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Abstract. This paper introduces strong bisimulation for continuous-time Markov
decision processes (CTMDPs), a stochastic model which allows for a nondeter-
ministic choice between exponential distributions, and shows that bisimulation
preserves the validity of CSL. To that end, we interpret the semantics of CSL—a
stochastic variant of CTL for continuous-time Markov chains—on CTMDPs and
show its measure-theoretic soundness. The main challenge faced in this paper is
the proof of logical preservation that is substantially based on measure theory.

1 Introduction

Discrete–time probabilistic models, in particular Markov decision processes
(MDP) [20], are used in various application areas such as randomized distributed
algorithms and security protocols. A plethora of results in the field of concur-
rency theory and verification are known for MDPs. Efficient model–checking
algorithms exist for probabilistic variants of CTL [9,11], linear–time [29] and
long–run properties [15], process algebraic formalisms for MDPs have been de-
veloped and bisimulation is used to minimize MDPs prior to analysis [18].

In contrast, CTMDPs [25], a continuous–time variant of MDPs, where state
residence times are exponentially distributed, have received scant attention. Un-
like in MDPs, where nondeterminism occurs between discrete probability dis-
tributions, in CTMDPs the choice between various exponential distributions
is nondeterministic. In case all exponential delays are uniquely determined, a
continuous–time Markov chain (CTMC) results, a widely studied model in per-
formance and dependability analysis.

This paper proposes strong bisimulation on CTMDPs—this notion is a con-
servative extension of bisimulation on CTMCs [13]—and investigates which kind
of logical properties this preserves. In particular, we show that bisimulation pre-
serves the validity of CSL [3,5], a well–known logic for CTMCs. To that end, we
provide a semantics of CSL on CTMDPs which is in fact obtained in a similar
way as the semantics of PCTL on MDPs [9,11]. We show the semantic soundness
of the logic using measure–theoretic arguments, and prove that bisimilar states
preserve full CSL. Although this result is perhaps not surprising, its proof is
non–trivial and strongly relies on measure–theoretic aspects. It shows that rea-
soning about CTMDPs, as witnessed also by [30,7,10] is not straightforward. As
for MDPs, CSL equivalence does not coincide with bisimulation as only maximal
and minimal probabilities can be logically expressed.

Apart from the theoretical contribution, we believe that the results of this
paper have wider applicability. CTMDPs are the semantic model of stochastic



Petri nets [14] that exhibit confusion, stochastic activity networks [27] (where ab-
sence of nondeterminism is validated by a “well–specified” check), and is strongly
related to interactive Markov chains which are used to provide compositional
semantics to process algebras [19] and dynamic fault trees [12]. Besides, CT-
MDPs have practical applicability in areas such as stochastic scheduling [17,1]
and dynamic power management [26]. Our interest in CTMDPs is furthermore
stimulated by recent results on abstraction—where the introduction of nonde-
terminism is the key principle—of CTMCs [21] in the context of probabilistic
model checking.

In our view, it is a challenge to study this continuous–time stochastic model
in greater depth. This paper is a small, though important, step towards a better
understanding of CTMDPs.

2 Continuous-time Markov decision processes

Continuous-time Markov decision processes extend continuous-time Markov chains
by nondeterministic choices. Therefore each transition is labelled with an action
referring to the nondeterministic choice and the rate of a negative exponential
distribution which determines the transition’s delay:

Definition 1 (Continuous-time Markov decision process). A tuple C =
(S,Act ,R,AP ,L) is a labelled continuous-time Markov decision process if S
is a finite, nonempty set of states, Act a finite, nonempty set of actions and
R : S ×Act ×S → R≥0 a three-dimensional rate matrix. Further, AP is a finite
set of atomic propositions and L : S → 2AP is a state labelling function.

The set of actions that are enabled in a state s ∈ S is denoted Act(s) :=
{α ∈ Act | ∃s′ ∈ S. R(s, α, s′) > 0}. A CTMDP is well-formed if Act(s) 6= ∅ for
all s ∈ S, that is, if every state has at least one outgoing transition. Note that
this can easily be established for any CTMDP by adding self-loops.

s0 s1

s2

s3
α, 0.5

β, 15

β, 5

α, 0.1

α, 0.1

α, 0.5

α, 1

Fig. 1. Example of a CTMDP.

Example 1. When entering state s1 of
the CTMDP in Fig. 1 (without state labels)
one action from the set of enabled actions
Act(s1) = {α, β} is chosen nondeterministi-
cally, say α. Next, the rate of the α-transition
determines its exponentially distributed de-
lay. Hence for a single α-transition, the prob-
ability to go from s1 to s3 within time t is
1 − e−R(s1,α,s3)t = 1 − e−0.1t.

If multiple outgoing transitions exist for the chosen action, they compete
according to their exponentially distributed delays: In Fig. 1 such a race condi-
tion occurs if action β is chosen in state s1. In this situation, two β-transitions
(to s2 and s3) with rates R(s1, β, s2) = 15 and R(s1, β, s3) = 5 become avail-
able and state s1 is left as soon as the first transition’s delay expires. Hence
the sojourn time in state s1 is distributed according to the minimum of both
exponential distributions, i.e. with rate R(s1, β, s2) + R(s1, β, s3) = 20. In gen-
eral, E(s, α) :=

∑

s′∈S R(s, α, s′) is the exit rate of state s under action α. Then
R(s1, β, s2)/E(s1, β) = 0.75 is the probability to move with β from s1 to s2, i.e.
the probability that the delay of the β-transition to s2 expires first. Formally,



the discrete branching probability is P(s, α, s′) := R(s,α,s′)
E(s,α) if E(s, α) > 0 and 0

otherwise. By R(s, α,Q) :=
∑

s′∈Q R(s, α, s′) we denote the total rate to states
in Q ⊆ S.

Definition 2 (Path). Let C = (S,Act ,R,AP ,L) be a CTMDP. Pathsn(C) :=
S×(Act ×R≥0 × S)n is the set of paths of length n in C; the set of finite paths in
C is defined by Paths⋆(C) =

⋃

n∈N Pathsn and Pathsω(C) := (S × Act ×R≥0)
ω

is the set of infinite paths in C. Paths(C) := Paths⋆(C) ∪ Pathsω(C) denotes the
set of all paths in C.

We write Paths instead of Paths(C) whenever C is clear from the context. Paths

are denoted π = s0
α0,t0
−−−→ s1

α1,t1
−−−→ · · ·

αn−1,tn−1
−−−−−−→ sn where |π| is the length of π.

Given a finite path π ∈ Pathsn, π↓ is the last state of π. For n < |π|, π[n] := sn

is the n-th state of π and δ(π, n) := tn is the time spent in state sn. Further,

π[i..j] is the path-infix si
αi,ti−−−→ si+1

αi+1,ti+1
−−−−−−→ · · ·

αj−1,tj−1
−−−−−−→ sj of π for i<j≤|π|.

Finally, π@t is the state occupied in π at time point t ∈ R≥0, i.e. π@t := π[n]
where n is the smallest index such that

∑n
i=0 ti > t.

Note that Def. 2 does not impose any semantic restrictions on paths. The
set Paths in general contains paths which do not comply with the rate matrix
of the underlying CTMDP. However, the following definition of the probability
measure (Def. 4) justifies this as it assigns probability zero to such sets of paths.

2.1 The probability space

In probability theory (see [2]), a field of sets F ⊆ 2Ω is a family of subsets of a
set Ω which contains the empty set and is closed under complement and finite
union. A field F is a σ-field3 if it is also closed under countable union, i.e. if for
all countable families {Ai}i∈I of sets Ai ∈ F it holds

⋃

i∈I Ai ∈ F. Any subset A
of Ω which is in F is called measurable.

To measure the probability of sets of paths, we first define a σ-field of sets
of combined transitions which we later use to define σ-fields of sets of finite
and infinite paths. Here, a combined transition is a tuple (α, t, s) which links
the decision for action α (which is given by a scheduler, see Def. 3) with the
exponentially distributed time-point t to move to a successor state s of the un-
derlying CTMDP. Formally, for a CTMDP C = (S,Act ,R,AP ,L), the set of
combined transitions is Ω = Act × R≥0 × S. To define a probability space on
Ω, note that S and Act are finite; hence, the corresponding σ-fields are defined
as FAct := 2Act and FS := 2S . Any combined transition occurs at some time
point t ∈ R≥0, so that we can use the Borel σ-field B(R≥0) to measure the
corresponding subsets of R≥0. In the following, we denote the sets of probability
distributions on FAct and FS by Distr(Act) and Distr(S), respectively. Note that

any path π = s0
α0,t0
−−−→ s1

α1,t1
−−−→ · · ·

αn−1,tn−1
−−−−−−→ sn of length n can be extended

by a combined transition m = (αn, tn, sn+1) to a path of length n + 1, denoted
π ◦ m.

Generally, a Cartesian product is a measurable rectangle if its constituent
sets are elements of their respective σ-fields. For example, in our case the set
A × T × S is a measurable rectangle if A ∈ FAct , T ∈ B(R≥0) and S ∈ FS .

3 In the literature [22], σ-fields are also called σ-algebras.



We use FAct × B(R≥0) × FS to denote the set of all measurable rectangles4. It
generates the desired σ-field F of sets of combined transitions, i.e. F := σ

(
FAct ×

B(R≥0) × FS

)
.

Now F may be used to infer the σ-fields FPaths
n of sets of paths of length n:

FPaths
n is generated by the set of measurable (path) rectangles, i.e. FPaths

n :=
σ
(
{S0 × M0 × · · · × Mn | S0 ∈ FS ,Mi ∈ F, 0 ≤ i ≤ n}

)
. Intuitively, FPaths

n con-
sists of all possible (even countable infinite) unions and intersections of measur-
able path rectangles.

Example 2. For the CTMDP in Fig. 1, the event “from s1 we directly reach
state s3 within 0.5 time units” and the event “if action α is chosen in state s1,
we remain in s1 for less than 0.2 or more than 1 time units” are described by
the Cartesion products Π1 = {s1}×Act × [0, 0.5]×{s3} and Π2 = {s1}×{α}×
([0, 0.2) ∪ (1,∞))×S. Π1 and Π2 are measurable rectangles whereas their union
Π1 ∪ Π2 is an element of the σ-field F

Paths
2 .

The σ-field of sets of infinite paths is obtained using the cylinder-set construc-
tion [2]: A set Cn of paths of length n is called a cylinder base; it induces the
infinite cylinder Cn = {π ∈ Pathsω | π[0..n] ∈ Cn}. A cylinder Cn is measurable
if Cn ∈ FPaths

n ; Cn is called an infinite rectangle if Cn = S0 × A0 × T0 × · · · ×
An−1×Tn−1×Sn and Si ⊆ S, Ai ⊆ Act and Ti ⊆ R≥0. It is a measurable infinite
rectangle, if Si ∈ FS , Ai ∈ FAct and Ti ∈ B(R≥0). We obtain the desired σ-field
of sets of infinite paths as the minimal σ-field generated by the set of measurable
cylinders; formally: FPaths

ω := σ
(⋃∞

n=0 {Cn | Cn ∈ FPaths
n}

)
.

Finally, the σ-field FPaths
⋆ over finite and infinite paths is the smallest σ-field

generated by the disjoint union
⋃∞

n=0 FPaths
n ∪ FPaths

ω .

2.2 The probability measure

To define a semantics for CTMDPs we use schedulers5 to resolve the nonde-
terministic choices. Thereby we obtain probability measures on the probability
spaces defined above. A scheduler quantifies the probability of the next action
based on the history of the system: If state s is reached via finite path π, the
scheduler yields a probability distribution over Act(π↓). The type of schedulers
we use is the class of measurable timed history-dependent randomized sched-
ulers [30]:

Definition 3 (Measurable scheduler). Let C be a CTMDP with action set
Act. A mapping D : Paths⋆×FAct → [0, 1] is a measurable scheduler if D(π, ·) ∈
Distr(Act(π↓)) for all π ∈ Paths⋆ and the functions D(·, A) : Paths⋆ → [0, 1] are
measurable for all A ∈ FAct . THR denotes the set of measurable schedulers.

In Def. 3, the measurability condition states that for any B ∈ B([0, 1]) and
A ∈ FAct the set {π ∈ Paths⋆ | D(π,A) ∈ B} ∈ FPaths

⋆ , see [30]. In the follow-
ing, note that D(π, ·) is a probability measure with support ⊆ Act(π↓); further
P(s, α, ·) ∈ Distr(S) if α ∈ Act(s). Let ηE(π↓,α)(t) := E(π↓, α) · e−E(π↓,α)t denote
the probability density function of the negative exponential distribution with
parameter E(π↓, α).

4 Despite notation, FAct × B(R≥0) × FS is not a Cartesian product itself; instead, it is a set
of Cartesian products.

5 Schedulers are also called policies, strategies or adversaries in the literature.



To derive a probability measure on FPaths
ω , we first define a probability mea-

sure on combined transitions, i.e. on the measurable space (Ω,F): For history
π ∈ Paths⋆, let µD(π, ·) : F → [0, 1] such that

µD(π,M) :=

∫

Act

D(π, dα)

∫R≥0

ηE(π↓,α)(dt)

∫

S

IM (α, t, s) P(π↓, α, ds).

Then µD(π, ·) defines a probability measure on F where the indicator function
IM (α, t, s) := 1 if the combined transition (α, t, s) ∈ M and 0 otherwise [30]. In-
tuitively, for a given finite path π and a set M of combined transitions, µD(π,M)
is the probability to continue from π↓ by one of the combined transitions in M .
For a measurable rectangle A × T × S′ ∈ F and time interval T , we obtain

µD(π,A × T × S′) =
∑

α∈A

D(π, {α}) ·P(π↓, α, S′) ·

∫

T

E(π↓, α) · e−E(π↓,α)tdt

(1)

which is the probability to leave π↓ via some action in A within time interval T
to a state in S′.

Lemma 1. For any π ∈ Paths⋆, the function µD(π, ·) : F → [0, 1] is a probability
measure on (Ω,F).

Proof. This follows from [2, Theorem 2.6.7], for D(π, ·) is a probability measure
and all ηE(π↓,α) as well as P(π↓, α, ·) are probability measures for α ∈ Act(π↓).

⊓⊔

To extend this to a probability measure on FPaths
n , we assume an initial distribu-

tion ν ∈ Distr(S) for the probability to start in a certain state s and inductively
append sets of combined transitions. To ease notation, we write ν(s) instead of
ν({s}) where appropriate.

As the probability measures in Def. 4 (see below) depend on the Lebesgue
integral of a function involving the measure µD, we have to show that µD :
Paths⋆ × F → [0, 1] is measurable in its first argument, i.e. that for all M ∈ F

and B ∈ B([0, 1]) it is the case that µD(·,M)−1(B) ∈ FPaths
⋆ . The following

theorem stems from Wolovick and Johr in [30] and is restated here only for the
sake of completeness:

Theorem 1 (Combined transition measurability [30, Theorem 1]). Let
C be a CTMDP with set Act of actions and D a scheduler. For all A ∈ FAct , it
holds: D(·, A) : Paths⋆ → [0, 1] is measurable iff ∀M ∈ F, µD(·,M) : Paths⋆ →
[0, 1] is measurable.

Hence µD : Paths⋆ × F → [0, 1] is measurable in its first argument whenever D
is a measurable scheduler as defined in Def. 3. Note also, that the restriction
µD : Pathsn × F → [0, 1] is measurable w.r.t. FPaths

n .

With this precondition satisfied, we can define the probability measure on
sets of finite paths as follows:



Definition 4 (Probability measure [30]). For initial distribution ν ∈ Distr(S)
the probability measure on FPaths

n is defined inductively:

Pr0
ν,D : F

Paths
0 → [0, 1] : Π 7→

∑

s∈Π

ν(s) and for n > 0

Prn
ν,D : FPaths

n → [0, 1] : Π 7→

∫

Paths
n−1

Prn−1
ν,D (dπ)

∫

Ω

IΠ(π ◦ m) µD(π, dm).

One further remark might be in order: For n > 0, the Lebesgue integral in Def. 4
is well defined as the functions

fΠ : Pathsn−1 → [0, 1] : π 7→

∫

Ω

IΠ(π ◦ m) µD(π, dm)

are measurable for all Π ∈ FPaths
n . First, {m ∈ Ω | π ◦ m ∈ Π} ∈ F for all

π ∈ Pathsn−1: If Π = S0 ×M0 × · · · ×Mn−1 is a measurable rectangle such that
Mi ∈ F for 0 ≤ i < n, we obtain

{m ∈ Ω | π ◦ m ∈ Π} =

{

Mn−1 if π ∈ S0 × M0 × · · · × Mn−2

∅ otherwise.

Hence, for measurable rectangle Π, the set {m ∈ Ω | π ◦m ∈ Π} is measurable.
Now, let Π = Π1 ∪ Π2 and Mi = {m ∈ Ω | π ◦ m ∈ Πi} for i = 1, 2. By
induction hypothesis, Mi ∈ F; further, {m ∈ Ω | π ◦ m ∈ Π} = M1 ∪ M2. As F

is closed under countable union, M1 ∪ M2 ∈ F. For the complement Πc, define
M = {m ∈ Ω | π ◦ m ∈ Π}. By induction hypothesis, M ∈ F. Further observe
that {m ∈ Ω | π ◦ m ∈ Πc} = {m ∈ Ω | π ◦ m /∈ Π} = {m ∈ Ω | π ◦ m ∈ Π}c =
M c. Then M c ∈ F follows since M ∈ F and F is closed under complement. Now
the functions fΠ can be restated as follows:

fΠ : Pathsn−1 → [0, 1] : π 7→ µD(π, {m ∈ Ω | π ◦ m ∈ Π})

which is measurable w.r.t. F
Paths

n−1 by Theorem 1, where µD is restricted to
Pathsn−1.

By Def. 4 we obtain measures on all σ-fields FPaths
n . This extends to a mea-

sure on (Pathsω,FPaths
ω) as follows: First, note that any measurable cylinder can

be represented by a base of finite length, i.e. Cn = {π ∈ Pathsω | π[0..n] ∈ Cn}.
Now the measures Prn

ν,D on FPaths
n extend to a unique probability measure Prω

ν,D

on FPaths
ω by defining Prω

ν,D(Cn) = Prn
ν,D(Cn). Although any measurable rect-

angle with base Cm can equally be represented by a higher-dimensional base
(more precisely, if m < n and Cn = Cm × Ωn−m then Cn = Cm), the Ionescu–
Tulcea extension theorem [2] is applicable due to the inductive definition of the
measures Prn

ν,D and assures the extension to be well defined and unique.

Lemma 2. Prn
ν,D is a probability measure on (Pathsn,FPaths

n) for all n ∈ N.

Proof. By induction on n. ν is a probability measure on (S,FS) and so is Pr0
ν,D.

For n > 0,

Prn
ν,D(Π) =

∫

Paths
n−1

Prn−1
ν,D (dπ)

∫

Ω

IΠ(π ◦ m) µD(π, dm).

By the induction hypothesis, Prn−1
ν,D is a probability measure; the same holds for

µD(π, ·) by Lemma 1. The induction step then follows by [2, 2.6.2]. ⊓⊔



Definition 4 inductively appends transition triples to the path prefixes of
length n to obtain a measure on sets of paths of length n + 1. In the proof of
Theorem 5, we use an equivalent characterization that constructs paths reversely,
i.e. paths of length n + 1 are obtained from paths of length n by concatenating
an initial triple from the set S × Act ×R≥0 to the suffix of length n:

Definition 5 (Initial triples). Let C = (S,Act ,R,AP ,L) be a CTMDP, ν ∈
Distr(S) and D a scheduler. Then the measure µν,D : FS×Act×R≥0

→ [0, 1] on
sets I of initial triples (s, α, t) is defined as

µν,D(I) =

∫

S

ν(ds)

∫

Act

D(s, dα)

∫R≥0

II(s, α, t) ηE(s,α)(dt).

This allows to decompose a path π = s0
α0,t0
−−−→ · · ·

αn−1,tn−1
−−−−−−→ sn into an initial

triple i = (s0, α0, t0) and the path suffix π[1..n]. For this to be measure preserving,
a new νi ∈ Distr(S) is defined based on the original initial distribution ν of
Prn

ν,D on FPaths
n which reflects the fact that state s0 has already been left with

action α0 at time t0. Hence νi is the initial distribution for the suffix-measure on
F

Paths
n−1 . Similarly, a scheduler Di is defined which reproduces the decisions of

the original scheduler D given that the first i-step is already taken. Hence Prn−1
νi,Di

is the adjusted probability measure on F
Paths

n−1 given νi and Di.

Lemma 3. For n ≥ 1 let I × Π ∈ FPaths
n be a measurable rectangle, where

I ∈ FS × FAct × B(R≥0). For i = (s, α, t) ∈ I, let νi := P(s, α, ·) and Di(π) :=
D(i ◦ π). Then Prn

ν,D(I × Π) =
∫

I
Prn−1

νi,Di
(Π) µν,D(di).

Proof. By induction on n:
For the induction start (n = 1), let Π ∈ F

Paths
0 , i.e. Π ⊆ S. Then:

Pr1
ν,D(I × Π) =

∫

Paths
0

Pr0
ν,D(dπ)

∫

Ω

II×Π(π ◦ m) µD(π, dm) (* Definition 4 *)

=

∫

S

ν(ds0)

∫

Ω

II×Π(s0 ◦ m) µD(s0, dm) (* Paths
0 = S *)

=

∫

S

ν(ds0)

∫

Act

D(s0, dα0)

∫R≥0

ηE(s0,α0)(dt0)

∫

S

II×Π(s0
α0,t0
−−−−→ s1) P(s0, α0, ds1)

=

∫

I

µν,D(ds0, dα0, dt0)

∫

S

IΠ(s1) P(s0, α0, ds1) (* definition of µν,D*)

=

∫

I

µν,D(di)

∫

S

IΠ(s1) νi(ds1) (* i = (s0, α0, t0) *)

=

∫

I

Pr0
νi,Di

(Π) µν,D(di). (* Definition 4 *)

For the induction step (n > 1), let I × Π × M be a measurable rectangle in
F

Paths
n+1 such that I ∈ FS×FAct×B(R≥0) is a set of initial triples, Π ∈ F

Paths
n−1

and M ∈ F is a set of combined transitions. Using the induction hypothesis
Prn

ν,D(I × Π) =
∫

I
Prn−1

νi,Di
(Π) µν,D(di) we derive:

Prn+1
ν,D (I × Π × M) =

∫

I×Π

µD(π,M) Prn
ν,D(dπ) (* Definition 4 *)

=

∫

I×Π

µD(i ◦ π′,M) Prn
ν,D(d(i ◦ π′)) (* π ≃ i ◦ π′ *)



=

∫

I

∫

Π

µD(i ◦ π′,M) Prn−1
νi,Di

(dπ′) µν,D(di) (* ind. hypothesis *)

=

∫

I

∫

Π

µDi
(π′,M) Prn−1

νi,Di
(dπ′) µν,D(di) (* definition of Di *)

=

∫

I

Prn
νi,Di

(Π × M) µν,D(di). (* Definition 4 *)

⊓⊔

A class of pathological paths that are not ruled out by Def. 2 are infinite paths
whose duration converges to some real constant, i.e. paths that visit infinitely
many states in a finite amount of time. For n = 0, 1, 2, . . . , an increasing sequence
rn ∈ R≥0 is Zeno if it converges to a positive real number. For example, rn :=
∑n

i=1
1
2n converges to 1, hence is Zeno.

Lemma 4. Let k ∈ N and B = S×Ωk×(Act × [0, 1] × S)ω; then Prω
ν,D(B) = 0.

Proof. The proof goes along the lines of [5, Prop. 1]:
As S is finite, we can define Λ := max {E(s, α) | s ∈ S, α ∈ Act}. For n ≥ 0, let
Bn := S × Ωk × (Act × [0, 1] × S)n be a measurable base and Bn the induced
infinite measurable rectangle. By induction on n, we show that Prω

ν,D(Bn) ≤

(1 − e−Λ)n:

– Let n = 0. Then Prω
ν,D(B0) = Prk

ν,D(S × Ωk) = 1.

– As induction hypothesis let Prω
ν,D(Bn) ≤

(
1 − e−Λ

)n
. For Bn+1 we obtain:

Prω
ν,D(Bn+1) = Prn+k+1

ν,D (Bn × Act × [0, 1] × S)

=

∫

Bn

µD(π,Act × [0, 1] × S) Prn+k
ν,D (dπ)

=

∫

Bn

( ∑

α∈Act

D(π, {α}) · P (π↓, α,S) ·

∫

[0,1]
E(π↓, α)e−E(π↓,α)tdt

)

Prn+k
ν,D (dπ)

=

∫

Bn

∑

α∈Act

D(π, {α}) · P (π↓, α,S) ·
(

1 − e−E(π↓,α)
)

Prn+k
ν,D (dπ)

≤
(
1 − e−Λ

)
·

∫

Bn

∑

α∈Act

D(π, {α}) · P (π↓, α,S)

︸ ︷︷ ︸

≤1

Prn+k
ν,D (dπ)

≤
(
1 − e−Λ

)
·

∫

Bn

Prn+k
ν,D (dπ) =

(
1 − e−Λ

)
· Prn+k

ν,D (Bn)

=
(
1 − e−Λ

)
· Prω

ν,D(Bn) ≤
(
1 − e−Λ

)n+1
.

Now B0 ⊇ B1 ⊇ · · · and the Bn converge to B, i.e. Bn ↓ B; hence Prω
ν,D(Bn) →

Prω
ν,D(B) by [2, 1.2.7]. Further limn→∞ Prω

ν,D(Bn) = 0 for Prω
ν,D is a measure

(i.e. nonnegative) and limn→∞

(
1 − e−Λ

)n
= 0. Thus Prω

ν,D(B) = 0. ⊓⊔

With this result we can prove the following theorem which justifies to generally
rule out Zeno behaviour:

Theorem 2 (Converging paths theorem). The probability measure of the
set of converging paths is zero.



Proof. Let ConvPaths :=
{
s0

α0,t0
−−−→ s1

α1,t1
−−−→ · · · |

∑n
i=0 ti converges

}
. For π ∈

ConvPaths , the sequence
∑∞

i=0 ti converges; thus ti converges to 0 and there
exists k ∈ N such that ti ≤ 1 for all i ≥ k. Hence ConvPaths ⊆

⋃∞
k=0 S × Ωk ×

(Act × [0, 1] × S)ω. By Lemma 4, Prω
ν,D

(
S × Ωk × (Act × [0, 1] × S)ω

)
= 0 for

all k ∈ N. Thus we obtain

Prω
ν,D

(
∞⋃

k=0

S × Ωk × (Act × [0, 1] × S)ω
)

≤
∞∑

k=0

Prω
ν,D

(
S × Ωk × (Act × [0, 1] × S)ω

)
= 0.

But then ConvPaths is a subset of a set of measure zero; hence, on FPaths
ω

completed6 w.r.t. Prω
ν,D we obtain Prω

ν,D(ConvPaths) = 0. ⊓⊔

3 Strong bisimilarity

Strong bisimilarity [8,23] is an equivalence on the set of states of a CTMDP
which relates two states if they are equally labelled and exhibit the same stepwise
behaviour. As shown in Theorem 6, strong bisimilarity allows one to aggregate
the state space while preserving transient and long run measures.

In the following we denote the equivalence class of s under equivalence R ⊆
S ×S by [s]R= {s′ ∈ S | (s, s′) ∈ R}; if R is clear from the context we also write
[s]. Further, SR := {[s]R | s ∈ S} is the quotient space of S under R.

Definition 6 (Strong bisimulation relation). Let C = (S,Act ,R,AP ,L)
be a CTMDP. An equivalence R ⊆ S × S is a strong bisimulation relation if
L(u) = L(v) for all (u, v) ∈ R and R(u, α,C) = R(v, α,C) for all α ∈ Act and
all C ∈ SR.
Two states u and v are strongly bisimilar (u ∼ v) if there exists a strong bisim-
ulation relation R such that (u, v) ∈ R. Strong bisimilarity is the union of all
strong bisimulation relations.

Theorem 3 (Strong bisimilarity). Strong bisimilarity is

1. an equivalence,

2. a strong bisimulation relation and

3. the largest strong bisimulation relation.

Proof. Let ∼ =
⋃{

R | R is a strong bisimulation relation on S
}

denote strong
bisimilarity.

1. ∼ is an equivalence:
Reflexivity and symmetry follow directly from the definition.
We show transitivity: (u, v) ∈ ∼ and (v,w) ∈ ∼ =⇒ (u,w) ∈ ∼.

(u, v) ∈ ∼ =⇒ ex. strong bisimulation relation R1 ⊆ ∼ s.t. (u, v) ∈ R1

(v,w) ∈ ∼ =⇒ ex. strong bisimulation relation R2 ⊆ ∼ s.t. (v,w) ∈ R2

6 We may assume FPathsω to be complete, see [2, p. 18ff].
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Fig. 2. Example partitioning of an equivalence class C ∈ SR.

Let R denote the transitive closure of R1 ∪R2. Then (u,w) ∈ R. Therefore
it suffices to show that R is a strong bisimulation relation. As R obviously
is an equivalence, it remains to show that for all (u, v) ∈ R, α ∈ Act and
C ∈ SR it holds L(u) = L(v) and

R(u, α,C) = R(v, α,C). (2)

The first condition, L(u) = L(v) follows directly from the transitivity of the
identity relation on 2AP . For condition (2), let C = {s1, . . . , sn}. We have
C =

⋃n
i=1 [si]Rk

for k ∈ {1, 2}:
⊆: Let s ∈ C. Then s ∈ [si]Rk

for some i ∈ {1, . . . , n}. Hence s ∈
⋃n

i=1 [si]Rk
.

⊇: Let i ∈ {1, . . . , n}. Then it holds:

s ∈ [si]Rk
⇐⇒(s, si) ∈ Rk (* by definition *)

=⇒(s, si) ∈ R (* Rk ⊆ R *)

⇐⇒s ∈ [si]R (* R is an equivalence relation *)

⇐⇒s ∈ C (* [si]R = C *)

Hence we can decompose C into equivalence classes w.r.t. R1 and R2 (see
Fig. 2). As R1 is an equivalence relation, it induces a partitioning of C:

C =
⊎{

[si1]R1
, [si2 ]R1

, . . . , [sim ]R1

}
where m ≤ n. (3)

Note that the same applies to R2 for a different set of indices i′1, . . . , i
′
m′ .

Now we are able to prove property (2) by induction on the structure of R.
Therefore we provide an inductive definition of R as follows:

R0 = R1 ∪R2 and

Ri+1 =
{
(u,w) | ∃v ∈ S. (u, v) ∈ Ri ∧ (v,w) ∈ Ri

}
for i ≥ 0.

By construction, the subset-ordering on Ri is bounded from above by S ×S.
Further, S is finite, so that R0 ⊆ R1 ⊆ · · · is an ascending chain, that is, the
transitive closure is reached after a finite number z of iterations such that
Rz+1 = Rz. Obviously, we have R = Rz.
By induction on i, we prove that if (u, v) ∈ Ri, then R(u, α,C) = R(v, α,C)
for all α ∈ Act and C ∈ SR:
– induction base (i = 0):

Distinguish two cases:



(a) Case 1: Let (u, v) ∈ R1:

(u, v) ∈ R1 =⇒∀C ′ ∈ SR1 .∀α ∈ Act . R(u, α,C ′) = R(v, α,C ′)

=⇒∀j ∈ {1, . . . ,m}. ∀α ∈ Act .

R(u, α,
[
sij

]

R1
) = R(v, α,

[
sij

]

R1
)

=⇒∀α ∈ Act .
m∑

j=1

R(u, α,
[
sij

]

R1
) =

m∑

j=1

R(v, α,
[
sij

]

R1
)

=⇒∀α ∈ Act . R(u, α,

m⊎

j=1

[
sij

]

R1
) = R(v, α,

m⊎

j=1

[
sij

]

R1
)

(3)
==⇒∀α ∈ Act . R(u, α,C) = R(v, α,C).

(b) Case 2: Let (u, v) ∈ R2:
The argument is completely analogue to the first case.

– induction step (i ; i + 1):
Assume (u,w) ∈ Ri+1. By construction, we have (u, v) ∈ Ri and (v,w) ∈
Ri. Applying the induction hypothesis we have R(u, α,C) = R(v, α,C)
and R(v, α,C) = R(w,α,C) for all actions α ∈ Act and all C ∈ SR.
Therefore R(u, α,C) = R(w,α,C) directly follows from the transitivity
of = on R≥0.

Now we can conclude that ∼ is indeed transitive: Given (u, v) ∈ R1 and
(v,w) ∈ R2, there exists a strong bisimulation relation R such that (u,w) ∈
R. By definition, R ⊆ ∼; whence u ∼ w.

2. ∼ is a strong bisimulation relation:
It remains to show for any u ∼ v, that R(u, α,C) = R(v, α,C) holds for all
α ∈ Act , C ∈ S̃. Since u ∼ v implies the existence of a strong bisimulation
relation R ⊆ ∼ with (u, v) ∈ R we may follow the idea of (3) to express C
as finite union of equivalence classes of SR. Since R is a strong bisimulation
relation, the rates from u and v into those equivalence classes are equal and
maintained by summation.

3. ∼ is the largest (i.e. the coarsest) strong bisimulation relation:
Clear from the fact that ∼ is the union of all strong bisimulation relations.

⊓⊔

Definition 7 (Quotient). Let C = (S,Act ,R,AP ,L) be a CTMDP. Then C̃ :=
(S̃,Act , R̃,AP , L̃) where S̃ := S∼, R̃([s] , α,C) := R(s, α,C) and L̃([s]) := L(s)
for all s ∈ S, α ∈ Act and C ∈ S̃ is the quotient of C under strong bisimilarity.

For states [s] , [t] ∈ S̃ of the quotient C̃, let Ẽ([s] , α) :=
∑

s′∈[s] E(s, α) be the

exit rate of [s] under action α. Further, P̃([s] , α, [t]) := R̃([s],α,[t])

Ẽ([s],α)
is the discrete

branching probability from state [s] to state [t] under action α.

Example 3. Consider the CTMDP over the set AP = {a} of atomic propositions
in Fig. 3(a). Its quotient under strong bisimilarity is outlined in Fig. 3(b).

In the quotient, exit rates and branching probabilities are preserved w.r.t. the
underlying CTMDP as shown by the following two lemmas:
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Fig. 3. Quotient under strong bisimilarity.

Lemma 5 (Preservation of exit rates). Let C = (S,Act ,R,AP ,L) be a CT-
MDP and C̃ its quotient under strong bisimilarity. Then E(s, α) = Ẽ([s] , α) for
all s ∈ S and α ∈ Act.

Proof. Let S =
⋃n

k=0

[
sik

]
such that

[
sij

]
∩

[
sik

]
= ∅ for all j 6= k. For all states

s ∈ S it holds:

E(s, α) =
∑

s′∈S

R(s, α, s′) =
n∑

k=0

∑

s′∈[sik ]

R(s, α, s′) =
n∑

k=0

R(s, α, [sik ])

Def. 7
=

n∑

k=0

R̃([s] , α, [sik ]) =
∑

[s′]∈S̃

R̃([s] , α,
[
s′

]
) = Ẽ([s] , α).

⊓⊔

With Lemma 5 it easily follows that the discrete transition probabilities are
preserved under strong bisimulation:

Lemma 6 (Preservation of transition probabilities). Let C be as before
and let C̃ be its quotient under strong bisimilarity. For all states s, t ∈ S and all
actions α ∈ Act it holds

P̃([s] , α, [t]) =
∑

t′∈[t]

P(s, α, t′).

Proof.

P̃([s] , α, [t]) =
R̃([s] , α, [t])

Ẽ([s] , α)

Def. 7
=

R(s, α, [t])

Ẽ([s] , α)

=

∑

t′∈[t] R(s, α, t′)

Ẽ([s] , α)

Lemma 5
=

∑

t′∈[t] R(s, α, t′)

E(s, α)
=

∑

t′∈[t]

P(s, α, t′).

⊓⊔

4 Continuous Stochastic Logic

Continuous stochastic logic [3,5] is a state-based logic to reason about continuous-
time Markov chains. In this context, its formulas characterize strong bisimilar-
ity [16] as defined in [5]; moreover, strongly bisimilar states satisfy the same CSL
formulas [5]. In this paper, we extend CSL to CTMDPs along the lines of [6] and
further introduce a long-run average operator [15]. Our semantics is based on
ideas from [9,11] where variants of PCTL are extended to (discrete time) MDPs.



4.1 Syntax and Semantics

Definition 8 (CSL syntax). For a ∈ AP, p ∈ [0, 1], I ⊆ R≥0 a nonempty
interval and ⊑ ∈ {<,≤,≥, >}, CSL state and CSL path formulas are defined by

Φ ::= a | ¬Φ | Φ ∧ Φ | ∀⊑pϕ| L⊑pΦ and ϕ ::= XIΦ | ΦUIΦ.

The Boolean connectives ∨ and → are defined as usual; further we extend the
syntax by deriving the timed modal operators “eventually” and “always” using
the equalities 3

IΦ ≡ ttUIΦ and 2
IΦ ≡ ¬3

I¬Φ where tt := a ∨ ¬a for some
a ∈ AP . Similarly, the equality ∃⊑pϕ ≡ ¬∀⊐pϕ defines an existentially quantified
transient state operator.

Example 4. Reconsider the CTMDP from Fig. 3(a). The transient state formula
∀>0.1

3
[0,1]a states that the probability to reach an a-labelled state within at

most one time unit exceeds 0.1 no matter how the nondeterministic choices in
the current state are resolved. Further, the long-run average formula L<0.25¬a
states that for all scheduling decisions, the system spends less than 25% of its
execution time in non-a states, on average.

Formally the long-run average is derived as follows: For B ⊆ S, let IB denote an
indicator with IB(s) = 1 if s ∈ B and 0 otherwise. Following the ideas of [15,24],
we compute the fraction of time spent in states from the set B on an infinite
path π up to time bound t ∈ R≥0 and define avgB,t(π) = 1

t

∫ t

0 IB(π@t′)dt′.
As avgB,t is a random variable, its expectation can be derived given an initial
distribution ν ∈ Distr(S) and a measurable scheduler D ∈ THR, i.e. E (avgB,t) =
∫

Paths
ω avgB,t(π) Prω

ν,D(dπ). Having the expectation for fixed time bound t, we
now let t → ∞ and obtain the long-run average as limt→∞ E (avgB,t).

Definition 9 (CSL semantics). Let C = (S,Act ,R,AP ,L) be a CTMDP,
s, t ∈ S, a ∈ AP, ⊑ ∈ {<,≤,≥, >} and π ∈ Pathsω. Further let νs(t) := 1 if
s = t and 0 otherwise. The semantics of state formulas is defined by

s |= a ⇐⇒ a ∈ L(s)

s |= ¬Φ ⇐⇒ not s |= Φ

s |= Φ ∧ Ψ ⇐⇒ s |= Φ and s |= Ψ

s |= ∀⊑pϕ ⇐⇒ ∀D ∈ THR. Prω
νs,D {π ∈ Pathsω | π |= ϕ} ⊑ p

s |= L⊑pΦ ⇐⇒ ∀D ∈ THR. lim
t→∞

∫

Paths
ω
avgSat(Φ),t(π) Prω

νs,D(dπ) ⊑ p.

Path formulas are defined by

π |= XIΦ ⇐⇒ π[1] |= Φ ∧ δ(π, 0) ∈ I

π |= ΦUIΨ ⇐⇒ ∃t ∈ I.
(
π@t |= Ψ ∧

(
∀t′ ∈ [0, t). π@t′ |= Φ

))

where Sat(Φ) := {s ∈ S | s |= Φ} and δ(π, n) is the time spent in state π[n].
In Def. 9 the transient-state operator ∀⊑pϕ is based on the measure of the

set of paths that satisfy ϕ. For this to be well defined we must show that the set
{π ∈ Pathsω | π |= ϕ} is measurable:

Theorem 4 (Measurability of path formulas). The set {π ∈ Pathsω | π |= ϕ}
is measurable for all CSL path formula ϕ.
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Proof. For next formulas, the proof is straightforward. For until formulas, let

π = s0
α0,t0
−−−→ s1

α1,t1
−−−→ · · · ∈ Pathsω and assume π |= ΦUIΨ . By Def. 9 it holds

π |= ΦUIΨ iff ∃t ∈ I.
(
π@t |= Ψ ∧ ∀t′ ∈ [0, t). π@t′ |= Φ

)
. As we may exclude

Zeno behaviour by Theorem 2, there exists n ∈ N with π@t = π[n] = sn such
that I and the period of time

[∑n−1
i=0 ti,

∑n
i=0 ti

)
spent in state sn overlap; further

sn |= Ψ and si |= Φ for i = 0, . . . , n − 1. Note however, that sn must also satisfy
Φ except for the case of instantaneous arrival where

∑n−1
i=0 ti ∈ I. Accordingly,

the set {π ∈ Pathsω | π |= ΦUIΨ} can be represented by the union

∞⋃

n=0

{

π ∈ Pathsω
∣
∣
∣

n−1∑

i=0

ti ∈ I ∧ π[n] |= Ψ ∧ ∀m < n. π[m] |= Φ
}

(4)

∪
∞⋃

n=0

{

π ∈ Pathsω
∣
∣
∣

(
n−1∑

i=0

ti,

n∑

i=0

ti
)
∩ I 6= ∅ ∧ π[n] |= Ψ ∧ ∀m ≤ n. π[m] |= Φ

}

.

(5)

It suffices to show that the subsets of (4) and (5) induced by any n ∈ N are
measurable cylinders. In the following, we exhibit the proof for (5) and closed
intervals I = [a, b] as the other cases are similar. For fixed n ≥ 0 we show that
the corresponding cylinder base is measurable using a discretization argument:

{

π ∈ Pathsn+1
∣
∣
∣

(
n−1∑

i=0

ti,

n∑

i=0

ti
)
∩

[
a, b

]
6= ∅ ∧ π[n] |= Ψ ∧ ∀m ≤ n. π[m] |= Φ

}

=

∞⋃

k=1

⋃

c0+···+cn≥ak
d0+···+dn−1≤bk

ci<di

n−1∏

i=0

[

Sat(Φ)×Act×
(ci

k
,
di

k

)]

× Sat(Φ ∧ Ψ)×Act×
(cn

k
,∞

)

×S

(6)

where ci, dj ∈ N. To shorten notation, let c :=
∑n−1

i=0 ti and d :=
∑n

i=0 ti.

⊆: Let π = s0
α0,t0
−−−→ s1

α1,t1
−−−→ · · ·

αn,tn
−−−→ sn+1 be in the set on the left-hand

side of equation (6). The intervals (c, d) and [a, b] overlap, hence c < b and d > a
(see top of Fig. 4). Further π[i] |= Φ for i = 0, . . . , n and π[n] |= Ψ . To show that
π is in the set on the right-hand side, let ci = ⌈ti · k − 1⌉ and di = ⌊ti · k + 1⌋
for k > 0. Then ci

k
< ti < di

k
approximates the sojourn times ti as depicted in

Fig. 4. Further let ε =
∑n

i=0 ti − a and choose k0 such that n+1
k0

≤ ε to obtain

a =
n∑

i=0

ti − ε ≤
n∑

i=0

ti −
n + 1

k0
≤

n∑

i=0

ci + 1

k0
−

n + 1

k0
=

n∑

i=0

ci

k0
.
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Fig. 5. Derivation of the quotient scheduler.

Thus ak ≤
∑n

i=0 ci for all k ≥ k0. Similarly, we obtain k′
0 ∈ N s.t.

∑n−1
i=0 di ≤ bk

for all k ≥ k′
0. Hence for large k, π is in the set on the right-hand side.

⊇: Let π be in the set on the right-hand side of equation (6) with correspond-
ing values for ci, di and k. Then ti ∈

(
ci

k
, di

k

)
. Hence a ≤

∑n
i=0

ci

k
<

∑n
i=0 ti = d

and b ≥
∑n−1

i=0
di

k
>

∑n−1
i=0 ti = c so that the time-interval (c, d) of state sn and

the time interval I = [a, b] of the formula overlap. Further, π[m] |= Φ for m ≤ n
and π[n] |= Ψ ; thus π is in the set on the left-hand side of equation (6).

The right-hand side of equation (6) is measurable, hence also the cylinder
base. This extends to its cylinder and the countable union in equation (5). ⊓⊔

4.2 Strong bisimilarity preserves CSL

We now prepare the main result of our paper. To prove that strong bisimilarity
preserves CSL formulas we establish a correspondence between certain sets of
paths of a CTMDP and its quotient which is measure-preserving:

Definition 10 (Simple bisimulation closed). Let C = (S,Act ,R,AP ,L) be
a CTMDP. A measurable rectangle Π = S0 × A0 × T0 × · · · × An−1 × Tn−1 × Sn

is simple bisimulation closed if Si ∈
(
S̃ ∪ {∅}

)
for i = 0, . . . , n. Further, let

Π̃ = {S0} × A0 × T0 × · · · × An−1 × Tn−1 × {Sn} be the corresponding rectangle
in the quotient C̃.

An essential step in our proof strategy is to obtain a scheduler on the quotient.
The following example illustrates the intuition for such a scheduler.

Example 5. Let C be the CTMDP in Fig. 5(a) where ν(s0) = 1
4 , ν(s1) = 2

3
and ν(s2) = 1

12 . Assume a scheduler D where D(s0, {α}) = 2
3 , D(s0, {β}) = 1

3 ,
D(s1, {α}) = 1

4 and D(s1, {β}) = 3
4 . Intuitively, a scheduler Dν

∼ that mimics D’s

behaviour on the quotient C̃ in Fig. 5(b) can be defined by

Dν
∼([s0] , {α}) =

∑

s∈[s0]
ν(s) · D(s, {α})

∑

s∈[s0]
ν(s)

=
1
4 · 2

3 + 2
3 · 1

4
1
4 + 2

3

=
4

11
and

Dν
∼([s0] , {β}) =

∑

s∈[s0]
ν(s) · D(s, {β})

∑

s∈[s0]
ν(s)

=
1
4 · 1

3 + 2
3 · 3

4
1
4 + 2

3

=
7

11
.

Even though s0 and s1 are bisimilar, the scheduler D decides differently for the
histories π0 = s0 and π1 = s1. As π0 and π1 collapse into π̃ = [s0] on the quotient,
Dν

∼ can no longer distinguish between π0 and π1. Therefore D’s decision for any
history π ∈ π̃ is weighed w.r.t. the total probability of π̃.



Definition 11 (Quotient scheduler). Let C = (S,Act ,R,AP ,L) be a CT-
MDP, ν ∈ Distr(S) and D ∈ THR. First, define the history weight of finite
paths of length n inductively as follows:

hw 0(ν,D, s0) := ν(s0) and

hwn+1(ν,D, π
αn,tn
−−−→ sn+1) := hwn(ν,D, π) · D(π, {αn}) ·P(π↓, αn, sn+1).

Let π̃ = [s0]
α0,t0
−−−→ · · ·

αn−1,tn−1
−−−−−−→ [sn] be a timed history of C̃ and Π = [s0] ×

{α0} × {t0} × · · · × {αn−1} × {tn−1} × [sn] be the corresponding set of paths in
C. The quotient scheduler Dν

∼ on C̃ is then defined as follows:

Dν
∼

(
π̃, αn

)
:=

∑

π∈Π hwn(ν,D, π) · D(π, {αn})
∑

π∈Π hwn(ν,D, π)
.

Further, let ν̃ ([s]) :=
∑

s′∈[s] ν(s′) be the initial distribution on C̃.

A history π̃ of C̃ corresponds to a set of paths Π in C; given π̃, the quotient
scheduler decides by multiplying D’s decision on each path in Π with its cor-
responding weight and normalizing with the weight of Π afterwards. Now we
obtain a first intermediate result: For CTMDP C, if Π is a simple bisimulation
closed set of paths, ν an initial distribution and D ∈ THR, the measure of Π in
C coincides with the measure of Π̃ in C̃ which is induced by ν̃ and Dν

∼:

Theorem 5. Let C be a CTMDP with set of states S and ν ∈ Distr(S). Then
Prω

ν,D(Π) = Prω
ν̃,Dν

∼
(Π̃) where D ∈ THR and Π simple bisimulation closed.

Proof. By induction on the length n of cylinder bases. The induction base holds
for all ν ∈ Distr(S) since Pr0

ν,D

(
[s]

)
=

∑

s′∈[s] ν(s′) = ν̃
(
[s]

)
= Pr0

ν̃,Dν
∼

(
{[s]}

)
.

With the induction hypothesis that Prn
ν,D(Π) = Prn

ν̃,Dν
∼
(Π̃) for all ν ∈ Distr(S),

D ∈ THR and bisimulation closed Π ⊆ Pathsn we obtain the induction step:

Pr
n+1
ν,D

`

[s0] × A0 × T0 × Π
´

=

Z

[s0]×A0×T0

Pr
n

P(s,α,·),D(s
α,t
−−→·)

(Π) µν,D(ds, dα, dt)

=

Z

s∈[s0]

ν(ds)

Z

α∈A0

D(s, dα)

Z

T0

Pr
n

P(s,α,·),D(s
α,t
−−→·)

(Π) ηE(s,α)(dt)

=
X

s∈[s0]

ν(s)
X

α∈A0

D(s, {α})

Z

T0

Pr
n

P(s,α,·),D(s
α,t
−−→·)

(Π) ηẼ([s0],α)(dt) (* by Lemma 5 *)

i.h.
=

X

s∈[s0]

X

α∈A0

Z

T0

Pr
n

P̃([s0],α,·),Dν
∼([s0]

α,t
−−→·)

(Π̃) · ν(s) · D(s, {α}) ηẼ([s0],α)(dt)

=
X

α∈A0

Z

T0

Pr
n

P̃([s0],α,·),Dν
∼([s0]

α,t
−−→·)

(Π̃) ·
X

s∈[s0]

“

ν(s) · D(s, {α})
”

ηẼ([s0],α)(dt)

=
X

α∈A0

Z

T0

Pr
n

P̃([s0],α,·),Dν
∼([s0]

α,t
−−→·)

(Π̃) ·
“

X

s∈[s0]

ν(s)
”

·

P

s∈[s0] ν(s) · D(s, {α})
P

s∈[s0] ν(s)
ηẼ([s0],α)(dt)

=
X

α∈A0

Z

T0

Pr
n

P̃([s0],α,·),Dν
∼([s0]

α,t
−−→·)

(Π̃) · ν̃([s0]) · D
ν
∼([s0] , {α}) ηẼ([s0],α)(dt)

=

Z

{[s0]}

ν̃(d [s])

Z

A0

Dν
∼([s], dα)

Z

T0

Pr
n

P̃([s],α,·),Dν
∼([s]

α,t
−−→·)

(Π̃) ηẼ([s],α)(dt)

=

Z

{[s0]}×A0×T0

Pr
n

P̃([s],α,·),Dν
∼([s]

α,t
−−→·)

(Π̃) µ̃ν̃,Dν
∼

(d [s] , dα, dt)



= Pr
n+1
ν̃,Dν

∼

`

{[s0]} × A0 × T0 × Π̃
´

where µ̃ν̃,Dν
∼

is the extension of µν,D (Def. 5) to sets of initial triples in C̃:

µ̃ν̃,Dν
∼
: FS̃×Act×R≥0

→[0, 1] : I 7→

Z

S̃

ν̃(d [s])

Z

Act

Dν
∼([s] , dα)

ZR≥0

II([s] , α, t) ηẼ([s],α)(dt).

⊓⊔

According to Theorem 5, the quotient scheduler preserves the measure for simple
bisimulation closed sets of paths, i.e. for paths, whose state components are
equivalence classes under ∼. To generalize this to sets of paths that satisfy a
CSL path formula, we introduce general bisimulation closed sets of paths:

Definition 12 (Bisimulation closed). Let C = (S,Act ,R,AP ,L) be a CT-
MDP and C̃ its quotient under strong bisimilarity. A measurable rectangle Π =
S0 × A0 × T0 × · · · × An−1 × Tn−1 × Sn is bisimulation closed if Si =

⊎ki

j=0 [si,j]

for ki ∈ N and 0 ≤ i ≤ n. Let Π̃ =
⋃k0

j=0

{
[s0,j]

}
×A0×T0×· · ·×An−1×Tn−1×

⋃kn

j=0

{
[sn,j]

}
be the corresponding rectangle in the quotient C̃.

Lemma 7. Any bisimulation closed set of paths Π can be represented as a finite
disjoint union of simple bisimulation closed sets of paths.

Proof. Direct consequence of Def. 12. ⊓⊔

Corollary 1. Let C be a CTMDP with set of states S and ν ∈ Distr(S) an
initial distribution. Then Prω

ν,D(Π) = Prω
ν̃,Dν

∼
(Π̃) for any D ∈ THR and any

bisimulation closed set of paths Π.

Proof. Follows directly from Lemma 7 and Theorem 5. ⊓⊔

Using these extensions we can now prove our main result:

Theorem 6. Let C be a CTMDP with set of states S and u, v ∈ S. Then u ∼ v
implies u |= Φ iff v |= Φ for all CSL state formulas Φ.

Proof. By structural induction on Φ. If Φ = a and a ∈ AP the induction base
follows as L(u) = L(v). In the induction step, conjunction and negation are
obvious.

Let Φ = ∀⊑pϕ and Π = {π ∈ Pathsω | π |= ϕ}. To show u |= ∀⊑pϕ implies
v |= ∀⊑pϕ it suffices to show that for any V ∈ THR there exists U ∈ THR
with Prω

νu,U(Π) = Prω
νv,V(Π). By Theorem 4 the set Π is measurable, hence

Π =
⊎∞

i=0 Πi for disjoint Πi ∈ FPaths
ω . By induction hypothesis for path formulas

XIΦ and ΦUIΨ the sets Sat(Φ) and Sat(Ψ) are disjoint unions of ∼-equivalence
classes. The same holds for any Boolean combination of Φ and Ψ . Hence Π =
⊎∞

i=0 Πi where the Πi are bisimulation closed. For all V ∈ THR and π = s0
α0,t0
−−−→

· · ·
αn−1,tn−1
−−−−−−→ sn let U(π) := Vνv

∼

(
[s0]

α0,t0
−−−→ · · ·

αn−1,tn−1
−−−−−−→ [sn]

)
. Thus U mimics

on π the decision of Vνv
∼ on π̃. In fact Uνu

∼ = Vνv
∼ since

Uνu
∼ (π̃, αn) =

∑

π∈Π hwn(νu,U , π) · Vνv
∼

(
π̃, αn

)

∑

π∈Π hwn(νu,U , π)



and Vνv
∼

(
π̃, αn

)
is independent of π. With ν̃u = ν̃v and by Corollary 1 we obtain

Prω
νu,U (Πi) = Prω

ν̃u,U
νu
∼

(Π̃i) = Prω
ν̃v,V

νv
∼

(Π̃i) = Prω
νv,V(Πi) which carries over to

Π for Π is a countable union of disjoint sets Πi.

Let Φ = L⊑pΨ . Since u ∼ v, it suffices to show that for all s ∈ S it holds
s |= L⊑pΨ iff [s] |= L⊑pΨ . The expectation of avgSat(Ψ),t for t ∈ R≥0 can be
expressed as follows:

∫

Paths
ω

(
1

t

∫ t

0
ISat(Ψ)(π@t′)dt′

)

Prω
νs,D(dπ)

=
1

t

∫ t

0
Prω

νs,D

{
π ∈ Pathsω | π@t′ |= Ψ

}
dt′.

Further, the sets
{
π ∈ Pathsω | π@t′ |= Ψ

}
and

{
π ∈ Pathsω | π |= 3

[t′,t′]Ψ
}

have the same measure and the induction hypothesis applies to Ψ . Applying the
previous reasoning for the until case to the formula ttU[t′,t′]Ψ once, we obtain

Prω
νs,D

{
π ∈ Pathsω(C) | π |= 3

[t′,t′]Ψ
}

= Prω
ν̃s,D

νs
∼

{
π̃ ∈ Pathsω(C̃) | π̃ |= 3

[t′,t′]Ψ
}

for all t′ ∈ R≥0. Thus the expectations of avgSat(Ψ),t on C and C̃ are equal for all
t ∈ R≥0 and the same holds for their limits if t → ∞. This completes the proof
as for u ∼ v we obtain u |= L⊑pΨ iff [u] |= L⊑pΨ iff [v] |= L⊑pΨ iff v |= L⊑pΨ . ⊓⊔

This theorem shows that bisimilar states satisfy the same CSL formulas. The
reverse direction, however, does not hold in general. One reason is obvious: In
this paper we use a purely state-based logic whereas our definition of strong
bisimulation also accounts for action names. Therefore it comes to no surprise
that CSL cannot characterize strong bisimulation. However, there is another
more profound reason which is analogous to the discrete-time setting where ex-
tensions of PCTL to Markov decision processes [28,4] also cannot express strong
bisimilarity: CSL and PCTL only allow to specify infima and suprema as prob-
ability bounds under a denumerable class of randomized schedulers; therefore
intuitively, CSL cannot characterize exponential distributions which neither con-
tribute to the supremum nor to the infimum of the probability measures of a
given set of paths. Thus the counterexample from [4, Fig 9.5] interpreted as a
CTMDP applies verbatim to our case.

5 Conclusion

In this paper we define strong bisimulation on CTMDPs and propose a nonde-
terministic extension of CSL to CTMDP that allows to express a wide class of
performance and dependability measures. Using a measure-theoretic argument
we prove our logic to be well-defined. Our main contribution is the proof that
strong bisimilarity preserves the validity of CSL formulas. However, our logic is
not capable of characterizing strong bisimilarity. To this end, action-based logics
provide a natural starting point.
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2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules
2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004
2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An
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René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-
ysis with Polynomial Interpretations
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