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We study parton-pair production from a space-time de-
pendent chromofield via vacuum polarization by using the
background field method of QCD. The processes we con-
sider are both leading and higher order in gA but first order
in the action. We derive general expressions for the corre-
sponding probabilities. Parton production from a space-
time dependent chromofield will play a crucial role in the
production and equilibration of the quark-gluon plasma in
ultra relativistic heavy-ion collisions at RHIC and LHC.
In ultra relativistic heavy-ion collisions, when two highly
Lorentz contracted nuclei pass through each other a chro-
mofield is formed between them due to the exchange of soft
gluons [1]. The chromofield so formed polarizes the QCD
vacuum and produces qq̄-pairs and gluons via a Schwinger-
like mechanism [2]. As seen in numerical studies [3], the
chromofield acquires a strong space-time dependence due
to a combination of such effects as expansion, background
acceleration, color rotation, collision and parton produc-
tion. In situations like this, the parton production from
a constant chromofield is not justified and one has to find
the corresponding expression for a general space-time de-
pendent chromofield.
The e+e− pair production from a weak space-time de-

pendent classical field is studied by Schwinger [2]. Because
of the same structure of the interaction lagrangian density
the production of a qq̄ pair is similar to the e+e− case ex-
cept for color factors [5]. (N.B.: Only the real parts of the
following expressions are to be taken.) Details are given
in [6]:
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The computation of the probability for the production of
gluons is not straight forward and there is no counter part to
this in QED. The processes which in leading order of the action
contribute to gluon pair production are evaluated following the
background field method of QCD [7] which, in a gauge invariant
manner incorporates a classical background field and a quan-
tum gluonic field simultanously. The probability is obtained by
spin-summing the phase-space integral over the absolute square
of the amplitudes. The Feynman rules for the production of two
gluons by coupling to the A-field once or twice can be read from
the Lagrangian density and are given in [8, 6]. To obtain the
correct physical gluon polarizations in the final state we put
the sums over the polarizations of the outgoing gluons equal
to the negative of the metric tensor and afterwards deduct the
corresponding ghost contributions. The vertices involving two
ghosts and one classical field and two ghosts and two classical
fields respectively can again be read from the lagrangian den-
sity and are also found in [8, 6]. We obtain the probability
per unit time and unit volume of the phase space for the pro-

duction of a real gg pair from a space-time dependent classical
chromofield A [6]:
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As a simple example we choose the field to be

Aa3(t) = Aine−|t|/t0 , t0 > 0, a = 1, ..., 8.

The exponential decay of the source terms originates from
the decay of the model-field. Their oscillatory behavior is due
to the exponential factor,already present in the general formula.
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Fig. 1 Dimensionless time-integrated source terms for
quarks (dash) and gluons (solid) versus transverse mo-
mentum kT in MeV and rapidity y for the parameters
αS = 0.15, Ain = 1.5GeV , t0 = 0.5fm, kT = 1.5GeV ,
y = 0.

The decay behavior with the transverse momentum kT in
MeV is mostly due to the choice of the field. Only in the sec-
ond contribution to the gluon source term there is already a
factor 1/(k0)2 present in the general formula. As the momen-
tum structure of the general equations is mostly based on the
k0-component, the origin for the typical rapidity y behavior is
mainly linked to the behavior for changing transverse momen-
tum. For this model field, a stronger coupling, a stronger chro-
mofield and/or a slowlier varying field emphasize dominance of
the gluon-pair production over the production of qq̄ pairs even
more.
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