Quaternary Fission of ²⁵²Cf ^{B,G}

Yu.N. Kopatch¹, M. Mutterer², J. von Kalben², H.-J. Wollersheim¹, E. Lubkiewicz³, and P. Adrich³

¹GSI Darmstadt, ²TU Darmstadt, ³Cracow University, Poland

The rare ternary fission process ($\simeq 1/260$ relative to binary fission, for $^{252}\mathrm{Cf}$) is of particular interest not only for the understanding of the fission process itself, but also as a source of various neutron-rich light nuclei [1]. The study of "exotic" light nuclei is a major topic in modern nuclear structure physics with radioactive beams. The even rarer quaternary fission (QF) mode [2], when two light charged particles (LCP) are emitted simultaneously in addition to the main fission fragments, can originate either from a break-up of unstable species among the LCPs, e.g. $^7\mathrm{Li}^*$, $^8\mathrm{Be}$, $^9\mathrm{Be}^*$ ("pseudo" quaternary fission), or from the independent emission of two LCPs ("true" quaternary fission).

The QF processes were studied at GSI using a spontaneous 252 Cf fission source (~ 5000 fissions/sec). The LCPs were identified by a set of eight Δ E-E telescopes (12 μ m + 380 μ m Si detectors of 1 cm² each) subtending a total solid angle of $\sim 20\%$. Fission fragments and the 6.1 MeV α -particles from the 252 Cf radioactivity were stopped in suitable absorbers placed between source and detectors. The telescopes allowed for a clean separation of the LCP nuclear charges. A total of 255 α - α coincidences were detected, within a time window of 10 nsec. Simultaneously, single LCP events with the emission of ternary α , Li and Be particles were registered and could be used as a reference.

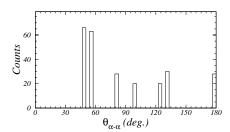


Figure 1: Measured relative angles for α - α coincidences.

Figure 1 shows the number of α - α coincidences as a function of the relative angle between the centers of the telescope surfaces. There is a clear enhancement of the quaternary fission yield at the smaller angles which is attributed to the break-up of ⁸Be LCPs, while the homogeneous distribution at the larger angles signals the true QF events. Simple estimates based on the kinematics of the ternary ⁸Be decay in flight show that the largest possible angle between the two α -particles from the ⁸Be groundstate decay ($T_{1/2} = 0.07$ fs, Q = 0.092 MeV) equals 8°, while the smallest distance between neighbouring telescopes corresponds to an opening angle of 16°. Thus, the observed enhancement in the angular distribution is presumably due to the decay from the first excited level in $^8{\rm Be}~(T_{1/2}~=~3\times 10^{-22}~{\rm s},~Q~=~3.13~{\rm MeV}).$ In that case the distribution of the relative angles is expected to be significantly broader [2].

The energy spectra of the true and pseudo QF components are presented in Fig. 2. The yield for the true

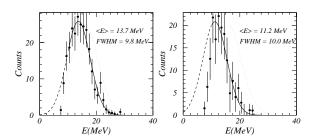


Figure 2: Energy spectra (corrected for the energy loss in the absorbers) of the true quaternary α -particles (left) and α -particles mediated by $^8\text{Be}^*$ LCPs (right). The solid lines are Gaussian fits, the dotted line is the measured ternary α -particle spectrum (< E >= 15.9 MeV).

 α - α QF, assuming isotropic distribution of the relative angles, is estimated as $(3\pm1)\times10^{-4}$ relative to the yield of ternary ⁴He. The two quaternary α -particles mediated by the ground-state decay of ⁸Be are registered in our set-up as an admixture to the Li spectrum, as they fall into the same range in the Δ E-E patterns. An attempt was made to disentangle these two contributions by fitting the known Li energy spectrum [3] and the sum spectrum of the two α -particles from the ⁸Be decay, considering the energy loss in the absorbers and Δ E detectors, to the measured E_{rest} spectrum (Fig. 3).

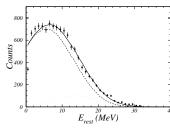


Figure 3: Decomposition of the E_{rest} spectrum gated on the ΔE -E patterns for Li (points): Dashed line - ternary Li spectrum, dotted line - sum spectrum of two α 's hitting a telescope, solid line - sum of both components.

The result (still preliminary) for the 8 Be ground-state yield is $\simeq 1 \times 10^{-3}$ relative to the yield of ternary 4 He. The systematic error in this procedure is fairly large ($\geq 50\%$), because of the uncertainty in the energy loss corrections and the not precisely known ternary Li spectrum. In a forthcoming experiment it is thus planned to separate the Li ternary particles unambiguously from the double α -particle hits in each telescope by applying pulse-shape discrimination in suitable E_{rest} detectors.

References

- M. Mutterer et al., Proc. 2nd Int. Conf. on Fission and Properties of Neutron-Rich Nuclei, St. Andrews, 1999, (World Scientific) (2000), p. 316.
- [2] F. Gönnenwein *et al.*, Proc. Int. Workshop Fission Dynamics of Atomic Clusters and Nuclei, Luso, 2000, (World Scientific), in press.
- [3] P. Singer, Dissertation, TU Darmstadt (1996).