New microsecond isomers in ^{189,190}Bi

A.N. Andreyev^{1,5}, D. Ackermann², P. Cagarda³, J. Gerl², F. P. Heßberger², S. Hofmann², K. Heyde⁴,
M. Huyse¹, A. Keenan⁵, H. Kettunen⁶, A.Kleinböhl², A. Lavrentiev⁷, M. Leino⁶, B. Lommel², M. Matos³,
G.Münzenberg², C. Moore⁵, C. D. O'Leary⁵, R. D. Page⁵, S. Reshitko², S. Saro³, C. Schlegel²,

H. Schaffner², M. Taylor⁵, P.Van Duppen¹, L. Weissman¹, R. Wyss⁸

¹Instituut voor Kern- en Stralingsfysica, University of Leuven, Belgium; ²GSI Darmstadt, Germany; ³Comenius University of Bratislava, Slovakia; ⁴Institute for Theoretical Physics, Gent, Belgium, ⁵Oliver Lodge Laboratory, University of Liverpool, United Kingdom; ⁶University of Jyväskylä, Finland; ⁷JINR, Dubna, Russia; ⁸Royal Institute of Technology, Stockholm, Sweden

New microsecond isomers in the neutron-deficient isotopes ^{189,190}Bi have been identified at the velocity filter SHIP in the p4n and p3n evaporation channels, respectively, of the complete fusion reaction of ⁵²Cr ions with a ¹⁴²Nd target. After inflight separation the evaporation residues (EVRs) were implanted into a position-sensitive silicon detector (PSSD), where their subsequent α -decays were measured. Behind the PSSD a four-fold segmented Ge-clover detector was installed for prompt and delayed (up to 5 ms) α - γ and α -X ray coincidence measurements allowing for the investigation of longlived isomeric states. EVRs were identified by excitationfunction measurements and by using the Recoil-Decay-Tagging method on the basis of delayed recoil- γ , recoil-X ray, and recoil- γ - α coincidences. A detailed description of the experimental set-up used and of the results for ^{188,189,190}Po and their daughter products was given in [1].

Fig.1a shows the γ -ray spectrum measured by the clover detector in coincidence with recoils registered in the PSSD. The y-transition observed at 357(1) keV has an excitation function similar in shape and position to the 6672-keV α -decay of the $9/2^{-}$ ground state of ¹⁸⁹Bi (T_{1/2} = 680 ms) and of the 7298 keV α -decay of the $1/2^{+}$ isomeric state (^{189m1}Bi) of ¹⁸⁹Bi. On this basis we assign this transition to ¹⁸⁹Bi. Fig.1b shows the same spectrum as in Fig.1a, but with an additional condition that the EVR- γ pair is correlated within the time interval of 2 s with an α decay of E_{α} = 6672 keV. The procedure to take into account the background of possible random correlations is described in detail in [2]. In Fig.1b, besides a peak at $E_{\gamma} = 357(1)$ keV coincidences with the K-X rays of Bi are also observed. Thus, the excitation function behaviour, coincidence with the Bi K-X rays and the condition of correlation with the α decay of ^{189g}Bi establishes the origin of the 357 keV γ -line as an isomeric state $(^{189\text{m}2}\text{Bi})$ built on top of the 9/2⁻ ground state in ^{189}Bi .

By comparing the number of the K-X rays and γ -rays in Fig.1b, corrected for the corresponding efficiencies [1], a conversion coefficient of $\alpha_{\rm K} = 0.9(1)$ was deduced, which is consistent with the theoretical value of $\alpha_{\rm K}(357~{\rm keV},~{\rm M2}) = 0.77$. This establishes the spin and the parity of the 357-keV isomeric state ^{189m2}Bi as $13/2^+$. We assume that this state decays by the M2 transition directly to the $9/2^-$ ground state of ¹⁸⁹Bi, as in the cases of ^{191,193,195}Bi [3]. Applying a procedure described in [2], we deduced a lower limit of $T_{1/2} > 360(120)$ ns for the half-life value of the 357-keV transition.

By using the same method as described above for ^{189m2}Bi and by analysing the recoil- γ (Fig.1c) and recoil- γ - α (6450 keV) (Fig.1d) correlations a previously unknown isomeric γ -decay with the energy of $E_{\gamma} = 273(1)$ keV and a lower half-life limit of $T_{1/2} > 500(100)$ ns was observed on top of the α -decaying ($E_{\alpha} = 6450$ keV) 10⁻⁻ isomeric state in ¹⁹⁰Bi. The detailed discussion of the observed results is given in [2].

Figure 1. a) Recoil- γ coincidence spectra (time interval $\Delta T(EVR-\gamma) < 5 \mu s$ and b) background-subtracted recoil- γ - α (6672 keV) spectra for ¹⁸⁹Bi collected at the beam energy of 272.0(5) MeV; c) and d) the same as a) and b), but for ¹⁹⁰Bi, collected at the beam energy of 256.0(5) MeV. Known γ -decays of the microsecond isomeric states in ¹⁹⁰Pb [4] are marked by filled triangles.

References

- [1] A.N. Andreyev et al., Eur. Phys. J. A6, 381 (1999).
- [2] A.N. Andreyev et al., submitted to Eur. Phys. J. A, (2001).
- [3] P. Nieminen et al., Proc. XXXV Zakopane School of Physics, Zakopane, Poland, Sep. 5-13, 2000. To be published in Acta Physica Polonica B (2001).
- [4] G.D. Dracoulis, A.P. et al. Phys. Lett. B432, 37 (1998).