Beta Decay of ⁵⁶Cu

R. Borcea¹, J. Äystö², E. Caurier³, P. Dendooven², J. Döring¹, M. Gierlik⁴, M. Górska¹, H. Grawe¹,
M. Hellström¹, Z. Janas⁴, A. Jokinen², M. Karny⁴, R. Kirchner¹, M. La Commara¹, K. Langanke⁵,
G. Martínez-Pinedo^{5,6}, P. Mayet¹, A. Nieminen², F. Nowacki⁷, H. Penttilä², A. Płochocki⁴,
M. Rejmund¹, E. Roeckl¹, C. Schlegel¹, K. Schmidt¹, R. Schwengner⁸, and M. Sawicka⁴
¹GSI, Darmstadt, ²University of Jyväskylä, Finland, ³Institut de Recherches Subatomiques,
Strasbourg, France, ⁴Institute of Experimental Physics, University of Warsaw, Poland, ⁵Institut

for Fysik og Astronomi, Århus Universitet Denmark, ⁶Department für Physik und Astronomie,

joi rysin oy Astronomi, Arnus Ontoerstiet Denmurk, Deputriment jur Physik una Astronomie,

Universität Basel, Switzerland, ⁷Laboratoire de Physique Théorique de Strasbourg, France,

 $^8 For schungszentrum \ Rossendorf \ e. \ V., \ Germany$

Beta-decay studies of proton-rich isotopes near the doubly closed-shell nucleus ⁵⁶Ni are of interest as (i) nuclei with a few nucleons outside a doubly-magic core are expected to represent comparatively simple configurations and thus be useful for testing nuclear shell-model predictions, and (ii) the large decay-energy window permits to experimentally access a sizeable fraction of the strength of the allowed β decay. Moreover, nuclear structure properties of proton-rich N ~ Z isotopes are of astrophysical interest, e.g., concerning the EC cooling of supernovae and the astrophysical rp-process.

The β decay of ⁵⁶Cu was studied at the GSI On-line Mass Separator by using a 5.5 MeV/u ³²S beam from the UNI-LAC to induce ²⁸Si(³²S, p3n)⁵⁶Cu fusion-evaporation reactions. The reaction products were stopped in a catcher inside an ion source, released as singly-charged ions, accelerated to 55 kV and mass-separated in a magnetic field. The A=56 beam was implanted into a movable tape and investigated by means of a β - γ - γ detector array consisting of two composite high-resolution germanium (Ge) detectors and a plastic scintillator.

The ⁵⁶Cu decay to the doubly-magic nucleus ⁵⁶Ni has been investigated for the first time at the On-line Mass Separator in 1996 [1]. Four γ transitions have been observed, corresponding to the β -feedings of three excited ⁵⁶Ni states, and a half-life of (78 ± 15) ms has been determined. In the present experiment [2], due to the more efficient detection set-up and a longer measurement time, the quality of the data was considerably improved, and it was in particular possible to observe γ - γ coincidences. Six γ transitions were identified besides the four ones already known, three new states were added to the level scheme of ⁵⁶Ni, and the half-life ((92 \pm 3) ms) was determined more accurately. By using the newly determined level scheme and halflife, β feedings and reduced Gamow-Teller (GT) transition probabilities (B(GT)) were deduced with higher accuracy. The experimental B(GT) values were confronted with predictions obtained from five shell-model calculations. Two of these theoretical predictions, one using the $FPD6^*$ [3] and the other the KB3G [4] interaction, are presented together with the experimental results in Fig. 1. The shell-model calculations include a 'quenching factor' of 0.74 [5]. It was found that the experimental GT-strength distribution over ⁵⁶Ni states between 3.9 and 6.6 MeV qualitatively agrees

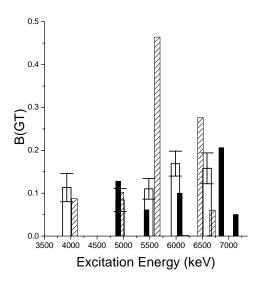


Figure 1: Experimental B(GT)values (empty bars) for the 56 Ni levels together with shell-model predictions obtained by using the FPD6^{*} (dashed bars) and KB3G interactions (black bars).

with the predictions (see [2]). We consider this to be a valuable test of shell-model calculations, including their ability to reliably predict the higher-lying GT strength. Moreover, the identification of hitherto unobserved low-spin states in ⁵⁶Ni is important for further improvement of data from in-beam spectroscopy as well as for further tests of nuclear models. Finally, it was shown [2] that the new experimental data do not imply a revision of the calculated stellar weak-interaction rates of A=56 nuclei [6].

[1] M. Ramdhane et al., Phys. Lett. B 432 (1998) 22

- [2] R. Borcea *et al.*, submitted to Nucl. Phys. A
- [3] T. Otsuka et al., Phys. Rev. Lett. 81 (1998) 1588
- [4] A. Poves *et al.*, nucl-th/0012077, submitted to Nucl. Phys. A
- [5] G. Martínez-Pinedo et al., Phys. Rev C 53 (1996) 2602
- [6] K. Langanke and G. Martínez-Pinedo, Nucl. Phys. A
- 673 (2000) 481