## Fine structure in the $\alpha$ - decay of radium isotopes <sup>212-209</sup>Ra

F.P. Heßberger, S. Hofmann, D. Ackermann<sup>1</sup>

GSI, Darmstadt, Germany, <sup>1</sup> also Johannes Gutenberg - Universität, Mainz, Germany

Although Ra - isotopes with mass numbers  $207 \le A \le 212$  had been synthesized first by Valli et al. more than thirty years ago [1] little knowledge on their decay properties has been added since then. The successful application of  $\alpha$ - $\gamma$ -coincidence measurements to detect  $\alpha$ -decay branches with low intensity in <sup>214</sup>Ra and <sup>214-216</sup>Ac [2] motivated us also to investigate Raisotopes with A  $\le 212$ . We therefore chose the reaction <sup>204</sup>Pb(<sup>12</sup>C,xn)<sup>216-x</sup>Ra at incident beam energies of E<sub>lab</sub>= (78-137) MeV. New decay data were obtained for <sup>212,211,210,209</sup>Ra. The results are listed in table 1.

For the even - even nuclei  $^{212}Ra$  and  $^{210}Ra$  we observed  $\alpha$ -decay into the first excited  $2^+$  - levels of the daughter nuclides. Our  $\gamma$  - energies of  $E_{\gamma} = (635.1 \pm 0.2) \text{ keV}$  for  $^{212}Ra$  and  $E_{\gamma} = (574.9 \pm 0.2) \text{ keV}$  for  $^{210}Ra$  fit well to the excitation energies of the first  $2^+$  - levels of  $^{208}Rn$  (635.8 keV) and  $^{206}Rn$  (575.3 keV) reported in literature [3].

Two weak  $\gamma$  - lines of  $E_{\gamma} = (387.0 \pm 0.5)$  keV and  $E_{\gamma} = (633.7 \pm 1.1)$  keV were attributed to the decay of <sup>209</sup>Ra. Unlike the case of the N=119 isotone <sup>207</sup>Rn, whose  $\alpha$ -decay populates low lying states at  $E^* = 62.54$  keV and  $E^* = 133$  keV with relative intensities of 0.007 and 0.001, respectively, we did not observe  $\alpha$ - $\gamma$  - coincidences with  $E_{\gamma} < 200$  keV that could be attributed to the decay of <sup>209</sup>Ra.

Altogether, six  $\gamma$  - lines were assigned to the decay of <sup>211</sup>Ra. While five of them fulfilled the relation  $Q_{\alpha} + E_{\gamma} \approx Q_{\alpha}$  (gs), where  $Q_{\alpha}$  and  $Q_{\alpha}(gs)$  denote the Q-values for the observed transition and the ground - state transition, respectively, the 162.9 keV line delivered a considerably lower Q - value. It is, therefore, interpreted to be the transition between the  $E^*$  = 283.0 keV and  $E^* = 120.0$  keV - levels, since it perfectly fits to the energy difference. The energy of coincident  $\alpha$ -particles, however, is shifted by  $\approx 20$  keV as compared to  $\alpha$ -particles coincident with  $E_{\gamma} = 283.0$  keV. This we attribute to energy summing with conversion electrons from the transition 120 keV  $\rightarrow$  0 keV (g.s.). From the intensities of the 120 keV - line and the  $K_{\alpha}$  - and  $K_{\beta}$  -lines of Rn we obtained a conversion coefficient of  $\alpha = 4.5 \pm 0.5$  which agrees best with the value  $\alpha$ = 6.5 expected for an M1 - transition [4]. Taking  $5/2^{-1}$  as the ground state configuration of  $^{207}$ Rn [3], we obtain  $3/2^-$  as spin and parity for the 120 keV - level. Due to the high background of x-rays from the decay by internal conversion of the 110 keV - level in <sup>213</sup>Ra, which are coincident to  $\alpha$  - particles with energies very similar to that of  $\alpha$  - particles coincident with the 283 keV - level in  $^{211}$ Ra, we were not able to determine the conversion coefficient and to make a spin and parity assignment.

In the lighter N = 117 isotones <sup>203</sup>Pb and <sup>205</sup>Po two low lying levels with spins and parities 1/2<sup>-</sup> and 3/2<sup>-</sup> are known. While 3/2<sup>-</sup> was assigned to the 120 keV level in our experiment, we did not observe a  $\gamma$  - line that could be attributed to the decay of a 1/2<sup>-</sup> level. It should be remarked, that in our experiment we observed  $\gamma$ -decays from the 3/2<sup>-</sup> (142.7 ± 0.5 keV) - as well as from the 1/2<sup>-</sup> - level (154.5±0.5 keV) in <sup>205</sup>Po, both being populated by (<sup>213</sup>Ra –  $\alpha \rightarrow$ ) <sup>209</sup>Rn –  $\alpha \rightarrow$  <sup>205</sup>Po.



Fig. 1: Experimental decay scheme of  $^{211}$ Ra; the energies denote the  $Q_{\alpha}$  - values

Table 1: Results of  $\alpha$ - $\gamma$  - coincidence measurements for radium isotopes.

| Isotope           | $E_{\alpha}$ / keV | $E_{\gamma}/keV$ |
|-------------------|--------------------|------------------|
| 212               |                    |                  |
| $^{212}$ Ra       | $6902 \pm 5$       | (gs)             |
|                   | $6269 \pm 5$       | $635.1\pm0.2$    |
| <sup>211</sup> Ra | $6907 \pm 5$       | (gs)             |
|                   | $6788 \pm 5$       | $120.0 \pm 0.2$  |
|                   | $(6648 \pm 5)$     | $162.9\pm0.2$    |
|                   | $6627 \pm 5$       | $283.0\pm0.2$    |
|                   | $6320 \pm 10$      | $596.1\pm0.4$    |
|                   | $6315 \pm 10$      | $601.6\pm0.4$    |
|                   | $6255 \pm 5$       | $665.0\pm0.2$    |
| 210               | 7002 + 10          |                  |
| Ka                | $7003 \pm 10$      | (gs)             |
|                   | $6447 \pm 5$       | $574.9 \pm 0.2$  |
| <sup>209</sup> Ra | $7003 \pm 10$      | (gs)             |
|                   | $6625 \pm 5$       | $387.0 \pm 0.6$  |
|                   | $6376\pm10$        | $633.7 \pm 1.1$  |

## **References:**

[1] K. Valli et al. Phys. Rev 161, 1284 (1968)

[2] F.P. Heßberger et al. EPJ A 8, 521 (2000)

[3] R. Firestone et al (eds.) Table of Isotopes, 1996

[4] R.S. Hager, E.C. Seltzer Nucl. Data A4 (1968)