A new micro-second isomer in neutron-rich ¹³⁶Sb

M.N. Mineva¹, M. Hellström^{1,2}, M. Bernas³, J. Gerl², H. Grawe², M. Pfützner⁴, P.H. Regan⁵, D. Rudolph¹, J. Genevey⁶, Z. Janas⁴, J. Kurcewicz⁴, P. Mayet², J.A. Pinston⁶, Zs. Podolyàk⁵, M. Rejmund⁷, Ch. Schlegel², K. Sümmerer²

¹Lund University, ²GSI-Darmstadt, ³IPN Orsay, ⁴Warsaw University,

⁵University of Surrey, ⁶ISN Grenoble, ⁷CEA Saclay

By studying the properties and decay patterns of isomeric states resulting from the coupling of valence particles in high-j orbitals at the Z = 50 and N = 126 shell closures, valuable information on nuclear structure and nucleon-nucleon interaction in very neutron-rich systems can be obtained. In December 1999, we therefore performed an experiment at GSI to search for new, relatively long-lived (100ns - 100 μ s) isomeric states in the region around the neutron-rich doubly magic nucleus ¹³²Sn. The nuclei of interest were produced by projectile fission of ²³⁸U at 750 MeV/u in a 1.0 g/cm² ⁹Be target, separated using the Fragment Separator (FRS) and implanted in a catcher at the final focus surrounded by Ge detectors. More details about the experiment are given in [1, 2].

The well-known decay of the $I^{\pi} = 19/2^{-}$ isomer in ¹³⁵Te [3] was used to verify the particle identification and lifetime determination procedures. Figure 1 shows the γ -spectra recorded in delayed coincidence with ions of ¹³⁵Te and ¹³⁶Sb implanted in the catcher. A previously unknown delayed γ -transition at 173 keV is clearly seen in the ¹³⁶Sb-gated spectrum.

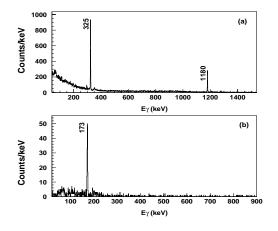


Figure 1: Delayed γ -ray spectra measured in coincidence with implanted ¹³⁵Te (a), and ¹³⁶Sb (b) ions. The timedelay is 250 ns, and 500 ns, respectively. The energy labels are in keV.

The decay curves of ¹³⁵Te and ¹³⁶Sb are presented in figure 2. The distributions were fitted to obtain the corresponding half-lives of the isomeric decays, and the results are summarized in Table 1. The half-life of the proposed new isomeric state in ¹³⁶Sb is $T_{1/2}$ =566±46 ns [2].

The β -decay of the ¹³⁶Sb ground state was studied by Hoff et al. [4], who suggest it is the $I^{\pi} = 1^{-}$ member of the $\pi g_{7/2} \nu f_{7/2}^3$ multiplet. Previous to our experiment, however, no excited states were known. The energy (173 keV) and half-life (566 ns) of the single delayed γ -ray we observe

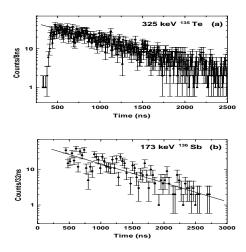


Figure 2: Time distribution curves of a) the 325 keV line from the decay of the $I^{\pi} = 19/2^{-}$ isomer in ¹³⁵Te and b) the 173 keV line identified in ¹³⁶Sb.

Table 1: Determined isomer half-lives			
Isotope	I^{π}	$T_{1/2}$ (ns)	$T_{1/2}$ (ns)
		(this work)	(previous)
$^{135}\mathrm{Te}$	$19/2^{-}$	512 ± 22	$510{\pm}20$ [3]
$^{136}\mathrm{Sb}$	-	$566{\pm}46$	-

make it an unlikely candidate for the transition deexciting the isomeric state. More likely, the primary isomeric transition has low energy (<50 keV) and escapes detection in our setup due to internal conversion or absorption.

To help in interpreting the experimental observations we have performed spherical shell model calculations, using two different sets of interactions, to calculate the excitation energies for the $\pi g_{7/2} \nu f_{7/2}^3$ multiplet members. The calculations indicate that the isomer may have $I^{\pi} = 6^-$, and the observed 173 keV γ -ray could be the $4^- \rightarrow 2^$ transition. However, although ¹³⁶Sb has only one proton and three neutrons outside the doubly magic ¹³²Sn core, the gradual onset of collectivity as more valence particles are added could influence the level ordering and spacing. More experimental studies of ¹³⁶Sb are clearly needed.

References

- M.N. Mineva et al., Proc. 2nd International Balkan School on Nuclear Physics, Bodrum, Turkey, September 2000, Balkan Physics Letters, in press.
- [2] M.N. Mineva *et al.*, to be submitted to EPJ A.
- [3] K. Kawade et al., Z. Phys. A 298, (1980) 273.
- [4] P. Hoff *et al.*, Phys. Rev. C 56, (1997) 2865.