binding 1 998 721 354.2
fin. nuc. size 0.4
recoil 87.5(9)
free QED, order (α/π): 2 322 819.6
bound QED, order (α/π): 844.3(12)
free QED, (α/π)2 to (α/π)4 −3 515.1
bound QED, (α/π)2 (Zα)2 −1.1(5)

total: 2 001 041 589.8(26)


