Λ Hyperons Produced in 158 A GeV Pb+Pb Collisions^{G,B}

A.Billmeier¹, C.Blume², R.Bramm¹, P.Buncic¹, P.Dinkelaker¹, M.Gaździcki¹, T.Kollegger¹, I.Kraus¹, C.Markert², A.Mischke³, R.Renfordt¹, A.Sandoval², H.Sann², R.Stock¹, H.Ströbele¹, M.Wensveen², A.Wetzler¹, J.Zaranek¹ for the NA49 Collaboration. ¹Universität Frankfurt, ²GSI Darmstadt

Most of the Λ hyperons observed in the final state of nucleus-nucleus collisions at SPS energies are truly participating baryons and their rapidity distribution is an appropriate measure of baryon stopping. In addition correlations between Λ s probe the Λ - Λ interaction which is the decisive parameter for a possible six-quark bound state, the H-Dibaryon. Finally, the relativ yield of Λ resonances may be compared in p+p and Pb+Pb collisions in order to learn about the differences between in-medium effects of baryons and baryonic resonances. In the past, reconstruction of Λ hyperons proved to be difficult in central Pb+Pb collisions due to the high track density and the resulting confusion when searching for the characteristic V^0 decay topology. Similarly the identification of the $\Lambda(1520)$ excited state by a signal in the (K^-p) invariant mass was hampered by the large combinatorial background. New software improvements in V^0 detection and in particle identification have led to reliable Λ and $\Lambda(1520)$ signals. In this contribution we present new preliminary results on the Λ rapidity distribution in 1.5 < y < 4.5, on A-A correlations and on the comparison of the $\Lambda(1520)$ signal in p+p and central Pb+Pb collisions.

Fig. 1 shows the rapidity distribution of Λ s in the 5% most central Pb+Pb collisions. The data are not corrected for feed down from Ξ and Ω decays. Also shown is the published result from experiment WA97 [1] again not corrected for feed down and derived from the 3% most central collisions. It should be noted that the feed down corrections need not to be the same for the NA49 and WA97 analysis. For a comparison of the data to p+p measurements see [2].

In Fig. 2 the Λ - Λ correlation is plotted as a function of the invariant momentum difference (q_{inv}) . At low q_{inv} a significant dip signals the Pauli principle for fermions. The absence of a positive correlation at small q_{inv} suggests that the s-wave interaction is rather weak. A fit to the correlation function yields a radius parameter of approximately 2 fm assuming the absence of final state interactions.

Fig. 3 shows the invariant (K⁻p) invariant mass distributions after background subtraction for inelastic p+p (upper) and central Pb+Pb (lower) collisions[3]. The $\Lambda(1520)$ resonance is clearly visible in both data samples; their positions are within errors the same and agree with the PDG value. It seems that the width of the $\Lambda(1520)$ from Pb+Pb is slightly broader than from p+p. The yield per participating nucleon pair is slightly lower in the nuclear reaction, although the Λ yield per nucleon pair shows a strong enhancement in A+A over p+p.

References

- $[1]\,$ E. Andersen et al., Phys. Lett B449(99)401
- [2] A. Billmeier et al., this GSI Annual Report
- [3] C. Markert, PhD Thesis, Universität Frankfurt, 2000

Figure 1: Rapidity distribution of Λ hyperons in central Pb+Pb collisons at 160 GeV per nucleon)

Figure 2: Λ - Λ correlation function from central Pb+Pb collisions.

Figure 3: Invariant mass distribution of K^-p pairs in p+p (upper) and central Pb+Pb(lower) collisions at 158 A GeV. The widths of the $\Lambda(1520)$ signals are 15 ± 4 MeV and 23 ± 6 MeV.