Chiral Phase Transition in the scaled O(4)-Model
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Due to the non-Abelian character of QCD gluons self-
interact and form bound states, so-called glueballs. Such
glueballs have been seen in recent lattice simulations and
are actively searched for in experiment. Glueballs can be
used to construct effective models of QCD which respect
the symmetries and anomaly structure of the theory.

At the classical level and in the limit of vanishing quark
masses QCD for n flavors exhibits a global chiral U(n)p, x
U(n)gr symmetry and is in addition invariant under scale
transformations. Due to anomalies not all of the associated
currents are conserved and the symmetry is broken down
to SU(n)r x SU(n)r which, in the case of two flavors, is
isomorphic to O(4). This symmetry is spontaneously bro-
ken to SU(n)r+r. The divergence of the anomalous scale
current is given by the trace of the energy-momentum ten-
sor which, in the limit of massless quarks, is given by
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where G, (7) denotes the gluonic field-strength tensor and
B(g) is the usual QCD beta function. An effective realiza-
tion of the scale anomaly can be achieved by adding to the
classical Lagrangian a scalar color singlet dilaton field y

with an interaction potential of the form
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where h is a constant that is related to the vacuum energy
density €44 via h = —4g,4c, when there are no quarks.
The potential has a minimum at x = xo.

In a previous work [?] we have tested a novel renor-
malization group approach to investigate chiral symme-
try restoration at finite temperature and could analyze
the critical behavior at the chiral phase transition of the
O(N)-model. In this work we investigate the influence of
the additional dilaton field on the chiral phase transition
and the critical behavior. Therefore we couple a massive
scalar dilaton field, which breaks the scale invariance, to
the O(4)-model. Here we follow here the work in [?] and
consider the following Lagrangian
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where o, ™ denote the sigma- and the pion fields respec-

tively.

Lattice calculations hint that the lightest glueball has a
mass of 1.3 - 1.6 GeV. We use this mass as a constraint to
fix the parameters of the model at 7' = 0. We then per-
form a finite-temperature calculation, where we calculate
the vacuum expectation value (VEV) of the meson fields
and the critical exponents of the chiral phase transition.

From a comparison with the O(4)-model calculation with-
out the dilaton field we can then estimate the influence of
the dilaton field on the chiral phase transition.

The temperature dependence of the scalar mesonic VEV
(¢) (cf. Fig. 1) is very similar to the temperature depen-
dence in the pure O(4)-model calculation without the dila-
ton field. Around T, we again obtain a scaling behavior of
the VEV (¢) and of the mesonic coupling constant A with
critical exponents 8 = 0.39 and v = 0.79.

12 | I . T T T T
- (T TP K1/ Hr=0
1 S -

T —~—_
~—
i

08 |- \* -
*\\\“\\gfgij/<qi>T:0
0.6 [ -

02

i
T

0 20 40 60 80 100 120 140 160

Temperature [MeV]

Figure 1: The temperature evolution of the vacuum expec-
tation values of the dilaton field (x) and the scalar meson
field (¢) in the chiral limit.

These values of the exponents coincide within the esti-
mated numerical error bars with the pure O(4)-model
values.

On the other hand the glueballs themselves change very
little in the temperature region up to the chiral phase
transition. The change of the mass as well as of the
VEV of the dilaton field (cf. Fig. 1) is less then 0.1%
in this region. Calculations within the framework of a
pure dilaton model show that the glueballs begin to be
modified considerably at temperatures around 250 MeV.

In summary we can conclude that the glueballs, due to
their high mass of ~ 1.5 GeV, have very little influence on
the temperature evolution in the mesonic sector where we
still find a second order chiral phase transition with O(4)
critical exponents.
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