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Current determinations of fundamental constants [1] and
the comparison of theory and expriment in high-precision
experiments are based on perturbative expansions which
can at best be regarded as divergent, asymptotic series
in the coupling constant [2]. The first terms of the se-
ries decrease in absolute magnitude, before the factorial
growth of the perturbative coefficients overcompensates
the additional coupling factors of higher orders in per-
turbation theory, and the perturbation series ultimately
diverges. Dyson’s related argument [3] has given rise to
much discussion and confusion, until recent explicit 30–
loop calculations of perturbation series pertaining to φ3

and Yukawa theories have firmly established the factori-
ally divergent character of the perturbative expansion [4].
These considerations naturally lead to the question of how
complete, nonperturbative results can be obtained from
a finite number of perturbative coefficients, and how the
nonperturbative result is related to the partial sums of the
perturbation series.

We have investigated this problem [5] in connection
to the Euler-Heisenberg-Schwinger effective Lagrangian
which describes the quantum electrodynamic corrections
to Maxwell’s equations. The forward scattering amplitude
of the vacuum ground state is described by a factorially di-
vergent asymptotic series, SB ∝ const. × gB
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where B2n+4 is a Bernoulli number and gB is the coupling,
display an alternating sign pattern and grow factorially in
absolute magnitude. The process by which a finite, non-
perturbative result is ascribed to a divergent perturbation
series is known as resummation. The resummation to the
complete nonperturbative result for SB is accomplished by
employing the delta transformation,
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where sn =
∑n

k=0
ak is the partial sum of the input se-

ries and aj = cj gj is the jth term in the perturbation
series; (a)m = Γ(a + m)/Γ(a) is a Pochhammer symbol.
It has been observed that the delta transformation can be
used under rather general assumptions for the extrapola-
tion of the perturbation series, i.e. the prediction of un-
known perturbative coefficients, and various applications
to phenomenologically important quantum field theoretic
perturbation series have been presented in [5, 6]. In many
cases, the delta transformation leads to better results than
Padé approximants which have been discussed abundantly
in the literature (see e.g. [7]).

A perturbation series often misses physically important
physical effects when interpreted “at face value”. For ex-
ample, the perturbative expansion describing the energy
shift of hydrogenic levels in an electric field (known as
the Stark effect) has purely real coefficients, whereas the
complete energy eigenvalue (more precisely, pseudoeigen-
value or resonance) also has an imaginary component. The
imaginary part of the resonance, which describes the auto-
ionization width, can be obtained from the purely real per-
turbation series by a transformation which can be char-
acterized as a generalized Borel summation [8, 9]. First,
the factorial growth of the perturbation series is divided
out by calculating the Borel transform, and the pertur-
bation series f(g) =

∑

n cngn is replaced by its Borel
transform B(g) =

∑

n cngn/n!. Then, the autoioniza-
tion width is obtained by integrating the Borel transform
in the complex plane along integration contours specified
in [9,10]. The same resummation procedure can be used to
obtain the quantum electrodynamic pair production am-
plitude for the case of an electric field background; the
pair-production amplitude is related to the imaginary part
of the effective action [10].

Recently, techniques have been investigated to acclerate
the convergence of resummation procedures in order to ob-
tain results even at large coupling, which are paradoxically
based on the weak-coupling perturbative expansions [11].
The extrapolation from the weak-coupling limit to the
regime of strongly coupled systems by analytic continu-
ation of the perturbation series via Borel or delta trans-
formations has wide applicability.
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