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Beta-decay studies of proton-rich isotopes near the dou-
bly closed-shell nucleus 56Ni are of interest as (i) nuclei
with a few nucleons outside a doubly-magic core are ex-
pected to represent comparatively simple configurations
and thus be useful for testing nuclear shell-model predic-
tions, and (ii) the large decay-energy window permits to
experimentally access a sizeable fraction of the strength of
the allowed β decay. Moreover, nuclear structure proper-
ties of proton-rich N ∼ Z isotopes are of astrophysical in-
terest, e.g., concerning the EC cooling of supernovae and
the astrophysical rp-process.
The β decay of 56Cu was studied at the GSI On-line Mass
Separator by using a 5.5 MeV/u 32S beam from the UNI-
LAC to induce 28Si(32S, p3n)56Cu fusion-evaporation re-
actions. The reaction products were stopped in a catcher
inside an ion source, released as singly-charged ions, accel-
erated to 55 kV and mass-separated in a magnetic field.
The A=56 beam was implanted into a movable tape and
investigated by means of a β-γ-γ detector array consisting
of two composite high-resolution germanium (Ge) detec-
tors and a plastic scintillator.
The 56Cu decay to the doubly-magic nucleus 56Ni has been
investigated for the first time at the On-line Mass Separa-
tor in 1996 [1]. Four γ transitions have been observed, cor-
responding to the β-feedings of three excited 56Ni states,
and a half-life of (78 ± 15) ms has been determined. In
the present experiment [2], due to the more efficient detec-
tion set-up and a longer measurement time, the quality of
the data was considerably improved, and it was in partic-
ular possible to observe γ-γ coincidences. Six γ transitions
were identified besides the four ones already known, three
new states were added to the level scheme of 56Ni, and the
half-life ((92 ± 3) ms) was determined more accurately.
By using the newly determined level scheme and halflife, β
feedings and reduced Gamow-Teller (GT) transition prob-
abilities (B(GT)) were deduced with higher accuracy. The
experimental B(GT) values were confronted with predic-
tions obtained from five shell-model calculations. Two of
these theoretical predictions, one using the FPD6∗ [3] and
the other the KB3G [4] interaction, are presented together
with the experimental results in Fig. 1. The shell-model
calculations include a ’quenching factor’ of 0.74 [5]. It was
found that the experimental GT-strength distribution over
56Ni states between 3.9 and 6.6 MeV qualitatively agrees
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Figure 1: Experimental B(GT)values (empty bars) for the
56Ni levels together with shell-model predictions obtained
by using the FPD6∗ (dashed bars) and KB3G interactions
(black bars).

with the predictions (see [2]). We consider this to be a
valuable test of shell-model calculations, including their
ability to reliably predict the higher-lying GT strength.
Moreover, the identification of hitherto unobserved low-
spin states in 56Ni is important for further improvement
of data from in-beam spectroscopy as well as for further
tests of nuclear models. Finally, it was shown [2] that the
new experimental data do not imply a revision of the cal-
culated stellar weak-interaction rates of A=56 nuclei [6].
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