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One of the challenging problems in quantum many-body
physics is the appropriate inclusion of resonances or parti-
cles with broad damping width into a self-consistent non-
equilibrium dynamics. Such kind of description can be con-
structed on the basis of the so called Kadanoff–Baym equations
(KBE) derived within the non-equilibrium Green function tech-
nique [1]. While the KBE are exact, in actual calculations one
has to rely on further approximations. They provide (a) a trun-
cated self-consistent scheme and (b) through the gradient ap-
proximation they lead to transport type of equations of motion.
Interested in the dynamics of particles with broad mass width
one has to avoid the quasi-particle approximation, and solely
rests on the first-order gradient approximation of the KBE. This
concept was first addressed by Kadanoff and Baym [1] and re-
cently reconsidered in the context of hadronic matter and heavy
ion collisions [2–7]. As for any such approximation, however,
symmetries and conservation laws as well as detailed balance
and thermodynamic consistency may no longer a priori be guar-
anteed.

In ref. [8] we re-investigated a generalization of theΦ deriv-
able method of Baym [9] to the real-time Green function tech-
nique which provides truncated self-consistent approximations
which are conserving and thermodynamically consistent at the
level of KBE. In particular a conserved energy-momentum ten-
sor could be derived for local field couplings. The subsequent
gradient approximation leads to two coupled equations: a quan-
tum transport equation, which governs the four-phase distribu-
tion functionsf(�x, t, p), and a retarded equation, which deter-
mines the time evolution of the spectral functionA(�x, t, p). For
this approximate set of equations the conservation laws gener-
ally are expected to become onlyapproximate. Such approxi-
mate nature of conservation laws may be well acceptable the-
oretically as its accuracy precisely corresponds to that of the
approximation. Nevertheless, both from a principle perspective
and also from a practical point of view this situation is less sat-
isfactory.

In this work [10] we investigated the quantum kinetic equa-
tions in the form originally derived by Kadanoff and Baym. The
key point is to do a systematic first-order gradient expansion
of all gradient terms even those internally present in the self-
energies. Through a careful investigation of all gradient terms
we could in fact prove that the quantum kinetic equations pos-
sess the generic feature of exact conservation laws at the expec-
tation value level.

The conserved currents and the energy-momentum tensor
take the original Noether form [8] (X = (�x, t))

Jµ(X) =
∫

d4p

(2π)4
pµf(X, p)A(X, p), (1)

Θµν
loc(X) =

∫
d4p

(2π)4
vµpνf(X, p)A(X, p)

+gµν
(E int

loc(X) − Epot
loc (X)

)
(2)

now however in the so called local form, i.e. void of any gra-
dient corrections. For the energy–momentum tensor the first
term accounts for the single particle part which by itself over-
counts the interaction energy. This is compensated by gradi-
ent terms which assemble to the difference between interac-
tion energy density and single-particle potential energy density,
E int
loc(X)−Epot

loc (X), both obtained from the sameΦ-functional
in the local approximation as the self-energies driving the gra-
dient expanded KBE.

In order to preserve the exact conserving property, a few con-
ditions have to be met. First, the original KBE should be based
on aΦ-derivable approximation scheme that guarantees that the
KBE themselves are conserving [8, 9]. Second, all possible
memory effects due to internal vertices within the self-energy
diagrams are also consistently expanded to first-order gradi-
ents. Finally it is important that after the gradient expansion
no further approximations are applied that violate the balance
between different first-order gradient terms.

The presence of exact conservations puts the Kadanoff–
Baym formulation of quantum transport on the level of generic
phenomenological equations. They offer a phenomenological
approach to the dynamical description of particles with broad
damping widths, such as resonances, with built-in consistency
and exact conservation laws. For practical simulations of com-
plex dynamical systems this approach may even be applied in
cases, where the smallness of the gradients can not always be
guaranteed.
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