Characterization of Laser Heated Targets for UNILAC Beams

M. Geißel¹, E. Brambrink¹, A.Ya. Faenov³, D.H.H. Hoffmann¹, T. Pikuz³,

P. Pirzadeh,², F.B. Rosmej¹, O. Rosmej², M. Roth², W. Seelig¹, J. Wieser²

¹TU Darmstadt, ²GSI Darmstadt, ³ VNIIFTRI Mendeleevo, Russia

An enhanced energy loss of heavy ions in laser produced plasmas compared with cold gas targets has been observed and studied at GSI for several years [1]. A thorough spectroscopic investigation of the properties of these plasmas was essential and first experiments have been carried out during the last two years [2]. The use of CF_2 targets instead of carbon enabled the application of spherically bent mica crystal spectrometers, which provide spatial and high spectral resolution [3], but an additional measurement of energy losses for carbon and CF_2 was pending to compare the behavior of the two materials.

Previous measurements used foils of $2 \,\mu m$ thickness or less. As CF₂ is available with a minimum thickness of $5 \,\mu m$ only, comparable shots with carbon and CF₂ could only be performed after an upgrade of the **nhe**lix laser, which was completed during the year 2000. Table 1 shows the current performance of the upgraded laser.

Table 1: Data of the upgraded nhelix laser system

front end	Continuum Powerlite 8000
	$200{\rm mJ}$ @ $10{\rm Hz}$
pulse width	$12\mathrm{ns}$
wavelength	$1064\mathrm{nm}$
number of amplifiers	5
number of spatial filters	4
energy	$50\mathrm{J}$
repetition rate	$1-2 \mathrm{shots/hour}$
I_{max}	$10^{12}\mathrm{W/cm^2}$

The comparison of CF₂ targets with $5\,\mu\text{m}$ thickness and carbon targets with $1\,\text{mg/cm}^2~(\approx 4.5\,\mu\text{m})$ showed an almost identical values of carbon and CF₂. Although the measurements have an error level of about 10% both temporal evolution and signal amplitude show the same behaviour (Fig. 1).

The X-ray spectra show a high abundance of He-like and H-like Ions. While the H-like ions are concentrated in the hot region of interaction, the He-like ions can be observed throughout the jet-like expanding plasma [2]. The simultaneous observation of the X-ray emission from both front and rear surface by two separate spectrometers enabled a further distinction of the ho-

Figure 1: Comparison of different shots with carbon and CF_2 (Teflon) foil targets.

mogeneity of the target plasma. It was shown, that similar properties are generated on both sides of the plasma (Fig. 2).

Figure 2: The comparison of X-ray spectra achieved on the front and rear surface shows similar conditions throughout the target.

References

- M. Roth, C. Stöckl, W. Süß, O. Iwase, D.O. Gericke, R. Bock, D.H.H. Hoffmann, M. Geißel, W. Seelig; Energy loss of heavy ions in laser-produced plasmas, Europhys. Lett., **50** (1), pp. 28–34 (2000)
- [2] M. Geißel, R. Bock, A.Ya. Faenov, D.H.H. Hoffmann, T. Pikuz, P. Pirzadeh, F.B. Rosmej O. Rosmej, M. Roth; W. Süß, W. Seelig; GSI Scientific Report 1999, GSI-2000-1, p. 136
- [3] I. Yu. Skobelev, A. Ya. Faenov, B. A. Bryunetkin, V. M. Dyakin, T. A. Pikuz, S. A. Pikuz, T. A. Shelkovenko, V. M. Romanova, A. R. Mingaleev; JETP 81, 692ff (1995)

This work is supported by the BMBF of the Federal Republic of Germany, INTAS and WTZ