
Aachen
Department of Computer Science

Technical Report

Verifying Concurrent

List–Manipulating Programs by LTL

Model Checking

Joost–Pieter Katoen, Thomas Noll and Stefan Rieger

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2007-06

RWTH Aachen · Department of Computer Science · April 2007

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Verifying Concurrent List–Manipulating Programs by

LTL Model Checking

Joost–Pieter Katoen, Thomas Noll and Stefan Rieger

Software Modeling and Verification Group Lehrstuhl für Informatik II
RWTH Aachen, Germany

Email: {katoen, noll, rieger}@cs.rwth-aachen.de

Abstract. We present a novel approach to the verification of concurrent pointer–
manipulating programs which operate on singly–linked lists. By abstracting from
chains (i.e., non–interrupted sublists) in the heap, we obtain a finite–state rep-
resentation of all possible executions of a given program. The combination of
a simple pointer logic for expressing heap properties and of temporal operators
then allows us to employ standard LTL model checking techniques. The usabil-
ity of this approach is demonstrated by establishing correctness properties of a
producer/consumer system and of a concurrent garbage collector.

1 Introduction

Techniques for the verification of elementary properties of concurrent pointer
programs are indispensable. Programming with pointers is error–prone with po-
tential pitfalls such as dereferencing null pointers and the creation of memory
leaks. Pointer programming becomes even more vulnerable in a concurrent set-
ting where data structures such as linked lists and trees are manipulated and
inspected by several threads.

This paper presents a model–checking approach to the verification of con-
current programs that manipulate singly–linked lists. Existing approaches either
make use of non–standard logics, advanced model–checking procedures or ex-
tended versions of Hoare logics with accompanying deduction techniques (see
Sct. 6 about related work). In contrast, the approach advocated in this paper
stays within the realm of traditional (linear–time) model checking. This facili-
tates the usage of standard (LTL) model checkers for validating temporal proper-
ties addressing absence of memory leaks, dereferencing of null pointers, dynamic
creation of cells, and simple and position–dependent aliasing.

Our approach is illustrated by considering a simple concurrent programming
language that besides the usual control structures offers primitives for pointer
manipulation, cell creation and destruction, and (guarded) atomic regions that
allow concurrency control constructs such as test–and–set primitives and moni-
tors. An operational semantics is provided in terms of labeled transition systems
in which states are equipped with a graph structure representing the current list
configuration. List abstraction exploits a variant of summary nodes [SRW98] that
represent more than M chained list cells where constant M is directly obtained
from the formula to be checked. Each configuration is shown to have a canonical
representation (up to isomorphism). The abstract semantics of any concurrent
program in our language is finite, obtained in a fully mechanized manner, and
keeps the minimal “distance” between program variables and summary nodes

invariant. Over–approximation occurs in a very controlled manner; only assign-
ments may yield nondeterminism as variables may get “too close” to summary
nodes.

Properties are expressed in a first–order linear–time temporal logic (LTL)
that is enriched with assertions on singly–linked lists such as reachability of cells,
aliasing, and freshness of cells. Our logic is similar in spirit to NTL [DKR04,DKR06]
and ETL [YRSW03]. Opposed to NTL, we avoid the use of temporal opera-
tors inside quantification. In this way, involved mechanisms to keep track of the
identities of individual cells are not needed. As a result, standard LTL model
checking algorithms can be employed. The differences with ETL are more of a
technical nature. ETL has a three–valued interpretation, whereas our logical in-
terpretation is a standard binary one. Moreover, ETL–formulas are translated in
first–order logic with transitive closure for the evaluation on a trace, whereas in
our case traces are generated by labeled transition systems and used in standard
LTL model checking. The feasibility of our approach is shown by considering the
verification of a simple concurrent garbage collection program. Furthermore a
prototypical tool is currently under development for experimenting with real–life
examples.

Please note that due to space constraints most of the proofs could not be
included in this paper.

2 A List–Manipulating Programming Language

Given a universe PV of program variables, we define the set of list–manipulating
programs (LM–programs) to be given by the following grammar (where vi, v ∈
PV):

LMP ::= var v1, ..., vk(Stmt1‖...‖Stmtl)
Stmt ::= skip | signal | v := PExp | ∗v := PExp | Stmt; Stmt

| if BExp then Stmt else Stmt fi | while BExp do Stmt od
| new(PExp) | del(PExp) | 〈BExp : Stmt〉

PExp ::= nil | v | ∗v | &v
BExp ::= tt | ff | PExp = PExp | BExp ∧ BExp | ¬BExp

V (π) := {v1, ..., vk} denotes the set of variables for π ∈ LMP.

var x, y, z(
while tt do 〈tt :

if x = nil
then new(y); x := y
else new(∗y); y := ∗y

fi
〉 od

‖ while tt do 〈x 6= nil :
z := x; x := ∗x; del(z)

〉 od
)

Fig. 1. Producer/Consumer

An LM–program thus consists of a dec-
laration of global program variables and a
series of statements to be executed in paral-
lel. Each of these statements can either be
a pointer assignment, a sequence of state-
ments, a control structure, or a special state-
ment such as signal which sets a global
signal flag that can be tested in the logic,
new/del for dynamic creation or deletion of
objects at runtime (possibly leading to an
unbounded number of allocated heap cells)
and guarded atomic regions. If the Boolean
guard g in 〈g : s〉 is true, s is executed atom-
ically, i.e., with no interference by other pro-
cesses. If g is evaluated to false, the process is blocked (until g becomes true).

4

Pointer expressions comprise the special constant nil denoting an undefined
pointer value, a program variable, the dereferencing or referencing of a program
variable. Note that for simplicity we do not allow arbitrary dereferencing depths;
those can be emulated using a sequence of assignments within an atomic region.

Example 1. Figure 1 shows an LM–program implementing a producer inserting
objects and a consumer deleting objects at the end (pointed to by y) and begin-
ning (pointed to by x) of a queue, respectively. If the queue is empty the con-
sumer cannot proceed due to the guard x 6= nil until the producer has inserted
at least one object. Insertion and deletion are executed atomically to prevent
interferences.

Definition 1. A heap configuration of a program π ∈ LMP is a tuple γ =
(N,A, µ, F) with a set of nodes N ⊇ V (π), a set of abstract nodes A ⊆ N \ PV ,
a successor function µ : N → Nnil (where Nnil := N ∪ {nil}), and a set of flags
F ⊆ {err,dl, leak, signal,new}.

Let µ⋆ : 2N → 2N with µ⋆(X) := {n ∈ N | ∃k ∈ N, ∃n′ ∈ X : µk(n′) = n}
be the transitive closure of µ, i.e. all nodes reachable from a node in X (and X
itself).

Thus the nodes represent both the dynamic objects created and deleted at
runtime and the static program variables (which cannot be deleted). Edges, as
formalized by the µ–function, encode the points–to information of a specific pro-
gram state. The set A of abstract nodes will later be used for our abstraction
technique and will be empty throughout the current section. Finally the flags
give special information about a state, e.g., whether a runtime error or memory
leak occurred, a new node was created, or the signal bit has been set using the
signal command.

To ensure the finiteness of our abstraction we will automatically delete those
heap nodes that are not reachable from the program variables. This is accom-
plished by the following garbage collection mapping. Whenever it removes an
unreachable node, it sets the leak flag indicating a potential memory leak.

Definition 2. For γ = (N,A, µ, F) we define γ↓:= (N ′, A∩N ′, µ ↾ N ′, F∪{leak |
(N \N ′) 6= ∅}) where N ′ = µ⋆(PV).

Γ denotes the set of all garbage–free heap configurations, i.e., ∀γ ∈ Γ : γ↓=
γ, and Γc ⊆ Γ denotes the set of all concrete configurations, i.e., those with
Aγ = ∅.

From now on we will always assume garbage freeness when mentioning heap
configurations. This enforces a bound on the maximal number of incoming edges
for a node (essentially the number of program variables).

Definition 3. Let γ = (N, ∅, µ, F) ∈ Γc. Then we define the semantics of pointer
expressions [[·]] : PExp ⇀ Nnil by1:

[[nil]] := nil
[[v]] := µ(v)

[[∗v]] := µ([[v]])
[[&v]] := v

1 ⇀ denotes a partial function and ⊥ the undefined value.

5

The semantics of Boolean expressions [[·]] : BExp ⇀ B is standard and strict2.
Note that Def. 1 implies that µ(nil) = ⊥ and so [[·]] can indeed yield undefined
results for both pointer and Boolean expressions.

Definition 4. For π = var v1, ..., vk : (s1‖...‖sl) ∈ LMP the concrete opera-
tional semantics is given by a transition system T c

π = (Q, q0, lab,→) with a set
of states Q ⊆ Γc × Stmt⋄({‖}Stmt⋄)

⋆ where Stmt⋄ = Stmt ∪ {⋄}Stmt ∪ {ε}, an
initial state q0 = ((N0, ∅, µ0, ∅), s1‖...‖sl) where N0 and µ0 represent the “input
heap”, a labeling lab : Q→ Γc with ∀(γ, s) ∈ Q : lab((γ, s)) = γ, and a transition
relation →⊆ Q×Q.

In the following we will use the abbreviations F̂ for F \{signal,new, leak} and
noerr for {err,dl} ∩ F = ∅. γerr and γdl will denote pointer error and deadlock
states. Most transition rules are straightforward, thus here we will only consider
some interesting examples.

[[g]] = 1 γ, s→ γ′, s′ noerr

γ, 〈g : s〉 → γ′, ⋄s′
(1)

γ, s→ γ′, s′ s′ 6= ε noerr

γ, ⋄s→ γ′, ⋄s′
γ, s→ γ′, ε noerr

γ, ⋄s→ γ′, ε
(2)

∃j s.t. γ, sj → γ′, s′j ∀i 6= j : ∄s′i s.t. si = ⋄s′i noerr

γ, s1‖...‖sk → γ′, s1‖...‖s
′

j‖...‖sk

(3)

∄j s.t. γ, sj → γ′, s′j ∃j : sj 6= ε noerr

γ, s1‖...‖sk → γdl, ε
(4)

γ, ε‖...‖ε → γ, ε‖...‖ε
(5)

[[α]] 6= ⊥ noerr

(N,A, µ, F), v := α→ (N,A, µ[v/[[α]]], F̂)↓, ε
(6)

noerr

(N,A, µ, F),new(v)→ (N ⊎ {nnew}, A, µ[v/nnew], F̂ ∪ {new})↓, ε
(7)

[[α]] ∈ N \ PV noerr

(N,A, µ, F),del(α)→ (N \ {[[α]]}, A, µ[[[α]]/⊥, µ−1([[α]])/nil], F̂)↓, ε
(8)

Some remarks on the transition rules are in order. The leak, signal, and new
flags are reset after each transition; they are only activated in the state directly
following the corresponding “event”.

Regarding the concurrency rules we need to take care of the special semantics
of the atomic regions. If a process is executing such a statement it must not be
interrupted, and therefore the corresponding state is marked with ⋄ (rule 1). The
interleaving rule 3 excludes that any other than process j is in an atomic region.
If no process can proceed (all are blocked) we reach the special deadlock state
(rule 4). If all processes are terminated or an error or deadlock state is reached

2 One undefined operand yields an undefined expression.

6

the program loops to ensure that all paths in the transition system are infinite
(rule 5).

The treatment of assignments (rule 6) and the new statement (rule 7) is
again straightforward, we though have to keep in mind in the first case that
runtime errors might occur (dereferencing of nil pointers) and that garbage may
be generated. Rule 8 handles the deletion of nodes. Please note that the next–
pointers of the predecessors of the deleted node are set to nil (mainly to avoid
case distinctions for undefined expressions in the semantics).

We conclude that for the producer/consumer example (Fig. 1) the state space
becomes infinite when applying the operational semantics as defined above.

3 State–Space Abstraction

As we have seen in the previous section the state space of LM–programs can get
infinite even for simple example programs making standard verification methods
inapplicable. To tackle the problem we use abstraction techniques to generate
an abstract transition system that incorporates the behavior of the concrete one,
i.e., whose runs cover all concrete ones. This approach is correct but generally
incomplete: although we can conclude from the satisfaction of a property in the
abstract state space its validity in the concrete case, the inverse is impossible
though. But since the abstraction is parameterized via a global constant M ∈ N
we can refine the abstraction depending on our needs. For a given M > 0 we set
M := {0, 1, ...,M, ⋆}, where ⋆ represents all values greater than M .

Chain Abstraction The main idea of our abstraction is to summarize subgraphs
of a configuration into summary nodes [SRW98], which will be exactly those
contained in the A–component of a heap configuration. Summary nodes (also
called abstract nodes) are not allowed to represent arbitrary structures but
only so–called chains, i.e., non–interrupted lists. Our abstraction is based on
[Dis03,DKR04] with the difference that nodes are either truly abstract or con-
crete, thus recording node multiplicities is not necessary.

Definition 5. Let γ = (N,A, µ, F) ∈ Γ be a configuration. A nonempty set of
nodes C ⊆ N is called a chain if either

– |C| = 1 and C ⊆ PV or
– C ∩ PV = ∅ and there exists a bijection π : {1, ..., |C|} → C such that
µ(π(i)) = π(i+ 1) for i ∈ {1, ..., |C|} and ∀i ∈ {2, ..., |C|} : |µ−1(π(i))| = 1.

For a given chain C we will use the abbreviations
←−
C := π(1), and

−→
C := π(|C|).

A chain is called maximal if no superset C ′ ⊃ C is a chain.

Thus a chain is a sequence of pointer–connected nodes without interference
of other incoming edges or a singleton set containing a program variable. It
follows that the abstraction of chains preserves the graph structure. We will now
introduce a type of functions, called abstraction morphisms, that is based on this
concept.

Definition 6. Let γi = (Ni, Ai, µi, Fi) ∈ Γ, i ∈ {1, 2} be two heap configura-
tions. An abstraction morphism h : N1 → N2 satisfies for all v ∈ PV ∩N1 and
ni, n

′

i ∈ Ni:

7

1. h(v) = v
2. h−1(n2) is a chain in N1

3. µ2(n2) = n′2 ⇒ µ1(
−−−−−→
h−1(n2)) =

←−−−−−
h−1(n′2)

4. µ1(n1) = n′1 ⇒ h(n1) = h(n′1) ∨ µ2(h(n1)) = h(n′1)
5. n2 ∈ A2 ⇔ h−1(n2) ∩A1 6= ∅ ∨ |h

−1(n2)| > M
6. F1 = F2

We write h : γ1 γ2 to denote that the abstraction morphism h abstracts γ1 to
γ2 and γ2 ≤ γ1 ⇔ ∃h : γ1 γ2.

Abstraction morphisms abstract from concrete chains with minimal length
M + 1 (cond. 2 and 5). The preservation of the graph structure is enforced by
conditions 3 and 4. Program variables, being special nodes, remain untouched
(cond. 1).

Example 2. Figure 2 shows an abstraction morphism for M = 1. The dashed
lines represent the mapping, and the black nodes denote the resulting abstract
nodes. Note that for M = 2 the nodes 3 and 4 could not be projected onto the
same abstract node (condition 5 of Def. 6). The chain {3, 4} cannot be extended
by node 5, since this node has two incoming edges which is only allowed for
the first node of a chain. Although in this example the source configuration is
concrete, this is of course not necessary by definition.

x 1 2 3 4 5

6

7

8
9

x 1 2

Fig. 2. An Abstraction Morphism

An important property of abstrac-
tion morphisms is their surjectivity.
If, in addition a morphism is injec-
tive it becomes an isomorphism. Iso-
morphic configurations cannot be dis-
tinguished except for node naming, the
graph structure is the same.

Canonical Configurations Previously
we have defined how configurations can
be abstracted. It remains the problem
that there can be different abstractions of a given source configuration. For this
reason we need a normal form that implies uniqueness. In the following we define
this normal form, assuming γ = (N,A, µ, F) ∈ Γ .

Definition 7.

1. Let ⌊N⌋j := {n ∈ N | ∄v ∈ PV : µk(v) = n, k < j} be the set of nodes with a
distance of at least j from the variable nodes. Analogously ⌈N⌉j := N \⌊N⌋j+1.

2. A configuration γ is called canonical if ⌈N⌉2 ∩ A = ∅ and for all maximal3

chains C ⊆ ⌊N⌋3 either |C| = 1 or |C| ≤ M ∧ C ∩ A = ∅. The set of all
canonical configurations is denoted by Γ♮.

The notion of canonical configurations is quite intuitive: maximal chains are
collapsed where possible but only up to a distance of three from variable nodes.
The latter condition ensures that pointer expressions always evaluate to concrete

3 Here we refer to maximality in ⌊N⌋3.

8

nodes, which will simplify the definition of the abstract LMP semantics. The
abstraction morphism in Fig. 2 yields a canonical configuration, as can be easily
verified.

Theorem 1 (Existence). For every γ ∈ Γ with ⌈N⌉2 ∩ A = ∅ there exists a
γ′ ∈ Γ♮ such that γ′ ≤ γ.

It is easy to construct a morphism yielding a canonical configuration. It has
to collapse maximal chains that are larger than M or contain abstract nodes, if
they are sufficiently distant from the variable nodes. In the following we will call
this morphism h♮. The precise definition does not matter as states the following
theorem.

Theorem 2 (Uniqueness). Let γ ∈ Γ and γ1, γ2 ∈ Γ♮ such that h1 : γ γ1

and h2 : γ γ2 are two abstraction morphisms. Then γ1 and γ2 are isomorphic.

The proof of the uniqueness had to be omitted here. The consequence of these
results is the appropriateness of canonical configurations as a normal form. The
abstract semantics will operate on such configurations.

Abstract Semantics of List–Manipulating Programs As already mentioned, our
goal is to guarantee the correctness of our abstraction approach. This can be
achieved by ensuring that every concrete execution of a given system can be
“simulated” by an abstract computation, which necessarily introduces nondeter-
ministic behavior on the abstract side.

Regarding the expression semantics nothing needs to be modified: in a canon-
ical configuration, abstract nodes have a distance greater than two from the vari-
able nodes such that every pointer expression refers to a concrete node. The ex-
pression semantics can therefore be chosen identical to the concrete case (Def. 3),
now interpreted on canonical configurations.

Definition 8. Given a program π = var v1, ..., vk : (s1‖...‖sl) ∈ LMP, its ab-
stract operational semantics is defined by the labeled transition system T a

π =
(Q, [q0]∼=, lab,→) with state set Q ⊆ Γ♮/∼=×Stmt⋄({‖}Stmt⋄)

⋆, initial state q0 as
in Def. 4, labeling function lab : Q → Γ♮ where ∀(K, s) ∈ Q : lab((K, s)) = K,
and transition relation → as specified by the following rules (we focus on the as-
signments, since the other rules are analogous to the concrete case, but operating
on isomorphism congruence classes).

α /∈ ∗V (π) noerr

[(N,A, µ, F)]∼=, v := α→ [h♮((N,A, µ[v/[[α]]], F̂)↓)]∼=, ε
(1)

γ′ ∈ Γ♮ s.t. h♮((N,A, µ[v/[[∗w]]], F̂)↓) ≤ γ′ [[w]] 6= nil noerr

[(N,A, µ, F)]∼=, v := ∗w → [γ′]∼=, ε
(2)

[[v]] 6= nil [[α]] 6= ⊥ noerr

[(N,A, µ, F)]∼=, ∗v := α→ [h♮((N,A, µ[µ(v)/[[α]]], F̂)↓)]∼=, ε
(3)

[[α]] = ⊥ ∨ [[α′]] = ⊥ noerr

[γ]∼=, α := α′ → [γerr]∼=, ε
(4)

9

(1) v = w (analogously: v = nil , v = &w)
w

v

assign

x

w

v

GC

x

w

v

abstract

x

w

v

x

(2) v = ∗w
w

v

assign

x

w v

GC

x

w v

abstract

x

w v

x

w v

x

w v

x

concretize

(3) ∗v = w (analogously: ∗v = ∗w, ∗v = &w)
w

v

assign

x

w

v

GC

x

w

v x

abstract

w

v x

Fig. 3. Exemplary visualization of the abstract semantics (M = 3)

10

In Fig. 3 the semantic rules are visualized for an example configuration. In rule
2 there might be the necessity for both abstraction and concretion. The execution
of the assignment and the following abstraction via h♮ yields an intermediate
configuration which is generally not canonical since the variable v could now be
too close to an abstract node. Therefore we have to find a canonical configuration
γ′ that is at least as concrete as γ̄ and related by an abstraction morphism to
it. There might be more than one solution, thus this rule is nondeterministic
(indicated by the dashed arrows), but remains the only source of nondeterminism.

In rules 1 and 3 the distance to an abstract node is not reduced, but the
opposite case can occur: just imagine an assignment of the form y := nil . If
y points into a list whose head is referred to by another variable, we possibly
increase the distance from that variable to abstract nodes. The execution of
the assignment therefore potentially yields a non–canonical configuration and
we have to re–abstract to determine the corresponding canonical configuration.
According to Thm. 2 the result is unique and thus these steps are deterministic.

x y x y x y x y

yxyx

p

c

p

c

p

c

pc

p

c

p

c

Fig. 4. Producer/Consumer: Abstract State Space (M = 1)

Example 3. Figure 4 shows the finite abstract state space of the producer/consumer
program from Fig. 1 for M = 1. The p– and c–transitions each summarize sev-
eral producer/consumer steps. The dashed transitions are nondeterministic steps,
since the abstract node, visualized in black color, represents at least two nodes
in a chain. If now the consumer deletes one node from the beginning of the queue
the distance of x to the abstract node becomes two and thus we need to con-
cretize the graph to obtain a canonical configuration. For this we distinguish two
cases: either the abstract node represents exactly two nodes, then we reach the
graph to the right, or it represents more than two, in which case we stay in the
same state since the abstract node still represents more than one concrete node.

Theorem 3 (Finiteness). For every π ∈ LMP, T a
π is finite.

The idea of the proof is to establish a bound on the number of nodes of
canonical configurations for a given number of program variables.

Theorem 4 (Correctness of the Abstraction). Let π ∈ LMP. For every
transition in T c

π there exists a corresponding abstract transition in T a
π such that

the heaps are related by abstraction morphisms.

The proof of the correctness theorem has been omitted due to space con-
straints.

11

4 A Logic for Concurrent List–Manipulating Programs

In the previous sections we have defined our programming language for concur-
rent pointer manipulation and both its concrete and abstract semantics. In this
section we will present a logic which will allow us to reason about heap con-
figurations and program behavior. In the following LV denotes a set of logical
variables, where we always assume that LV ∩ PV = ∅.

Pointer Logic Pointer logic deals with single configurations and is employed to
express graph properties as well as to inspect the special flags of heap configu-
rations (see Def. 1).

Definition 9. The set PL of Pointer Logic formulas is given by the grammar

NExp ::= nil | v (∈ PV) | x (∈ LV) | ∗NExp
Atomic ::= tt | ff | err | dl | leak | signal | new | NExp = NExp | NExp NExp
PL ::= Atomic | ¬PL | PL ∧ PL | ∃x : PL

Later on we will use the logical operations ∨,→,↔, and ∀ (defined as usual)
as abbreviations. Note that in contrast to pointer expressions in LM–programs
our logic supports dereferencing operations of arbitrary depth. The special op-
eration α α′ expresses the reachability of heap objects.

Definition 10. Let β : LV ⇀ N be a variable valuation and γ ∈ Γc a concrete
heap configuration. Then we define [[·]] : NExp ⇀ Nnil by:

[[nil]] := nil [[v]] := v for v ∈ PV
[[x]] := β(x) for x ∈ LV [[∗α]] := µγ([[α]]) for α ∈ NExp

Note the semantic difference with respect to the programming language. In
navigation expressions a variable v is interpreted by itself and not by the node
it is referencing. This avoids the necessity of the referencing operator &.

Definition 11. The (concrete) satisfaction relation |= for PL–formulas is given
as follows4 (for γ = (N, ∅, µ, F)):

γ, β |= f iff f ∈ F , where f ∈ {err,dl, leak, signal,new}
γ, β |= α1 = α2 iff [[α1]] = [[α2]] 6= ⊥
γ, β |= α1 α2 iff [[αi]] 6= ⊥ ∧ [[α2]] ∈ µ⋆([[α1]])
γ, β |= ∃x : ϕ iff ∃n ∈ N : γ, β[x/n] |= ϕ

Temporal Pointer Logic Pointer Logic enables us to express properties of single
configurations. However it cannot be used to specify (ongoing) computations, i.e.,
configuration sequences. To this aim we will now extend this logic by temporal
operators.

Definition 12. The set TPL of Temporal Pointer Logic formulas is given as
follows:

TPL ::= PL | ¬TPL | TPL ∧ TPL | X TPL | TPL U TPL

For ϕ ∈ TPL we use the abbreviations Fϕ := ttUϕ and Gϕ := ¬F¬ϕ. Moreover
V (ϕ) ⊆ LV denotes the set of (bound or free) logical variables occurring in ϕ.

4 For ∧,¬, tt and ff the semantics is standard and therefore omitted.

12

Note that it is not possible to nest quantifiers and temporal operators. To
do so it would be necessary to keep track of the object identities between states,
which is difficult in the presence of abstract nodes. In addition it would blow up
the state space and exclude the use of standard model checking algorithms. To
the best of our knowledge the only approach to support this idea is the one in
[Dis03,DKR04,DKR06]; other works in the area such as [SRW02] consider only
shapes of the heap. This results in a loss of expressivity, e.g., a property like
∀x : new(x)→ F del(x) which states that every produced object will eventually
be consumed cannot be formulated. Nonetheless we can specify many interesting
properties.

Example 4. For our producer/consumer system from Fig. 1 it holds true:

1. ¬F(dl ∨ err) (never deadlock or pointer errors)
2. GF new (new objects are created infinitely often)
3. G((∗x 6= nil ∨ ∗y 6= nil)→ (x ∗y ∧ ∀v : (v 6= y → x v)))

(whenever the queue is not empty, the object y points to is reachable from x
and between x and this object lies a chain)

More general correctness properties are:
4. F ∗x = ∗y (x and y will eventually become aliases)
5. G¬(∃z : (x z ∧ y z)) (x and y always point to disjoint parts of the

heap)
6. G(∀y : (x y → (¬∃z : (y z ∧ ∗z y))))

(x always points to a non–cyclic list)
7. FG(¬leak) (only finitely often a memory leak can occur)
8. G(∀y : (x y → (∀z : (z y → x z)))) (x always points to a chain)

As mentioned before, TPL specifies computation paths. The set of possible
paths is represented by a transition system.

Definition 13. Let T = (Q, q0, lab,→) be a (concrete) transition system with
lab : Q → Γc. A path in T is an infinite sequence of states ρ = ρ0ρ1ρ2... ∈ Q

ω

such that ρi → ρi+1 for all i ∈ N. Then for ϕ ∈ PL we have

ρ |= ϕ (∈ PL) iff ∃β : LV ⇀ Nlab(ρ0) s.t. lab(ρ0), β |=PL ϕ

For the temporal operators the semantics is identical to the one of LTL. We
write T |= ϕ iff ρ |= ϕ for all paths ρ ∈ {q0}Q

ω in T .

Reasoning about Abstract Computations As expected the concrete semantics is
straightforward. When we switch to abstract configurations, however, we run into
several complications since logical variables can be bound to both concrete and
abstract nodes. In the latter case we have to record which concrete node, repre-
sented by the summary node, it is bound to. This could lead to undefinedness
of Pointer Logic formulas. This problem occurs mainly in direct comparisons of
the form α = α′. To tackle this problem we choose the global precision constant
M in dependence of the formula as follows. If ϕ ∈ TPL is the formula to check,
then we assume from now on that

M ≥
∑

x∈V (ϕ)

{j + 1 | ∗jx occurs in ϕ}.

13

Due to the presence of abstract nodes it is not sufficient anymore to evaluate
logical variables by simple variable–to–node mappings. Additionally we must
record the offset of a variable referring to an abstract node and the distance
between variables pointing to the same abstract node. This leads to the concept
of abstract valuations.

Given γ ∈ Γ♮ and ϕ ∈ TPL, an abstract valuation is of the form η = (β, o, δ),
where β : V (ϕ)→ Nγ maps logical variables to (abstract) nodes, o : V (ϕ) → M
denotes the offset for an abstract node, and δ : V (ϕ)→ V (ϕ) ⇀ M is a “distance
matrix” for the logical variables with potentially undefined entries. δ is only
defined if both arguments are mapped onto the same entity, and o is only different
from 1 if the corresponding variable is mapped onto an abstract node. The set
of all such valuations will be denoted by Valγ,ϕ.

Using this concept one can define a function dγ,η : NExp×NExp→ {0, 1,∞}
measuring the “distance” of pointer expressions, where distance here means ei-
ther 0 if the expressions are mapped onto the same (concrete) entity, 1 if the the
first case does not hold but the second argument is reachable from the first or
∞ if neither is the case.

The presence of abstract nodes plays a vital role in the abstract semantics.
Without the global constraint for M we would not be able to resolve all possible
cases of abstract valuations, a third truth value would thus become necessary.
The distance function δ is required for the case that both variables are mapped
onto an abstract node with offset ⋆. With the help of the distance function the
abstract semantics of PL and TPL is straightforward.

Definition 14. Let γ = (N,A, µ, F) ∈ Γ♮ and η = (β, o, δ) ∈ Valγ,ϕ. The satis-
faction relation |= for PL–formulas on canonical configurations is then given as
follows (omitting the trivial cases):

γ, η |= f iff f ∈ F , where f ∈ {err,dl, leak, signal,new}
γ, η |= α1 = α2 iff dγ,η(α1, α2) = 0
γ, η |= α1 α2 iff dγ,η(α1, α2) ∈ {0, 1}
γ, η |= ∃x : ϕ iff ∃n ∈ N, off ∈M, dist : V (ϕ) ⇀ M s.t.

γ, (βη [x/n], oη [x/off], δη [x/dist]) |= ϕ

Let T = (Q, q0, lab,→) be an abstract transition system with lab : Q → Γ♮/∼=
and ρ ∈ Qω a path in it. Then ρ |= ϕ ∈ PL iff for γ ∈ lab(ρ0) there exists an
η ∈ Valγ,ϕ s.t. γ, η |=PL ϕ. Temporal operators and Boolean connectives are
treated in the standard way. We write T |= ϕ iff ρ |= ϕ for all paths ρ ∈ {q0}Q

ω

in T .

The following theorem states that the abstract semantics of TPL and of the
programming language is correct, i.e., that the validity of a formula under the
abstract interpretation implies the validity under the concrete one. The converse
though does not hold.

Theorem 5. Let π ∈ LMP and ϕ ∈ TPL. If T a
π |= ϕ then T c

π |= ϕ.

Proof. It suffices to show for all ϕ ∈ PL and γ ∈ Γc the proposition:

∃β : LV ⇀ Nγ s.t. γ, β |= ϕ ⇔ ∃η ∈ Valγ,ϕ s.t. h♮(γ), η |= ϕ (⋆)

14

Note that the ⇐–direction is sufficient for correctness, the ⇒–direction though
is trivial. In the proof the choice of the global constant M (depending on the
formula) plays a central role. Imagine for example a property “the heap contains
at least five objects different from program variables”. To formulate this property
we need at least five different logical variables and the constraint on M implies
that M ≥ 5. For smaller M it can happen that a formula that is satisfied in
the abstract case, does not hold in all concrete configurations associated with
the abstract one. E.g. for M = 1 and a graph with one abstract node our exam-
ple property would be satisfied; in the corresponding concrete graph where the
abstract node is represented by two concrete nodes not necessarily.

With (⋆) we can infer from Thm. 4 the validity of the claim, since TPL does
not allow path quantifiers. By construction of the abstract PL–semantics it is
intuitively clear that (⋆) holds.

Model Checking Temporal Pointer Logic Because of the two–stage approach in
defining the logic, we can reduce the TPL model checking problem to an LTL
model checking problem, which can efficiently be verified by existing model check-
ers.

Algorithm 6. Let T = (Q, q0, lab,→) be the abstract transition system gener-
ated by a program π ∈ LMP and ϕ ∈ TPL the formula to verify. Let Ψ := {ψ ∈
PL | ψ maximal subformula of ϕ} = {ψ1, ..., ψr}.

Define a “traditional” transition system T ′ = (Q, q0, lab
′,→) where lab ′ :

Q→ 2AP with AP = {pi | i ∈ {1, ..., r}} such that pi ∈ lab ′(q) ⇔ lab(q) |= ψi.

Now solve the LTL model checking problem T ′ |=?
LTL ϕ[ψ1/p1, ..., ψr/pr].

The idea is thus to replace all (maximal) PL–subformulas by atomic propo-
sitions to obtain an LTL–formula. To do so we first have to evaluate the PL–
formulas on the transition system and to change its labeling from configurations
to atomic propositions, where each atomic proposition represents the truth value
of the corresponding PL–subformula on the given configuration. The correctness
of this approach is clear.

Limitations Due to the nondeterminism in the abstract semantics caused by
the presence of abstract nodes we may obtain false negatives. This means that
in the abstract transition system there may exist computations which do not
correspond to concrete ones and on which the property to verify does not hold.

Consider a program creating a list (pointed to by v) with M+3 elements and
then deleting again M + 3 elements. The property to verify is XF(∗v = nil), i.e.
that the list becomes empty. It is obvious that due to the presence of an abstract
node after the construction of the list in the abstract semantics there is a path
that retains that abstract node and thus the list never becomes empty (see Def.
8, rule 2). In the concrete case however the formula is satisfied.

Due to the overapproximation and the LTL approach false positives though
cannot occur. This means that the successful verification of a property in the
abstract case implies the correctness in the concrete case. False negatives can only
occur in cases where information on the precise number of objects is necessary.

15

5 Application: Concurrent Garbage Collection

In this section we will show we will employ our approach to find counterexamples
of a concurrent garbage collection algorithm. More concretely we will consider a
so–called mark–and–sweep collector, which maintains a bit for each object in the
heap to record its reachability status. Here we model this information as an addi-
tional heap component, a (partial) function r : N ⇀ B which indicates whether
the collector considers a node to be reachable (1) or not (0). This component is
made accessible to the garbage collector program using the additional constructs

– reset ∈ Stmt, which resets the reachability value of every node to 0,
– mark(α) ∈ Stmt where α ∈ PExp, which sets the reachability information

of the node [[α]] to 1, and
– r(α) ∈ BExp where α ∈ PExp tests whether the reachability bit of [[α]] is set.

We refrain from giving the formal details of the extended syntax and seman-
tics of LM–programs; these are straightforward to formalize. The only modifica-
tion we would like to mention explicitly is an adaptation of the automatic garbage
collection procedure (cf. Def. 2), which is activated after the execution of every
LM–statement which potentially causes nodes to become unreachable (we refer
to the derivation rules in Def. 4). To ensure the finiteness of our abstraction, we
still have to use it. However, we will adapt the handling of the leak flag such
that it will be set only if the garbage collector considers an unreachable node
n to be reachable, i.e., if r(n) = 1. Formally this means that for an extended
configuration γ̂ = (N,A, µ, F, r) we define γ̂↓:= (N ′, A ∩ N ′, µ ↾ N ′, F ∪ {leak |
∃n ∈ (N \N ′) : r(n) = 1}, r ↾ N ′) with N ′ = µ⋆(PV).

Using these concepts we can now proceed by describing how a concurrent
garbage collector can be added to a given LM–program, called a mutator. For
π = var v1, . . . , vk : (s1‖ . . . ‖sl) ∈ LMP, we define π′ := var v1, . . . , vk, t :
(s1‖ . . . ‖sl‖c) with garbage collector c as in Fig. 5.

while tt do
reset;
with v ∈ PV do
t := v;
while t 6= nil do

if r(t) then t := nil
else mark(t);

t := ∗t
fi

od
od;
signal

od

Fig. 5. A naive garbage col-
lector

Thus the garbage collector is running concur-
rently with the mutator. It executes an infinite
loop, starting by resetting the reachability bit of
every node in the heap. Using the auxiliary vari-
able t, it then marks every reachable node, be-
ginning with the roots of the heap which are ac-
cessible by the program variables. Here the state-
ment with v ∈ PV do s od is a meta construct
which is expanded to s[v/v1]; s[v/v2]; ...; s[v/vk]
for PV = {v1, . . . , vk}. Whenever it encoun-
ters a node which has already been marked (if
statement), it continues with the next program
variable to avoid redundant assignments. Finally
it employs the signaling mechanism of our pro-
gramming language to indicate that now the ac-
tual collection phase would start, i.e., that all
nodes whose reachability bit is 0 would be re-
moved.

Note, however, that we are still using our automatic garbage collection pro-
cedure such that we can guarantee that in every configuration of the system, all

16

nodes are reachable. In other words, whenever the signal occurs there should not
exist any unmarked node in the heap. This observation is the key idea for speci-
fying the soundness of the garbage collector c as a safety property in TPL. Here
we assume that the underlying Pointer Logic (cf. Def. 9) is extended by atomic
propositions of the form r(α) which allow us test the reachability information of
the node to which the navigation expression α refers:

G(signal→ ∀x : r(x))

Another important issue is the completeness of the garbage collector, which
means that every node which has become unreachable in the course of the com-
putation, will eventually be removed. This, however, cannot be directly expressed
for two reasons. First, verifying this property would require to keep track of the
identity of objects between different configurations, which in turn involves the
nesting of quantifiers and temporal operators. This is not supported by our logic.
Second, our automatic garbage collection procedure immediately removes nodes
that have become unreachable.

What we can formulate instead, however, is a safety property which comes
very close to the actual completeness. It expresses that a node which has be-
come unreachable will never be marked by the garbage collector. Employing the
modified handling of the leak flag, this property can simply be formulated as

G ¬leak

Note that this formalization is only justified since the garbage collector is
monotonic in the following sense: once a node has been marked, its reachability
information will not be reset before the collection signal occurs. Moreover com-
pleteness can only be expected (just as the above soundness property) if it is
guaranteed that the mutator does not modify the reachability bits.

The example computation in Fig. 6 shows that the above garbage collector
violates both of these requirements. Here the mutator program is assumed to be
of the form y := ∗x; ∗x := ∗y; ∗y := nil ; y := nil ; it simply discards the second
node of the list whose head is referenced by x (assuming that this node exists).
Here C and M stand for operations of the collector and the mutator, respectively,
which are either concretely given or summarized by a “+” sign. The bits labeling
the nodes indicate the reachability information as set by the collector.

x x

0 0 0

x

1 1 0

x

1 1 0

t x

1 1 0

x

1 1 0

x

1 1 0

x

1 0

x

1 0

x

1 0

t y t y

t yt

C: reset C+ M: y := ∗x M: ∗x := ∗y

M: ∗y := nil

M: y := nilC: t := ∗t
“leak”“signal”

C+C: signal

Fig. 6. Possible erroneous run of garbage collector and mutator

The computation shows that the collector is neither correct nor complete. In
the final step involving the signal flag, the reachability value 0 of the list’s tail

17

node means that it would be removed by the collector although it is reachable.
Two steps earlier, the leak flag indicates that garbage has automatically been
deleted which has been marked as reachable by the collector. Both of these
problems are caused by the uncontrolled interaction between the mutator and
the collector; they can be avoided by placing the body of the collector loop in an
atomic region.

6 Related Work

Related work on the topic of analyzing pointer–manipulating programs can be
classified into the following (often overlapping) categories.

Predicate abstraction abstracts the state space of the program by evaluating
it under a number of given predicates. This yields a Boolean program which con-
servatively simulates all potential executions [GS97]. Successful software model
checkers such as BLAST [HJMS03] and SLAM [BR02] are based on this approach.
There are several papers that use classical predicate abstraction for pointer anal-
ysis [BPZ05,DN03]. In particular, [DD01,DDP99] study concurrent garbage col-
lection using predicate abstraction.

Shape analysis is a static analysis framework that represents recursive data
structures of unbounded size by finite structures, called “shape graphs”. The idea
is to apply to the heap the same abstraction that is applied to the program’s
states in predicate abstraction: it is defined in terms of equivalence classes of
heap objects that are induced by a finite set of predicates on those objects. The
usual approach is to formalize shape graphs by three–valued logical structures
[SRW02]. This approach has been implemented TVLA [LAS00] and in BLAST
[BHT06] which makes use of TVLA.

Recent developments comprise adaptive methods which automatically adjust
to the data structures that occur in the given program [LYY05,LRS05,YR04],
demand–driven techniques [BHT06,HT01], efficiency improvements [LAIS06],
and interprocedural shape analysis [HR05,JLRS04,RBR+05,RSY05].

It is often argued that the application of predicate abstraction to pointer
structures does not work well because it is difficult to find predicates which ab-
stract heap structures in an appropriate and compact way [BHT06]. This claim
is substantiated by the results in [MYRS05] which investigates the application of
both predicate abstraction and shape analysis to programs operating on singly–
linked lists, employing a similar abstraction as ours: elements on unshared list
segments are summarized. It is shown that standard predicate abstraction re-
quires an exponential number of predicates in comparison to the number of
predicates in shape analysis. Also [PW05] considers both techniques, but in a
very restricted programming–language setting which only supports single as-
signments.

Regular model checking is a framework for unified verification of infinite–state
systems based on automata theory. It represents states using words (trees) over
a finite alphabet and sets of states using finite (tree) automata [BHRV06]. Like
in our approach, singly–linked lists are also considered in [BBH+06,BHMV05],
but only safety and termination properties are verified.

Dataflow analysis is a technique for gathering information about certain as-

18

pects of a program using its control flow graph. This approach is generally ef-
ficient but restricted to rather shallow properties of programs such as aliasing
relations [Deu94,NKmWH04], points–to information [WL02,ZC04], or pointer
range analysis [YH04].

Hoare–style approaches: first–order reasoning typically breaks down when it
comes to prove properties of pointer–manipulating programs. The main reason
is that it is impossible to express an invariant of all members of a data structure
in first–order logic. The latter has to be extended therefore to support the defi-
nition of a reachability predicate [ABB06,BIL04,FGM96,LAIR+05,MS01,Nel83].
However such deductive techniques usually involve user interaction, or otherwise
only restricted properties such as dereferencing of nil pointers or aliasing effects
can be analyzed.

Separation logic has been proposed as an extension to Hoare logic that per-
mits local reasoning about linked structures, supporting features to support
modular correctness proofs for pointer–manipulating programs [OYR04,Rey02].
It has been employed for termination proofs of heap–manipulating programs
[BCDO06], for interprocedural shape analysis [GBC06], for handling abstract
data types [BCOP05], and for verifying garbage collection algorithms [BTSR04].
However most of the work on separation logic focuses on verifying programs
manually.

In summary, many of the characterizing features of our approach are al-
ready present in earlier papers: the restriction to singly–linked lists without data
fields, the introduction of abstract entities which represent a potentially un-
bounded number of heap cells (called “summary nodes” in [CWZ90]); see e.g.
[BPZ05,BHMV05,MYRS05], and the observation that, in this setting, the num-
ber of sharing points in heap structures is bounded by the number of program
variables [BHMV05,MYRS05].

However none of these combines the strengths of our approach which supports
concurrent programs with dynamic memory allocation and destructive updates
such that arbitrary (cyclic) linked lists can be constructed, integrates both ab-
straction and model checking in a fully automated way, supports a linear–time
logic in which both safety and liveness properties can be expressed, and which
allows to use standard LTL model checkers.

In comparison, many of the existing approaches suffer from the poor pro-
gramming environment, the exclusion of cyclic data structures, the requirement
of user interaction, or the restriction to safety properties. Notable exceptions are
[BPZ05], which also offers liveness properties but requires user–defined ranking
functions, [DKR06], which employs extended tableau–based techniques for model
checking, and [YRSW03], which has a non–standard interpretation.

7 Conclusions and Future Work

We have presented a framework for the verification of concurrent pointer–manipu-
lating programs with unbounded heap size and destructive updates. The cor-
rectness properties are specified using temporal pointer logic which is essentially
pointer logic for expressing heap properties enriched with temporal operators.
Instead of requiring dedicated algorithms, the TPL model checking problem is

19

reduced to an LTL model checking problem that can be verified effectively with
a broad variety of existing model checkers. The tradeoff is the restriction to list–
like data structures as well as the limitation in expressiveness of the logic because
object identities are not tracked between configurations.

Currently we are implementing our method to verify more realistic examples
in the future. In particular we will extend the analysis of concurrent garbage
collectors by defining a “hardest mutator”, i.e., a general mutator program which
is capable of simulating the behavior of any other mutator. This will enable us
to establish the correctness of garbage collectors independent of the concrete
mutator.

Furthermore due to the extensive use of concurrency, state space reduction
and optimization techniques such as partial order reduction [FG05,God96] will
have to be employed and integrated in the implementation. We also plan to
extend our framework with dynamic (unbounded) creation of threads. Another
interesting aspect could be the combination of existing finite–state modeling
languages like Promela [Hol03] and pointer manipulation. Finally in the long run
we have plans to increase the expressivity of the logic as well as to generalize our
approach to richer data structures, for which new abstractions will be necessary.
Moreover an automata–theoretic approach to defining a storeless semantics, as
it is studied in [BIL03] for a (concrete) semantics for pointer programs seems
promising.

References

[ABB06] Torben Amtoft, Sruthi Bandhakavi, and Anindya Banerjee. A logic for informa-
tion flow in object–oriented programs. In POPL ’06, pages 91–102. ACM Press,
2006.

[BBH+06] Ahmed Bouajjani, Marius Bozga, Peter Habermehl, Radu Iosif, Pierre Moro, and
Tomás Vojnar. Programs with lists are counter automata. In CAV ’06, volume
4144 of LNCS, pages 517–531. Springer–Verlag, 2006.

[BCDO06] Josh Berdine, Byron Cook, Dino Distefano, and Peter W. O’Hearn. Automatic
termination proofs for programs with shape–shifting heaps. In CAV ’06, volume
4144 of LNCS, pages 386–400. Springer–Verlag, 2006.

[BCOP05] Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson.
Permission accounting in separation logic. In POPL ’05, pages 259–270. ACM
Press, 2005.

[BHMV05] A. Bouajjani, P. Habermehl, P. Moro, and T. Vojnar. Verifying programs with dy-
namic 1–selector-linked list structures in regular model checking. In TACAS ’05,
volume 3440 of LNCS 3440, pages 13–29. Springer–Verlag, 2005.

[BHRV06] Ahmed Bouajjani, Peter Habermehl, Adam Rogalewicz, and Tomás Vojnar. Ab-
stract regular tree model checking of complex dynamic data structures. In
SAS ’06, volume 4134 of LNCS, pages 52–70. Springer–Verlag, 2006.

[BHT06] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Lazy shape analysis.
In CAV ’06, volume 4144 of LNCS, pages 532–546. Springer–Verlag, 2006.

[BIL03] Marius Bozga, Radu Iosif, and Yassine Lakhnech. Storeless semantics and alias
logic. ACM SIGPLAN Not., 38(10):55–65, 2003.

[BIL04] Marius Bozga, Radu Iosif, and Yassine Lakhnech. On logics of aliasing. In SAS ’04,
volume 3148 of LNCS, pages 344–360. Springer–Verlag, 2004.

[BPZ05] Ittai Balaban, Amir Pnueli, and Lenore D. Zuck. Shape analysis by predicate
abstraction. In VMCAI ’05, volume 3385 of LNCS, pages 164–180. Springer–
Verlag, 2005.

[BR02] Thomas Ball and Sriram K. Rajamani. The SLAM project: debugging system
software via static analysis. In POPL ’02, pages 1–3. ACM Press, 2002.

[BTSR04] Lars Birkedal, Noah Torp-Smith, and John C. Reynolds. Local reasoning about
a copying garbage collector. In POPL ’04, pages 220–231. ACM Press, 2004.

20

[CWZ90] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of pointers
and structures. In PLDI ’90, pages 296–310. ACM Press, 1990.

[DD01] Satyaki Das and David L. Dill. Successive approximation of abstract transition
relations. In LICS ’01, pages 51–58. IEEE, 2001.

[DDP99] Satyaki Das, David L. Dill, and Seungjoon Park. Experience with predicate ab-
straction. In Nicolas Halbwachs and Doron Peled, editors, CAV ’99, volume 1633
of LNCS, pages 160–171. Springer–Verlag, 1999.

[Deu94] Alain Deutsch. Interprocedural may–alias analysis for pointers: beyond k–limiting.
In PLDI ’94, pages 230–241. ACM Press, 1994.

[Dis03] Dino Distefano. On Model Checking the Dynamics of Object–Based Software: a

Foundational Approach. PhD thesis, Univ. of Twente, 2003.
[DKR04] D. Distefano, J.-P. Katoen, and A. Rensink. Who is pointing when to whom? –

on the automated verification of linked list structures. In FSTTCS ’04, volume
3328 of LNCS, pages 250–262. Springer–Verlag, 2004.

[DKR06] D. Distefano, J.-P. Katoen, and A. Rensink. Safety and liveness in concurrent
pointer programs. In FMCO ’06, volume 4111 of LNCS, pages 280–312. Springer–
Verlag, 2006.

[DN03] Dennis Dams and Kedar S. Namjoshi. Shape analysis through predicate abstrac-
tion and model checking. In VMCAI ’03, volume 2575 of LNCS, pages 310–323.
Springer–Verlag, 2003.

[FG05] Cormac Flanagan and Patrice Godefroid. Dynamic partial–order reduction for
model checking software. In POPL ’05, pages 110–121. ACM Press, 2005.

[FGM96] P. Fradet, R. Gaugne, and D. Le Métayer. Static detection of pointer errors: an
axiomatisation and a checking algorithm. In ESOP ’96, volume 1058 of LNCS,
pages 125–140. Springer–Verlag, 1996.

[GBC06] Alexey Gotsman, Josh Berdine, and Byron Cook. Interprocedural shape analysis
with separated heap abstractions. In SAS ’06, volume 4134 of LNCS, pages 240–
260. Springer–Verlag, 2006.

[God96] Patrice Godefroid. Partial–Order Methods for the Verification of Concurrent

Systems: An Approach to the State–Explosion Problem, volume 1032 of LNCS.
Springer–Verlag, 1996.

[GS97] Susanne Graf and Hassen Säıdi. Construction of abstract state graphs with PVS.
In CAV ’97, volume 1254 of LNCS, pages 72–83. Springer–Verlag, 1997.

[HJMS03] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Soft-
ware verification with BLAST. In SPIN ’03, volume 2648 of LNCS, pages 235–239.
Springer–Verlag, 2003.

[Hol03] G.J. Holzmann. The Spin Model Checker: Primer and Reference Manual.
Addison–Wesley, 2003.

[HR05] Brian Hackett and Radu Rugina. Region–based shape analysis with tracked lo-
cations. In POPL ’05, pages 310–323. ACM Press, 2005.

[HT01] Nevin Heintze and Olivier Tardieu. Demand–driven pointer analysis. ACM SIG-

PLAN Not., 36(5):24–34, 2001.
[JLRS04] Bertrand Jeannet, Alexey Loginov, Thomas W. Reps, and Shmuel Sagiv. A re-

lational approach to interprocedural shape analysis. In SAS ’04, volume 3148 of
LNCS, pages 246–264. Springer–Verlag, 2004.

[LAIR+05] Tal Lev-Ami, Neil Immerman, Thomas W. Reps, Shmuel Sagiv, S. Srivastava, and
Greta Yorsh. Simulating reachability using first–order logic with applications to
verification of linked data structures. In CADE ’05, volume 3632 of LNCS, pages
99–115. Springer–Verlag, 2005.

[LAIS06] Tal Lev-Ami, Neil Immerman, and Shmuel Sagiv. Abstraction for shape analysis
with fast and precise transformers. In CAV ’06, volume 4144 of LNCS, pages
547–561. Springer–Verlag, 2006.

[LAS00] Tal Lev-Ami and Shmuel Sagiv. TVLA: A system for implementing static analy-
ses. In SAS ’00, volume 1824 of LNCS, pages 280–302. Springer–Verlag, 2000.

[LRS05] Alexey Loginov, Thomas W. Reps, and Shmuel Sagiv. Abstraction refinement via
inductive learning. In CAV ’05, volume 3576 of LNCS, pages 519–533. Springer–
Verlag, 2005.

[LYY05] Oukseh Lee, Hongseok Yang, and Kwangkeun Yi. Automatic verification of
pointer programs using grammar-based shape analysis. In ESOP ’05, volume
3444 of LNCS, pages 124–140. Springer–Verlag, 2005.

21

[MS01] Anders Møller and Michael I. Schwartzbach. The pointer assertion logic engine.
In PLDI ’01, pages 221–231. ACM Press, 2001.

[MYRS05] R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Predicate abstraction
and canonical abstraction for singly–linked lists. In VMCAI ’05, volume 3385 of
LNCS, pages 181–198. Springer–Verlag, 2005.

[Nel83] Greg Nelson. Verifying reachability invariants of linked structures. In POPL ’83,
pages 38–47. ACM Press, 1983.

[NKmWH04] Erik M. Nystrom, Hong-Seok Kim, and Wen mei W. Hwu. Bottom–up and top–
down context–sensitive summary–based pointer analysis. In SAS ’04, volume 3148
of LNCS, pages 165–180. Springer–Verlag, 2004.

[OYR04] Peter W. O’Hearn, Hongseok Yang, and John C. Reynolds. Separation and infor-
mation hiding. In POPL ’04, pages 268–280. ACM Press, 2004.

[PW05] Andreas Podelski and Thomas Wies. Boolean heaps. In SAS ’05, volume 3672 of
LNCS, pages 268–283. Springer–Verlag, 2005.

[RBR+05] Noam Rinetzky, Jörg Bauer, Thomas Reps, Mooly Sagiv, and Reinhard Wilhelm.
A semantics for procedure local heaps and its abstractions. In POPL ’05, pages
296–309. ACM Press, 2005.

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In LICS ’02, pages 55–74. IEEE Computer Society, 2002.

[RSY05] Noam Rinetzky, Mooly Sagiv, and Eran Yahav. Interprocedural shape analysis
for cutpoint–free programs. In SAS ’05, volume 3672 of LNCS, pages 284–302.
Springer–Verlag, 2005.

[SRW98] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving shape–analysis prob-
lems in languages with destructive updating. ACM Trans. Program. Lang. Syst.,
20(1):1–50, 1998.

[SRW02] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis
via 3–valued logic. ACM Trans. Program. Lang. Syst., 24(3):217–298, 2002.

[WL02] John Whaley and Monica S. Lam. An efficient inclusion–based points–to analysis
for strictly–typed languages. In SAS ’02, volume 2477 of LNCS, pages 180–195.
Springer–Verlag, 2002.

[YH04] Suan Hsi Yong and Susan Horwitz. Pointer–range analysis. In SAS ’04, volume
3148 of LNCS, pages 133–148. Springer–Verlag, 2004.

[YR04] Eran Yahav and G. Ramalingam. Verifying safety properties using separation and
heterogeneous abstractions. In PLDI ’04, pages 25–34. ACM Press, 2004.

[YRSW03] E. Yahav, T. Reps, M. Sagiv, and R. Wilhelm. Verifying temporal heap properties
specified via evolution logic. In ESOP ’03, volume 2618 of LNCS, pages 204–222.
Springer–Verlag, 2003.

[ZC04] Jianwen Zhu and Silvian Calman. Symbolic pointer analysis revisited. In
PLDI ’04, pages 145–157. ACM Press, 2004.

22

Aachener Informatik-Berichte

This list contains all technical reports published during the past five years. A

complete list of reports dating back to 1987 is available from http://aib.informatik.rwth-

aachen.de/. To obtain copies consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen, Email:

biblio@informatik.rwth-aachen.de

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus

2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-

Sensitive Rewrite Systems

2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter, Thomas von der Maßen, Thomas Weiler: Modelling Re-

quirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-

ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java

2002-09 Markus Mohnen: Interfaces with Default Implementations in Java

2002-10 Martin Leucker: Logics for Mazurkiewicz traces

2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting

2003-01 ∗ Jahresbericht 2002

2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting

2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations

23

2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs

2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACE-

hard

2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates

2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-

wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-

tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-

ploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

24

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts

2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-

tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation

2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,

Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented

LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-

dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-

bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-

gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-

ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:

Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering

with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005

2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems

2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation

2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint

Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-

and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-

terpretations

25

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-

Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic

Model Checking

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,

Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid

MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:

Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:

Replaying Play in and Play out: Synthesis of Design Models from Sce-

narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling

Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,

Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli

Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI

Work Group “Requirements Management Tools for Product Line Engi-

neering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical

sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for

Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-

ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006

2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-

ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-

Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, Jan Borchers: coJIVE: A Sys-

tem to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

26

