# Molecular mechanisms of heavy-ion induced radiation damage:

## Free radicals and products from DNA and chromatin

Barbara Weiland, Anne-Kathrin Hoffmann, Heike Luxenburger and Jürgen Hüttermann, Fachrichtung Biophysik und Phys. Grundlagen der Medizin, Universität des Saarlandes, Klinikum Bau 76, D-66421 Homburg, Germany

#### Free radical formation in dry DNA and chromatin

A recent EPR analysis of spectra from X-irradiated freeze-dried DNA (77 K to 300°K, 10 kGy to 480 kGy) yielded ten assigned radicals: the oxidized guanine, the reduced thymine and cytosine (two protonation states), the thymine allyl radical, two deoxyribose radicals (C1' and C3' ), the 5-thymyl radical, the deprotonated guanine cation and a radical at N7 of a purine [1]. Bombardment with heavy ions ( ${}^{50}$ Ti (11.4 MeV/u),  ${}^{68}$ Zn (5 MeV/u),  ${}^{197}$ Au (11.4 MeV/u) and  ${}^{209}$ Bi (11.4 MeV/u)) at about 100 K confirmed the presence of most primary radicals. The spectra at 9.5 GHz were nearly identical to those after Xirradiation. Dose response curves gave G-values and saturation concentrations in the same order of magnitude [2]. At identical doses, a significant increase of the thymine allyl and the C1' radicals was detected after for heavy ions in aggreement with reports for oxygen impingement [3]. Radical formation in dry chromatin (calf thymus) gave again strong similarities in the EPR spectra after irradiation with either X-rays or heavy ions. Quantitative measurements of pure DNA and of chromatin after X-irradiation together with spectral analysis point at a spin transfer from protein to DNA as was suggested earlier in the literature but was proven only now [4]. The effect of the Braggpeak was probed specifically by stacking pellets of dry DNA. Xe (11.4 MeV/u) and Ni (6.0 and 11.4 MeV/u) ions were used. For Ni and Xe at 11.4 MeV/u the fourth pellet contains the Bragg-maximum, with Ni at 6.0 MeV/u it is located in the second disk. Fig. 1 shows, that the LET has no effect on the total radical yield in each disk before and in the Braggmaximum but the amount of thymine allyl radicals as well as C1'- and C3'-deoxyribose radicals increases with LET and dose. The sugar radicals are potential precursors of strand breaks, which in turn are connected with abasic sites.

#### **Product formation in dry DNA**

Solid DNA and DNA-nucleotides were used to study the products formed from direct radiation action at 300 K (X-rays and heavy ions in the beam vacuum, respectively). Polycrystalline pyrimidine nucleotides showed the release of unaltered bases as investigated by HPLC and NMR. [5] Further heavy ion experiments with pyrimidine as well as purine nucleotides showed for all these DNA model compounds the formation of the free bases [6]. Recently we found the release of the bases adenine, cytosine and thymine also for dry DNA after heavy ion bombardment. The modified base 8-hydroxyadenine was identified as another product. X-irradiation and bombardment with Ti (11.4 MeV/u) led to a similar release of unaltered and modified bases, whereas bombardment with Bi (11.4 MeV/u) resulted in a decreasing release of bases. In contrast to the low-LET-irradiation, bombardment with heavy ions effected an increased formation of formate (Fig. 2). This is connected with oxidative sugar dammage and thus is a probe for strandbreaks. The release of bases is also connected with strand breaks in DNA.. If the induced single strand breaks (ssb) appear within few base pairs, a double strand break (dsb) is

fromed. The maximum dsb/ssb ratios were calculated for neon and titanium ions. [7] With the assumption that the release of bases and the formation of formate can be connected with a ssb of DNA, we determined a maximum for titanium ions

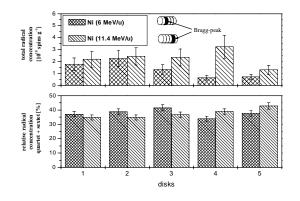



Fig.1 Total and relative radical yield vs. sample thickness

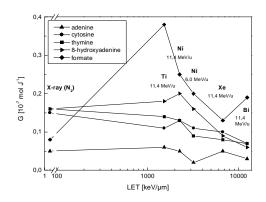



Fig.2 LET-dependence of product formation from DNA

### References

[1] B. Weiland and J. Hüttermann, Int. J. Radiat. Biol., 1998, 74, 341-358.

[2] B. Weiland and J. Hüttermann, Int. J. Radiat. Biol., 1999, 1169-1175.

[3] D. Becker et al., Radiat. Res., 1996, 146, 361-368.

[4] B. Weiland and J. Hüttermann, Int. J. Radiat. Biol., 2000, 1075-1084.

[5] A.-K. Hoffmann and J. Hüttermann, Int. J. Radiat. Biol. 1997, 72, 735 - 744.

[6] A.-K. Hoffmann and J. Hüttermann, Int. J. Radiat. Biol. 2000, 76, 1167-1178

[7] [7] J. Heilmann et al., Radiat. Res. 1993, 135, 46-55.