Fine Structure in the α - decay of ²⁵⁵Rf

F.P.Heßberger¹, S. Hofmann¹, D.Ackermann^{1,2}, A. Lavrentev³, M. Leino⁴, G. Münzenberg¹, V.Ninov^{1,5}, A.G. Popeko³, S. Saro⁶, Ch. Stodel^{1,7}, A.V.Yeremin³

¹GSI, Darmstadt, Germany, ² also Johannes Gutenberg - Universität, Mainz, Germany, ³FLNR JINR, Dubna, Russia, ⁴University of Jyväskylä, Jyväskylä, Finland, ⁵now at LBNL, Berkeley, USA, ⁶Comenius University, Bratislava, Slovakia, ⁷now at GANIL Caen, France

In a recent experiment ²⁵⁵Rf was produced by the reactions ²⁰⁸Pb(⁵⁰Ti,3n)²⁵⁵Rf and ²⁰⁶Pb(⁵⁰Ti,n)²⁵⁵Rf. From an unusual low number of ²⁵⁵Rf α -decays in the energy interval (8720-8730) keV followed by α - decays of ²⁵¹No, the existence of a low lying isomeric state with T_{1/2} \approx 0.9 s was suspected [1]. Since neither from theoretical predictions [2] nor from the known levels of the lighter N=151 isotones with even Z number [3], which have a similar nuclear structure, the existence of such an isomer could be expected, we decided to clarify this problem using the reaction ²⁰⁷Pb(⁵⁰Ti,2n)²⁵⁵Rf, for which a cross section $\sigma \approx 10$ nb was obtained. The result is shown in fig. 1a,b. On the basis of a twenty times higher number of observed counts, no ,abnormally' low correlation rate for $E_{\alpha} = (8720-8730)$ keV was evident.

Fig. 1 Decay spectra of 255 Rf; a) spectrum of α - events following the implantation of a heavy residue within $\Delta t = 20$ s; b) α - α - correlation plot for 255 Rf $\rightarrow ^{251}$ No; c) α - γ - coincidences attributed to the decay of 255 Rf

In addition a few γ - events in coincidence to the α - decays of ²⁵⁵Rf were observed (fig. 1c). Two different groups are indicated: a) γ - events of $E_{\gamma} = (203\pm3)$ keV and α - decays of $E_{\alpha} = (8722\pm10)$ keV; b) γ - events of $E_{\gamma} = (142\pm3)$ keV and E_{α}

= (8773±10) keV. Since for a) the sum $E_{\alpha} + E_{\gamma}$ = 8924 keV, i.e. close to the transition with the highest energy correlated to ²⁵¹No, we conclude that this γ - transition leads to the ground state and due to the lowest hindrance factor of HF = 3 the 8722 keV - transition is assigned to the favored transition.

According to calculations of Cwiok et al. [2] and assignments for lighter N=151 and N=149 isotones, we tentatively set the ground - states of ²⁵⁵Rf as 9/2⁻[734] and ²⁵¹No as 7/2⁺[624] (fig. 2). Due to the striking low hindrance factor HF = 7 the 8773 keV transition cannot be assigned to the decay into the level $5/2^+$ [622], which is the first excited Nilsson level in the lighter N = 149 isotones (247 Cf, 245 Cm, 243 Pu) [3], although theory predicts it above the 9/2^[734]. Relative intensities of decays into this level are typically lower than 0.05. Therefore we interpret the 142 keV - line due to the transition $9/2^{-}[734]$ $\rightarrow 9/2^+$, the first member of the ground state rotational band of ²⁵¹No (see fig. 2). The succeeding transition $9/2^+ \rightarrow 7/2^+$ [624] is preferrably M1 and thus highly converted. So the 8773 keV line is understood as due to energy summing of 8722 keV - α particles with conversion electrons. So are the α - lines at 8797 keV and 8831 keV. In theses cases we assume that primarily the $11/2^+$ state is populated by the decay of the $9/2^-$ [734] level. The 8897 keV-line finally is understood as due energy summing between α -particles and electrons from conversion processes $9/2[734] \rightarrow 7/2[624]$, while the small shoulder at 8670 keV may be explained by transitions into the $11/2^{-}$ - state.

Fig. 2: Decay scheme suggested for $^{255}\text{Rf};$ the energies denote the Q_{α} - values.

References:

- [1] F.P. Heßberger et al. Z. Phys. A 359, 415 (1997)
- [2] S. Cwiok et al. Nucl. Phys. A575, 356 (1994)
- [3] R. Firestone et al. (eds.) Table of Isotopes (1996)