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Parametric LTL Games

Martin Zimmermann⋆

Lehrstuhl Informatik 7, RWTH Aachen University, Germany
zimmermann@automata.rwth-aachen.de

Abstract. We consider graph games of infinite duration with winning conditions
in parameterized linear temporal logic, where the temporal operators are equipped
with variables for time bounds. In model checking such specifications were intro-
duced as “PLTL” by Alur et al. and (in a different version called “PROMPT-
LTL”) by Kupferman et al..
Our work lifts their results on model checking for PLTL and PROMPT-LTL
to the level of games: we present algorithms that determine whether a player
wins a game with respect to some, infinitely many, or all variable valuations. All
these algorithms run in doubly-exponential time; so, adding bounded temporal
operators does not increase the complexity compared to solving plain LTL games.
Furthermore, we show how to determine optimal valuations that allow a player
to win a game.

1 Introduction

Two-player graph games of infinite duration are a tool to synthesize controllers
for reactive systems, i.e., systems which have to interact with an (possibly antag-
onistic) environment. Requirements on the controlled system are typically given
by a subset of the system’s executions. The controller has to react to the moves
of the environment in a way such that the execution satisfies the requirement.
The requirements are typically given by acceptance conditions from the theory
of automata on infinite words. However, in practice, it is often more convenient
to work in a logic framework. A concise way to specify requirements on infinite
executions is to use linear temporal logic (LTL). Its advantages include a com-
pact, variable-free syntax and intuitive semantics which makes LTL suitable to
be used in applications.

LTL synthesis was implicitly solved by Büchi and Landweber in their seminal
work [3] on Church’s problem [5], as LTL specifications can be translated into
Muller automata. Pnueli and Rosner [10, 11] explicitly considered LTL synthesis
for reactive systems and proved the problem to be 2EXPTIME-complete. De-
spite this, there are many fragments of LTL for which the synthesis problem has
lower complexity [2].

However, LTL lacks capabilities to express timing constraints, which are often
desirable in applications. In LTL, a request-response requirement “every request
q is followed by a response p” can be expressed by G(q → Fp). Here, one is
typically interested in quantitative information, i.e., how long does it take to
answer the requests.

To this end, extensions of LTL with timing constraints were introduced. The
simplest approach is to add the operator F≤k (for some fixed bound k ∈ N)
with the obvious semantics. The request-response requirement is then expressed
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by G(q → F≤kp) for some suitable k. But finding the right bound k is not
practicable: it is generally not known beforehand and depends on the granularity
of the model of the system. On the other hand, adding F≤k does not increase
the expressiveness of LTL, as it can be expressed by a disjunction of nested
next-operators.

Therefore, extensions of LTL with variable bounds for model checking were
considered. Parametric Linear Temporal Logic (PLTL), introduced by Alur et
al. [1], adds the operators F≤x and G≤y to LTL, where x and y are free variables.
Satisfaction is defined with respect to a variable valuation α mapping variables
to natural numbers: F≤xϕ holds, if ϕ is satisfied within the next α(x) steps,
while G≤yψ holds, if ψ is satisfied for the next α(y) steps. The request-response
requirement is now expressed by the formula G(q → F≤xp) where the bound x
is a free variable. Deciding whether a transition system satisfies a PLTL formula
with respect to some, infinitely many, or all variable valuations is PSPACE-
complete [1] (as is LTL model checking [12]). In the same work, it was shown
how to determine optimal variable valuations.

The present paper lifts the results on PLTL to graph-based games: we present
algorithms to determine whether a player wins a PLTL game with respect to
some, infinitely many, or all variable valuations. For winning conditions with
only parameterized eventualities F≤x or only parameterized always-operators
G≤y, solving games can be seen as an optimization problem: which is the best
variable valuation such that a player wins a given game with respect to that
valuation? For several notions of a “best valuation” we show how to find such an
optimal valuation and corresponding winning strategies. This continues recent
work on time-optimal winning strategies for infinite games with (extensions of)
request-response winning conditions [7, 13] and on finitary games [4].

The correctness of the algorithms presented in [1] relies on elaborate pump-
ing arguments which do not seem to be applicable to games. Also, Kupferman
et al. [8] argued that the algorithms are too involved and therefore proposed
PROMPT–LTL, which can be seen as the fragment of PLTL containing the for-
mulae without parameterized always’ and such that parameterized eventualities
are all bounded by the same variable. Formally, they add the prompt-eventually
operator FP to LTL. The semantics is defined with respect to a free, but fixed
bound k: FPϕ holds, if ϕ holds within the next k steps. This differs from the
semantics of F≤k, as k is a free variable. The request-response requirement is
expressed by G(q → FPp). Here, the bound is stated implicitly in the semantics
of PROMPT–LTL.

The alternating-color technique presented in [8] allows a comprehensive treat-
ment of PROMPT–LTL: it is used to solve the model checking and assume-
guarantee model checking problem, as well as the realizability problem, an ab-
stract game given only by a winning condition ϕ, but without an underlying
game graph (similar to the game theoretic formulation of Church’s problem [5]).

To obtain our results, we first apply the alternating-color technique to graph-
based PROMPT–LTL games, thereby transferring the results on realizability of
PROMPT–LTL specifications to this domain. Then, we are able to solve the
problems for PLTL, employing the results on PROMPT–LTL games at several
points. As model checking can be seen as a one-player game, our results also give
a simpler proof of the results on PLTL model checking.
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All our algorithms run in doubly-exponential time, which is asymptotically
optimal, as solving classical LTL games is 2EXPTIME-complete. Hence, adding
bounded temporal operators to LTL does not increase the complexity of solving
games with winning conditions in the extended logics. This confirms similar
findings on PLTL model checking.

This paper is structured as follows: Section 2 contains the definitions of the
logics and games discussed in the remainder. In Section 3, we describe how to
adapt the alternating-color technique to graph-based games. Then, we use this
to prove our main results: we show how to solve PLTL games in Section 4; in
Section 5 we show how to find optimal strategies for certain games for which
a notion of optimality exists. Finally, Section 6 gives a short conclusion and
pointers to further research.

2 Definitions

The set of non-negative integers is denoted by N. The powerset of a set S is
denoted by 2S . Throughout this paper let P be a set of atomic propositions.

Infinite Games. An (initialized and labeled) arena A = (V, V0, V1, E, v0, l) con-
sists of a finite directed graph (V,E), a partition {V0, V1} of V denoting the
positions of Player 0 and Player 1, an initial vertex v0 ∈ V , and a labeling
function l : V → 2P . It is assumed that every vertex has at least one outgoing
edge. A play ρ = ρ0ρ1ρ2 . . . is an infinite path starting in v0. The trace of ρ
is t(ρ) = l(ρ0)l(ρ1)l(ρ2) . . .. A strategy for Player i is a mapping σ : V ∗Vi → V
such that (ρn, σ(ρ0 . . . ρn)) ∈ E for all play prefixes ρ0 . . . ρn ∈ V ∗Vi. A play ρ is
consistent with σ if ρn+1 = σ(ρ0, . . . ρn) for all ρ0 . . . ρn ∈ V ∗Vi.

A memory structure M = (M,m0,upd) for A consists of a set M of memory
states, an initial memory state m0 ∈ M , and an update function upd: M ×
V → M . This function can be extended to upd∗ : V ∗ → M by upd∗(v0) = m0

and upd∗(ρ0 . . . ρnρn+1) = upd(upd∗(ρ0 . . . ρn), ρn+1). A next-move function for
Player i is a function nxt: Vi ×M → V which satisfies (v,nxt(v,m)) ∈ E for all
v ∈ Vi and all m ∈M . It induces a strategy σ with memory M via σ(ρ0 . . . ρn) =
nxt(ρn,upd∗(ρ0 . . . ρn)). A strategy is called finite-state if it can be implemented
with a finite memory structure. The size of M (and, slightly abusive, σ) is |M |.

Linear Temporal Logics. The formulae of Linear Temporal Logic (LTL) are
given by the grammar ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ, where
p ∈ P . Also, we use the derived operators tt := p ∨ ¬p and ff := p ∧ ¬p for some
fixed p ∈ P , Fϕ := ttUϕ, and Gϕ :=ffRϕ. The semantics of LTL are defined in
the standard way; for an ω-word w = w0w1w2 . . . ∈

(

2P
)ω

and a position i ∈ N

we write (w, i) |= ϕ, if wiwi+1wi+2 . . . is a model of ϕ.

Prompt Linear Temporal Logic (PROMPT–LTL) [8] adds the unary operator
FP to the LTL operators. Here, satisfaction is defined with respect to an ω-word
w ∈

(

2P
)ω

, a position i ∈ N, and a bound k ∈ N. For LTL operators, the
semantics is independent of k and defined as above. For FP we define

– (w, i, k) |= FPϕ iff there exists j ≤ k such that (w, i + j, k) |= ϕ.
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Let X and Y be two disjoint sets of variables. Parametric Linear Temporal Logic
(PLTL) [1] adds the unary operators F≤x for x ∈ X and G≤y for y ∈ Y to
the LTL operators1. The set of variables occurring in ϕ is denoted by var(ϕ)
and defined in the obvious way. The fragments PLTLF and PLTLG contain the
formulae ϕ with var(ϕ) ⊆ X respectively var(ϕ) ⊆ Y. These formulae are called
unipolar. The semantics of PLTL is defined with respect to an ω-word w ∈

(

2P
)ω

,
a position i ∈ N, and a variable valuation α : X ∪Y → N. For the LTL operators,
the semantics is again standard and independent of α. For the parameterized
operators, we define

– (w, i, α) |= F≤xϕ iff there exists j ≤ α(x) such that (w, i + j, α) |= ϕ, and
– (w, i, α) |= G≤yϕ iff for all j ≤ α(y): (w, i + j, α) |= ϕ.

For all logics considered here, the size |ϕ| of a formula ϕ is measured by count-
ing the distinct subformulae of ϕ. This is due to the fact, that the translation of
LTL into automata does not distinguish between equal subformulae.

The logics LTL and PLTL (but not the fragments PLTLF and PLTLG) are
closed under negation, although we only allow formulae in negation normal form.
This is due to the duality of U and R, and F≤x and G≤y. Thus, we will use
¬ϕ as shorthand for the equivalent formula obtained by pushing the negation to
the atomic propositions. Note also that ϕ ∈ PLTLF implies ¬ϕ ∈ PLTLG and
ϕ ∈ PLTLG implies ¬ϕ ∈ PLTLF.

Remark 1.

(i) For every PROMPT–LTL formula ϕ and every k ∈ N, there exists an LTL
formula ϕk such that (w, i, k) |= ϕ iff (w, i) |= ϕk.

(ii) For every PLTL formula ϕ and every valuation α, there exists an LTL formula
ϕα such that (w, i, α) |= ϕ iff (w, i) |= ϕα.

This can be shown by replacing the bounded operators by disjunctions or con-
junctions of nested next-operators. Hence, the size of the formulae ϕk and ϕα is
linear in k respectively in

∑

z∈var(ϕ) α(z).

Games with Winning Conditions in Linear Temporal Logics. In Re-
mark 1, we have seen that PROMPT–LTL with respect to a fixed bound k and
PLTL with respect to a fixed valuation α are no more expressive than LTL (al-
beit more succinct). Hence, we will treat k and α as free variables and require
Player 0 to play in a way such that there exists a bound k or a valuation α
satisfying the winning condition ϕ. We will introduce three types of games with
winning conditions in linear temporal logics, one for each logic we introduced
above.

An LTL game G = (A, ϕ) consists of an arena A and an LTL formula ϕ. A
play ρ is won by Player 0, if (t(ρ), 0) |= ϕ, otherwise it is won by Player 1. A
strategy σ for Player i is a winning strategy for her, if every play that is consistent
with σ is won by Player i. If Player i has a winning strategy then we say she
wins G (and Player 1 − i loses G).

1 In [1], the authors also introduced the operators U≤x, R≤y, F>y, G>x, U>y, and R>x.
However, they showed that all these operators can be expressed using F≤x and G≤y only, at
the cost of a linear increase of the formula’s size. Also, we ignore constant bounds as they
do not add expressiveness.
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Moreover, a PROMPT–LTL game G = (A, ϕ) consists of an arena A and
a PROMPT–LTL formula ϕ. Player 0 wins G if there exists a bound k and a
strategy σ for her such that (t(ρ), 0, k) |= ϕ for every play ρ that is consistent
with σ. Player 1 wins G if for all bounds k he has a strategy τk such that
(t(ρ), 0, k) 6|= ϕ for every play ρ that is consistent with τk. Note that τk may
depend on k, hence Player 1 does not have a single winning strategy (as Player 0
does), but a family (τk)k∈N of strategies.

Finally, a PLTL game G = (A, ϕ) consists of an arena A and a PLTL formula
ϕ. Player 0 wins a play ρ with respect to a variable valuation α if (t(ρ), 0, α) |= ϕ,
otherwise Player 1 wins ρ with respect to α. A strategy for Player i is a winning
strategy for her with respect to α if every play that is consistent with σ is won
by Player i with respect to α. Then, we say that Player i wins G with respect to
α (and Player 1 − i loses G with respect to α). We define the set Wi

G of winning
valuations for Player i in G = (A, ϕ) by

Wi
G = {α | Player i wins G with respect to α} .

Here (and from now on) we assume that α’s domain is restricted to the variables
occurring in ϕ. Unipolar, PLTLG, and PLTLF games are defined by restricting
the winning conditions to unipolar, PLTLG, and PLTLF formulae.

While we require Player 0 in a PROMPT–LTL game to play in a way such
that there exists a bound on the prompt-eventualities, we define PLTL games
with respect to a given valuation. This is done to extend the definitions in [1]
respectively [8].

Note that a PLTLF game G can be translated into a PROMPT–LTL game
G′ by replacing every subformula F≤xψ of G by FPψ. Then, α ∈ W0

G implies
that Player 0 wins G′ with bound maxx∈var(ϕ) α(x). Dually, if Player 0 wins G′

with bound k, then W0
G contains the valuation that maps every variable to k.

Conversely, every PROMPT–LTL game G can be translated into a PLTLF game
G′ such that Player 0 wins G iff W0

G′ 6= ∅.
It is easy to verify that for all types of games introduced above, there is at

most one player who wins a given game. A game is determined, if one of the
players wins it.

Proposition 1. LTL games (and therefore also PLTL games with respect to a
fixed variable valuation and also PROMPT–LTL-games) are determined with
finite-state strategies, i.e., for every LTL game G, one of the players has a
finite-state winning strategy for G. Determining the winner is 2EXPTIME-
complete [11] and finite-state winning strategies can be computed in doubly-
exponential time.

Note that Player 1 has a family (τk)k∈N of finite-state strategies τk, if he wins a
PROMPT–LTL-game.

3 Solving PROMPT–LTL Games

In this section, we discuss PROMPT–LTL games. In [8], a solution to the real-
izability problem for specifications in PROMPT–LTL is presented. Realizability
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asks whether Player 1 has a winning strategy in an abstract game without un-
derlying arena. The players alternatingly pick propositions, Player 0 from a set I
of inputs and Player 1 from a set O of outputs. Hence, by picking in ⊆ I respec-
tively on ⊆ O they form an infinite word (i0 ∪ o0)(i1 ∪ o1)(i2 ∪ o2) . . ., which is
winning for Player 1 if it satisfies a given PROMPT–LTL formula ϕ over I ∪O.
A strategy for Player 1 is a mapping

(

2I
)∗

→ 2O. In [8], it is shown that the prob-
lem of deciding whether Player 1 has a winning strategy for a PROMPT–LTL
specification can be reduced to the same problem for LTL specifications. As the
reduction increases the size of the formula only linearly, PROMPT–LTL realiz-
ability is 2EXPTIME-complete, as is LTL realizability [11].

In the following, we will rephrase this result in the setting of graph-based
games, which is conceptually simpler than reducing graph-based games to the
realizability problem. Furthermore, we will see that the size of a finite-state
winning strategy for the LTL game will induce a bound on the waiting times for
the prompt-eventualities in the original game. This will be used to solve PLTL
games and to find optimal winning strategies for them.

In [8], the realizability problem for PROMPT–LTL specifications (among
other problems) is solved by the alternating-color technique: let p /∈ P be a
fixed proposition. An ω-word w′ = w′

0w
′
1w

′
2 . . . ∈

(

2P∪{p}
)ω

is a p-coloring of
w = w0w1w2 . . . ∈

(

2P
)ω

if w′
n ∩ P = wn, i.e., wn and w′

n coincide on all
propositions in P . The additional proposition p can be thought of as the color
of w′

n: we say that position n is green if p ∈ w′
n, and say that it is red if p /∈ w′

n.
Given k ∈ N we say that w′ is k-spaced, if the colors in w′ change infinitely often,
but not twice in any infix of length k. Dually, w′ is k-bounded, if the colors change
at least once in every infix of length k + 1. See [8] for more details.

Let altp :=GFp ∧ GF¬p. It is satisfied if the colors change infinitely often.
Given a PROMPT–LTL formula ϕ let rel(ϕ) denote the LTL formula obtained
by inductively replacing every subformula FPψ by (p→ (pU(¬pUψ))) ∧ (¬p→
(¬pU(pUψ))). Finally, given a PROMPT–LTL formula ϕ, define c(ϕ) := altp ∧
rel(ϕ). It forces a coloring to have infinitely many blocks and every subformula
FPψ to be satisfied within two consecutive blocks. We have |c(ϕ)| ≤ 7(|ϕ| + 1),
as we count the number of distinct subformulae.

Lemma 1 ([8]). Let ϕ be a PROMPT–LTL formula, w ∈
(

2P
)ω

, and k ∈ N.

(i) If (w, 0, k) |= ϕ, then (w′, 0) |= c(ϕ) for every k-spaced p-coloring w′ of w.
(ii) If w′ is a k-bounded p-coloring of w with (w′, 0) |= c(ϕ), then (w, 0, 2k) |= ϕ.

The previous lemma is the key to solving PROMPT–LTL games: we will trans-
form the original arena A into an arena A′ in which Player 0 produces p-colorings
of the plays of the original arena, i.e., A′ will consist of two disjoint copies of
A, one labeled with p, the other one not. Assume a play is in vertex v in one
component. Then, the player whose turn it is at v chooses a successor v′ of v
and Player 0 picks a component. The play then continues in this component’s
vertex v′. We split this into two sequential moves: first, the player whose turn it
is chooses a successor and then Player 0 chooses the component. Thus, we have
to introduce a new vertex for every edge of A which allows Player 0 to choose
the component.

Formally, given an arena A = (V, V0, V1, E, v0, l), define the expanded arena
A′ :=(V ′, V ′

0 , V
′
1 , E

′, v′0, l
′) by
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– V ′ = V × {0, 1} ∪E,

– V ′
0 = V0 × {0, 1} ∪ E,

– V ′
1 = V1 × {0, 1},

– E′ = {((v, 0), e), ((v, 1), e), (e, (v′ , 0)), (e, (v′ , 1)) | e = (v, v′) ∈ E},
– v′0 = (v0, 0),

– l′(e) = ∅ for all e ∈ E and l′(v, b) =

{

l(v) ∪ {p} if b = 0,

l(v) if b = 1.

Note that A′ is bipartite with partition {V × {0, 1}, E} and every play has the
form (ρ0, b0)e0(ρ1, b1)e1(ρ2, b2) . . . where ρ0ρ1ρ2 . . . is a play in A, en = (ρn, ρn+1),
and the bn are in {0, 1}. Also, we have |A′| ≤ 2|A| + |A|2.

This construction necessitates a modification of the semantics of the game:
only every other vertex is significant when it comes to determining the winner of a
play in A′, the choice vertices have to be ignored. This motivates blinking seman-
tics for LTL games. Let G = (A, ϕ) be an LTL game and ρ = ρ0ρ1ρ2 . . . be a play.
Player 0 wins ρ with blinking semantics if (t(ρ0ρ2ρ4 . . .), 0) |= ϕ. Analogously,
Player 1 wins ρ with blinking semantics if (t(ρ0ρ2ρ4 . . .), 0) 6|= ϕ. Winning strate-
gies and winning G with blinking semantics is defined in the obvious way. The
standard automata theoretic construction for solving LTL games can be easily
adapted to account for blinking semantics: let f(n) := 2((n2+n)2n)(n

2+n)2n

((n2+
n)2n)!.

Lemma 2. LTL games G = (A, ϕ) with blinking semantics are determined with
finite-state strategies of size f(|ϕ|).

Proof. From ϕ, we construct a non-deterministic Büchi Automaton Aϕ that
accepts exactly those words over 2P which satisfy ϕ. Then, every transition
t = (q, a, q′) in Aϕ is split into two transitions (q, a, qt) and (qt,⊥, q

′) using a
new state qt and a dummy symbol ⊥. The new automaton A

b
ϕ accepts exactly

those words a0⊥a1⊥a2 . . . such that a0a1a2 . . . is accepted by Aϕ. Finally, we de-
terminize A

b
ϕ into a deterministic parity automaton, which can be turned into a

memory structure of same size for G with blinking semantics. If the constructions
presented in [6] and [9] are used, then f(|ϕ|) bounds the size of the memory. ⊓⊔

Now, we are able to solve PROMPT–LTL games by a reduction to LTL games
with blinking semantics using the alternating-color technique.

Theorem 1. Let G = (A, ϕ) be a PROMPT–LTL game. Player 0 wins G iff she
wins (A′, c(ϕ)) with blinking semantics.

Proof. Let Player 0 win G with strategy σ and bound k. Define the strategy σ′

for A′ as follows:

– σ′((ρ0, b0)e0(ρ1, b1)e1 . . . (ρn, bn)) :=(ρn, σ(ρ0 . . . ρn)), if ρn ∈ V0, and

– σ′((ρ0, b0)e0(ρ1, b1)e1 . . . (ρn, bn)en) :=

{

(ρn+1, 0) if n mod 2k < k,

(ρn+1, 1) if n mod 2k ≥ k,

where en = (ρn, ρn+1). Let ρ = ρ0ρ1ρ2 . . . be a play that is consistent with σ′

and let ρ′ := ρ0ρ2ρ4 . . . = (v0, b0)(v1, b1)(v2, b2) . . .. The sequence v0v2v4 . . . is a
play of A that is consistent with σ. Hence, (t(v0v2v4 . . .), 0, k) |= ϕ. Also, t(ρ′)
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is a k-tight p-coloring of t(v0v2v4 . . .). Hence, (t(ρ′), 0) |= c(ϕ) due to Lemma 1.
Thus, σ′ is a winning strategy for G′ with blinking semantics.

For the other direction assume that Player 0 wins (A′, c(ϕ)) with blinking
semantics. Then, she also has a finite-state winning strategy σ induced by some
memory structure M = (M,m0,upd) and some next-move function nxt. We will
construct a strategy for A by simulating a play in A′. Therefore, we need to keep
track of the component of A′ the simulated play is in and the current memory
state of M. Then, a move in A is simulated by two moves in A′: the choice of
the new vertex and the choice of the component. Hence, we transform M into
M

′ :=(M ′,m′
0,upd′) for A where

– M ′ = (V × {0, 1}) ×M ,
– m′

0 = ((v0, 0),m0),
– upd′(((v, b),m), v′) = (nxt(e,upd(m, e)),upd(upd(m, e),nxt(e,upd(m, e))))

where e = (v, v′).

Finally, we have to define a next-move function nxt′ : V0 ×M ′ → V for Player 0:
if nxt((v′, b),m) = (v′, v′′), then nxt′(v, ((v′, b),m)) := v′′. It remains to show that
σ′ induced by M

′ and nxt′ is a winning strategy for Player 0 for G. We begin by
relating plays consistent with σ′ to plays that are consistent with σ, i.e., proving
that the simulation is working correctly.

Lemma 3. Let ρ0ρ1ρ2 . . . be a play in A that is consistent with σ′. Then, there
exist bits b0, b1, b2, . . . ∈ {0, 1} such that

(i) (ρ0, b0)(ρ0, ρ1)(ρ1, b1)(ρ1, ρ2)(ρ2, b2) . . . is a play in A′ that is consistent with
σ, and

(ii) if upd∗((ρ0, b0)(ρ0, ρ1)(ρ1, b1) . . . (ρn−1, ρn)(ρn, bn)) = m, then
upd′∗(ρ0 . . . ρn) = ((ρn, bn),m).

Proof. By induction over ρ0 . . . ρn: as a play in A always starts in v0, both claims
are true for ρ0 = v0 with b0 = 0, since v′0 = (v0, 0) and upd′∗(v0) = m′

0 =
((v0, 0),m0). Now, let ρ0 . . . ρnρn+1 be a play prefix in A. The induction hypoth-
esis gives us bits b0, . . . , bn such that (ρ0, b0)(ρ0, ρ1)(ρ1, b1) . . . (ρn−1, ρn)(ρn, bn)
is a play in A′ that is consistent with σ and

upd′∗(ρ0 . . . ρn) = ((ρn, bn),m) , (1)

where m := upd∗((ρ0, b0)(ρ0, ρ1)(ρ1, b1) . . . (ρn−1, ρn)(ρn, bn)). We consider two
cases depending on whose turn it is at ρn:

If ρn ∈ V0 let

nxt((ρn, bn),m) = (ρn, v)=: e , (2)

m′ := upd(m, e), and (v, b) := nxt(e,m′). Then,

(ρ0, b0)(ρ0, ρ1)(ρ1, b1) . . . (ρn−1, ρn)(ρn, bn)e(v, b)

is consistent with σ, that is bn+1 := b.
We have to show v = ρn+1: as ρ0 . . . ρnρn+1 is consistent with σ, we have

ρn+1 = nxt′(ρn,upd′∗(ρ0 . . . ρn)) = nxt′(ρn, ((ρn, bn),m))
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by 1. Also, nxt′(ρn, ((ρn, bn),m)) = v, if nxt((ρn, bn),m) = (ρn, v). Applying 2
we obtain v = v = ρn+1. Hence, it remains to prove upd′(((ρn, bn),m), ρn+1) =
((ρn+1, bn+1),m

′′) where m′′ := upd(m′, (ρn+1, bn+1)). We have

upd′(((ρn, bn),m), ρn+1)

=(nxt(e,upd(m, e)),upd(upd(m, e),nxt(e,upd(m, e))))

=(nxt(e,m′),upd(m′,nxt(e,m′)))

=((v, b),upd(m′, (v, b)))

=((ρn+1, bn+1),m
′′) .

If ρn ∈ V1, let e :=(ρn, ρn+1), m
′ := upd(m, e), and (ρn+1, b) := nxt(e,m′). Then,

(ρ0, b0)(ρ0, ρ1)(ρ1, b1) . . . (ρn−1, ρn)(ρn, bn)e(v, b)

is consistent with σ, that is bn+1 := b.
Now, it remains to show upd′(((ρn, bn),m), ρn+1) = ((ρn+1, bn+1),m

′′) where
m′′ := upd(m′, (ρn+1, bn+1)). However, the reasoning is analogous to the one for
ρn ∈ V0. ⊓⊔

Let ρ = ρ0ρ1ρ2 . . . be a play consistent with σ′. Due to Lemma 3 there exist
bits b0, b1, b2 . . . ∈ {0, 1} such that ρ′ = (ρ0, b0)(ρ0, ρ1)(ρ1, b1)(ρ1, ρ2)(ρ2, b2) . . .
is a play consistent with σ. Hence, the trace of ρ′′ = (ρ0, b0)(ρ1, b1)(ρ2, b2) . . .
satisfies c(ϕ). We claim that t(ρ′′) is k-bounded, where k := |V | · |M | + 1. Then,
we apply Lemma 1 and obtain that (t(ρ), 0, 2k) |= ϕ, as t(ρ′′) is a k-bounded
p-coloring of t(ρ).

Suppose ρ′′ is not k-bounded. Then, there exist adjacent change-points i and
j such that j− i > k+1. Then, there also exist i ≤ i′ < j′ ≤ j such that ρi′ = ρj′

and upd∗((ρ0, b0)(ρ0, ρ1) . . . (ρi′ , bi′)) = upd∗((ρ0, b0)(ρ0, ρ1) . . . (ρj′ , bj′)), i.e., the
last vertices of both play prefixes are equal and the memory states after both
play prefixes are equal, too. Hence, the play

ρ∗ :=(ρ0, b0)(ρ0, ρ1) . . . (ρi′−1, bi′−1)
[

(ρi′ , bi′) . . . (ρj′−1, bj−1′)
]ω

is consistent with σ. Remember that the bits do not change between i and j.
Thus, the colors do not change infinitely often in ρ∗. Hence, it does not satisfy
c(ϕ), which contradicts the fact that σ is a winning strategy for (A′, c(ϕ)). ⊓⊔

Corollary 1. If Player 0 wins a PROMPT–LTL game (A, ϕ), then she also has
a finite-state winning strategy of size 2|A|f(|c(ϕ)|) which is winning for k =
2(|A|f(|c(ϕ)|) + 1).

The next corollary is concerned with the computational complexity of determin-
ing the winner of a PROMPT–LTL game.

Corollary 2. Solving PROMPT–LTL games is 2EXPTIME-complete.

Proof. Hardness follows directly from the 2EXPTIME-completeness of solving
LTL games. Membership in 2EXPTIME is witnessed by the reduction pre-
sented above (which increases the size of the arena and the formula only poly-
nomially) and the fact that solving LTL games with blinking semantics can be
done in doubly-exponential time. ⊓⊔
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4 Solving PLTL Games

Remember that Wi
G contains the variable valuations α (restricted to the variables

occurring in the winning condition of G) that allow Player i to win G with respect
to α. We are interested in the following problems:

Membership: Given a PLTL game G and a valuation α, does α ∈ Wi
G hold?

Emptiness: Given a PLTL game G, is Wi
G empty?

Finiteness: Given a PLTL game G, is Wi
G finite?

Universality: Given a PLTL game G, does Wi
G contain all variable valuations?

Let G = (A, ϕ) be a PLTL game and α a variable valuation. Applying Remark 1
to games, we obtain: Player i wins G with respect to α iff she wins the LTL
game (A, ϕα). The winner and a finite-state winning strategy can be effectively
computed. Hence, we obtain our first result about PLTL games.

Theorem 2. The membership problem for Wi
G is decidable.

To solve the other problems, we make use of the duality of unipolar games
and the duality of the emptiness and universality problem. For an arena A =
(V, V0, V1, E, v0, l), let A :=(V, V1, V0, E, v0, l) be its dual arena, where the two
players swap their positions. Given a PLTL game G = (A, ϕ), the dual game is
G :=(A,¬ϕ). The dual game of a PLTLG game is a PLTLF game and vice versa.

Remark 2. Let α be a valuation and G a PLTL game. Player i wins G with
respect to α iff Player 1 − i wins G with respect to α.

The sets Wi
G enjoy two types of dualities, which we rely on in the following. The

first one is due to determinacy of LTL games, the second one due to Remark 2.

Lemma 4. Let G be a PLTL game. Then

(i) W0
G is the complement of W1

G.

(ii) Wi
G = W1−i

G
.

Another property that is used in the following is the monotonicity of the param-
eterized operators: let α(x) ≤ β(x) and α(y) ≥ β(y). Then, (w, i, α) |= F≤xϕ
implies (w, i, β) |= F≤xϕ and (w, i, α) |= G≤yϕ implies (w, i, β) |= G≤yϕ. Hence,
the set W0

G is upwards-closed if G is a PLTLF game, and downwards-closed if G
is a PLTLG game (where valuations are compared componentwise).

In the remainder, we solve the emptiness, finiteness, and universality problem
for PLTL games. We begin by considering unipolar games and then reduce the
problems for PLTL games to problems for unipolar games.

Lemma 5. Let GF = (AF, ϕF) be a PLTLF game, let GG = (AG, ϕG) be a
PLTLG game, and let i ∈ {0, 1}. The emptiness, finiteness, and universality
problems for Wi

GF
and Wi

GG
are decidable.

Proof. We have already established in Lemma 4 (ii) that it suffices to consider
i = 0. In the following, let α0 be the valuation that maps every variable to zero.

Emptiness of W0
GF

: The emptiness problem can be decided by a reduction to
PROMPT–LTL games. Let ϕ′ be the PROMPT–LTL formula obtained from ϕF
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by recursively replacing every parameterized subformula F≤xψ by FPψ. Player 0
wins (AF, ϕ

′) iff W0
GF

6= ∅. The former can be decided by Theorem 1.

Finiteness of W0
GF

: W0
GF

is finite iff it is empty, due to upwards-closure of

W0
GF

.

Universality of W0
GF

: W0
GF

is universal iff Player 0 wins GF with respect to

α0, again due to upwards-closure of W0
GF

. Now, apply Theorem 2.

Emptiness of W0
GG

: W0
GG

is non-empty iff Player 0 wins GG with respect to

α0, due to downwards-closure of W0
GF

. Now, apply Theorem 2.

Universality of W0
GG

: The universality problem can be reduced to the

emptiness problem for PLTLF games. Applying Lemma 4 yields: W0
GG

is uni-

versal iff W1
GG

is universal iff W0
GG

is empty. The latter problem is decidable, as

shown above.

Finiteness of W0
GG

: The finiteness problem can be reduced to the univer-
sality problem for a (simpler) PLTLG game. We assume that ϕG has at least
one temporal operator parameterized with a variable, since the problem is trivial
otherwise. The set W0

GG
is infinite iff there is a variable y ∈ var(ϕG) such that y

is mapped to infinitely many values by the valuations in W0
GG

. By downwards-
closure we can assume that all other variables are mapped to zero. Furthermore,
y is mapped to infinitely many values iff it is mapped to all possible values,
again by downwards-closure. To combine this, we define ϕy to be the formula
obtained from ϕG by inductively replacing every subformula G≤zψ for z 6= y by
ψ and define Gy :=(AG, ϕy). Then, W0

GG
is infinite, iff there exists some variable

y ∈ var(ϕG) such that W0
Gy

is universal. So, deciding whether W0
GG

is infinite

can be done by solving |var(ϕG)| many universality problems for PLTLG games,
which were discussed above. ⊓⊔

We are now able to state and prove the main result of this section.

Theorem 3. Let G = (A, ϕ) be a PLTL game and i ∈ {0, 1}. The emptiness,
finiteness, and universality problems for Wi

G are decidable.

Proof. Again, due to Lemma 4 (ii) it suffices to consider i = 0.

Emptiness of W0
G: Let ϕF be the formula obtained from ϕ by induc-

tively replacing every subformula G≤yψ by ψ, and let GF :=(A, ϕF). Applying
downwards-closure, we obtain that W0

G is empty iff W0
GF

is empty. As GF is a

PLTLF game, we can decide the emptiness of W0
GF

by applying Lemma 5.

Finiteness of W0
G: If ϕ contains at least one F≤x, then W0

G is infinite, iff it
is non-empty, due to monotonicity of F≤x. The emptiness of W0

G can be decided
as discussed above. Otherwise, G is a PLTLG game whose finiteness problem can
be decided by Lemma 5.

Universality of W0
G: Let ϕG be the formula obtained from ϕ by inductively

replacing every subformula F≤xψ by ψ, and let GG :=(A, ϕG). Applying upwards-
closure, we obtain that W0

G is universal iff W0
GG

is universal. As GG is a PLTLG

game, we can decide the universality of W0
GG

due to Lemma 5. ⊓⊔

Corollary 3. The emptiness, finiteness, and universality problem for PLTL
games are 2EXPTIME-complete.
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Proof. Hardness follows directly from 2EXPTIME-completeness of solving LTL
games employing simple reductions to the problems considered here. Member-
ship in 2EXPTIME is witnessed by the linear-time reductions to LTL games
discussed above.

5 Optimal Winning Strategies for unipolar PLTL Games

For unipolar games, it makes sense to view synthesis of winning strategies as an
optimization problem: which is the best variable valuation α such that Player 0
can win with respect to α? We consider two quality measures for a valuation
α for ϕ: the maximal parameter maxz∈var(ϕ) α(z) and the minimal parameter
minz∈var(ϕ) α(z). For a PLTLF game, Player 0 tries to minimize the waiting
times. Hence, we are interested in minimizing the minimal or maximal parameter.
Dually, for PLTLG games, we are interested in maximizing the quality measures.
Again, we will only consider Player 0 as one can dualize the game to obtain
similar results for Player 1. The main result of this section states that all these
optimization problems can be solved effectively.

Theorem 4. Let GF = (AF, ϕF) be a PLTLF game and GG = (AG, ϕG) be a
PLTLG game. Then, the following values (and winning strategies realizing them)
can be computed.

(i) minα∈W0
GF

minx∈var(ϕF) α(x).

(ii) minα∈W0
GF

maxx∈var(ϕF) α(x).

(iii) maxα∈W0
GG

maxy∈var(ϕG) α(y).

(iv) maxα∈W0
GG

miny∈var(ϕG) α(y).

Proof. In the following, we assume that the formula under consideration contains
at least one variable and that there is at least one variable valuation that lets
Player 0 win the game under consideration.

We begin by considering formulae with a single variable: given a PLTLF

game G = (A, ϕ) with var(ϕ) = {x}, determine minα∈W0
G
α(x). By replacing

every subformula F≤xψ of ϕ by FPψ, we obtain a PROMPT–LTL game (A, ϕ′)
which is won by Player 0 as we assume that W0

G is non-empty. Hence, applying
Corollary 1 yields that Player 0 wins (A, ϕ′) with bound k := 2(|A|f(|c(ϕ′)|)+1).
Hence, Player 0 also wins the PLTLF game G with respect to the valuation which
maps x to k. Hence, minα∈W0

G
α(x) ≤ k. Now, the minimal value can be found

by binary search and Proposition 1.

Dually, given a PLTLG game G = (A, ϕ) with var(ϕ) = {y}, determine
maxα∈W0

G
α(y). If W0

G is universal, then maxα∈W0
G
α(y) = ∞. Otherwise, con-

sider the dual game G = (A,¬ϕ) which is a PLTLF game with a single vari-
able y as well. Replacing every subformula F≤yψ of ¬ϕ by FPψ, we obtain a
PROMPT–LTL game G′ :=(A, ϕ′) which is won by Player 0. Applying Corol-
lary 1, we obtain that Player 0 wins G′ with bound k := 2(|A|f(|c(ϕ′)|) + 1),
which implies that the valuation mapping y to k is in W0

G
and not in W0

G = W1
G
.

As W0
G is downwards-closed, it cannot contain a variable valuation mapping y

to a value larger than k. Hence, we have only a finite number of possible values
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for maxα∈W0
G
α(y), and the maximal value can be found by binary search and

Proposition 1.

Now, we are able to solve the optimization problems for winning conditions
with more than one variable. The first case is exceptional, as it is the only one
that does not involve a reduction to games with just one variable.

(i) Corollary 1 yields that Player 0 wins the PROMPT–LTL game (AF, ϕ
′)

with bound k := 2(|AF|f(|c(ϕ′)|) + 1), where ϕ′ is obtained by replacing every
subformula F≤xψ of ϕF by FPψ. Thus, minα∈W0

GF

minx∈var(ϕF) α(x) ≤ k. Let

Gx,n be obtained from GF by replacing every subformula F≤xψ parameterized
by x of the winning condition ϕF by Xn

∨ψ, where X0
∨ψ :=ψ and Xm+1

∨ ψ :=ψ ∨
(Xm

∨ ψ). To determine whether the minimum is even smaller than k, the smallest
n such that W0

Gx,n
is non-empty for some x, has to be found. It is equal to

minα∈W0
GF

minx∈var(ϕF) α(x) and can be found by binary search in the interval

[0, k − 1] for every variable x ∈ var(ϕ).

(ii) Let ϕ′
F

be obtained from ϕF by renaming every variable in ϕF to z and
let G′ :=(AF, ϕ

′
F
). Then, we have minα∈W0

GF

maxx∈var(ϕF) α(x) = minα∈W0
G′
α(z),

due to upwards-closure of W0
GF

. The resulting minimization problem has a win-
ning condition with a single variable, which can be solved effectively, as discussed
above.

(iii) For every y ∈ var(ϕG) let ϕy be obtained from ϕG by replacing ev-
ery subformula G≤zψ for z 6= y by ψ and let Gy :=(AG, ϕy). Then, we have
maxα∈W0

GG

maxy∈var(ϕG) α(y) = maxy∈var(ϕG) maxα∈W0
Gy

α(y), because of down-

wards-closure of W0
GG

. Hence, we have reduced the original problem to |var(ϕG)|
maximization problems for winning conditions with a single variable, which can
be solved as discussed above.

(iv) Let ϕ′
G

be obtained from ϕG by renaming every variable in ϕG to z and
let G′ = (AG, ϕ

′
G

). Then, maxα∈W0
GG

miny∈var(ϕG) α(y) = maxα∈W0
G′
α(z), again

due to downwards-closure of W0
GG

. The resulting maximization problem has a
winning condition with a single variable, which can be solved effectively. ⊓⊔

A strategy for Player 0 for a PROMPT–LTL game G is optimal, if it lets her
win with bound k, but there is no winning strategy for her with bound k − 1.
By translating a PROMPT–LTL game into a PLTLF game we are also able to
compute optimal strategies for PROMPT–LTL games.

Corollary 4. Optimal winning strategies (and their bounds) for PROMPT–LTL
games are computable.

6 Conclusion

We presented 2EXPTIME algorithms that decide whether Player iwins a PLTL
game with respect to some, infinitely many, or all variable valuations. Also, we
presented algorithms for computing optimal strategies. All these problems are
solved by a reduction to (in some cases several) LTL games. Table 1 lists the
number of LTL games needed to solve in order to answer the problem under con-
sideration. Note that in some cases, these are LTL games with blinking semantics,
which are no harder to solve than classical LTL games.
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Table 1. Complexity of decision and optimization problems for PLTL

ϕ Problem LTL games to solve

PLTL α ∈ W0
G? 1

PLTL W0
G empty? 1

PLTL W0
G universal? 1

PLTL W0
G finite? max{|var(ϕ) ∩ X |, 1}

PLTLG maxα∈W0

G
maxy∈var(ϕ) α(y) |var(ϕ)|(log2(2(|A|f(7(|ϕ| + 1))) + 1) + 1)

PLTLG maxα∈W0

G
miny∈var(ϕ) α(y) log2(2(|A|f(7(|ϕ| + 1))) + 1) + 1

PLTLF minα∈W0

G
minx∈var(ϕ) α(x) |var(ϕ)|(log2(2(|A|f(7(|ϕ| + 1))) + 1) + 1)

PLTLF minα∈W0

G
maxx∈var(ϕ) α(x) log2(2(|A|f(7(|ϕ| + 1))) + 1) + 1

The decision problems for PROMPT–LTL and PLTL (with the exception of
the finiteness problem for PLTL) are solvable by solving a single LTL game of the
same size. Hence, adding the bounded operators does not increase the asymptotic
computational complexity of solving these games. However, the optimization
problems need (in the straight-forward approach) an exponential number of LTL
games to solve, which are in some cases of doubly-exponential size, hence the
algorithms are in 4EXPTIME. It is open whether this can be improved.

Another interesting question concerns the tradeoff between the size of a finite-
state strategy and the quality of the bounds it is winning for.
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