The New Isotope ²⁷⁰110 and its Decay Products ²⁶⁶Hs and ²⁶²Sg

S. Hofmann, F.P. Heßberger, D. Ackermann, B. Kindler, J. Kojouharova,

B. Lommel, R. Mann, G. Münzenberg, H.J. Schött, GSI Darmstadt

A.G. Popeko, A.V. Yeremin, JINR Dubna

S. Antalic, P. Cagarda, S. Saro, University Bratislava

S. Ćwiok, University Warsaw

Synthesis and investigation of heavy even-even nuclei provide especially clear data for comparison with theoretical predictions. The absence of unpaired nucleons results in unhindered α decay or spontaneous fission. Also the low-energy level scheme is expected to be relatively simple. However, the synthesis of even-even nuclei is more difficult by the fact, that in fusion reactions with 208 Pb and neutron rich projectiles 2 neutrons must be evaporated, or the target must be replaced by 207 Pb. In both cases the measured cross-sections for the synthesis of nuclei beyond rutherfordium revealed a stronger decrease than in 1n reactions using ²⁰⁸Pb targets. Consequently, only few eveneven nuclei are known beyond rutherfordium with ²⁶⁴Hs being so far the heaviest one produced in reactions with ²⁰⁷Pb targets [1]. Evidence of heavier even-even nuclei $(^{262}116)$ was obtained from recent work in Dubna [2]. In this work we present results obtained in an experiment at the GSI SHIP aiming at the synthesis of the even-even nucleus $^{270}110$ using the reaction $^{64}Ni + ^{207}Pb$. A more detailed discussion of the results will be published in [3].

Figure 1: Two representative decay chains observed in irradiation of a ²⁰⁷Pb target with ⁶⁴Ni projectiles. The chain on the left side starts with a relatively long lived α decay of ²⁷⁰110 which is attributed to a high spin K isomer. The chain on the right side represents the decay of the short lived ground-state.

A total of eight α -decay chains was measured during an irradiation time of seven days. Two representative chains are plotted in Fig. 1. The ground-state of ²⁷⁰110 decays by α emission with an energy of 11.03 MeV and a half-life of 100 μ s. In addition we measured an isomeric level in ²⁷⁰110 which decays with a half-life of 6.0 ms. Alpha rays with energies of 10.95, 11.15, and 12.15 MeV were attributed to the decay of the isomer. A tentative assignment of the 12.15-MeV α particle to a transition into the ground-state of ²⁶⁶Hs results in an energy of the isomer at 1.13 MeV. The spin of the isomer was estimated from retardation of the α -decay probability to be approximately (10 ± 2) \hbar . A γ /IC branching of \approx 30 % to the ground-state seems

The decay properties of the ground-state of ²⁷⁰110 are in agreement with predictions of the macroscopic-microscop-

possible, but could not be definitely established.

agreement with predictions of the macroscopic-microscopic model and with self-consistent Hartree-Fock-Bogoliubov calculations with Skyrme-Sly4 interaction. The HFB calculations resulted also in two quasiparticle excited levels, one of them could be the origin of the isomeric state. Their configuration and energy is $\{\nu [613]_{7/2^+} \nu [725]_{11/2^-}\}_{9^-}$ at 1.31 MeV and $\{\nu [615]_{9/2^+} \nu [725]_{11/2^-}\}_{10^-}$ at 1.34 MeV.

The new nuclei ²⁶⁶Hs and ²⁶²Sg were identified as members of the α -decay chain. The nucleus ²⁶⁶Hs decays by α emission with an energy of 10.18 MeV and a half-life of 2.3 ms. However, it is also possible as indicated by the decay data, that the α decay has two components with half-lives of 0.35 and 6.3 ms. In that case an isomeric level would exist also in ²⁶⁶Hs which could originate from states analogue as in the case of ²⁷⁰110. Their energies in ²⁶⁶Hs are predicted to be at 0.90 and 0.94 MeV using HFB calculations. For both nuclei fission was not observed. Using calculated fission half-lives, we estimated fission branchings of 0.2 and 1.4 % for the nuclei ²⁷⁰110 and ²⁶⁶Hs, respectively.

The nucleus ²⁶²Sg decays by fission with a half-life of 6.9 ms and a total kinetic energy of the fission fragments of 222 MeV. Alpha decay was not measured, an upper limit for the α branching is 22 %. This value is in agreement with an estimate of 15 % α -branching, using a half-life deduced from a calculated value for the α energy of ²⁶²Sg.

The measured cross-section of 13 pb was unexpectedly high. It is shared equally between ground-state and isomeric state.

Future experiments at longer irradiation time and higher beam dose will certainly provide a more detailed decay scheme and low-energy level scheme of ²⁷⁰110 and its daughter nuclei. Coincidence experiments using large Ge detectors are promising to search for transitions within the rotational band in 266 Hs after α decay of 270m 110. The low-energy rotational levels can be studied via fine structure of the α decay. The measurement of the excitation function will provide data on the population of groundstate and isomeric state. The daughter nucleus ²⁶⁶Hs could possibly be studied directly using the radiative capture reaction of ⁵⁸Fe and ²⁰⁸Pb. An important next step using 207 Pb target is the investigation of 276 112. The result will demonstrate if the synthesis of even-even nuclei in cold fusion reactions could be applied also for still heavier systems.

References

- [1] G. Münzenberg et al., Z. Phys. A 328 (1987) 49
- [2] Yu.Ts. Oganessian et al., PR C63 (2000) 011301
- [3] Hofmann, S. et al., EPJ A, to be published (2001)