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Abstract

Model-based system-software co-engineering is a natural evolution towards meet-
ing the high demands of upcoming deep-space and satellite constellation missions.
It advocates better abstractions to cope with the increasing spacecraft complexity,
and opens the door for a wide range of formal methods, benefiting from the math-
ematical rigour and precision they bring. This dissertation provides for both: we
applied and evaluated state of the art modelling and analysis techniques based
on formal methods to spacecraft engineering, and we developed novel theory that
tackle issues encountered in industrial practice.

In particular, we formalised a modelling language by the aviation and automot-
ive industry, namely the Architecture Analysis and Design Language (AADL). We
show in this dissertation how we rooted it into the theories on discrete, real-timed
and hybrid automata, various Markov models and temporal and probabilistic lo-
gics. This foundation enabled us to develop a comprehensive analysis toolset with
model checkers being the cornerstone. It provides a wide range of analyses in an
algorithmic fashion rather than the labour-intensive methods currently employed
by the space industry. It can generate simulations, fault trees, failure modes and
effects tables, performability curves, diagnosability artefacts and affirmations of
correctness exhaustively. Our work has been subjected to extensive evaluation.
At the European Space Agency, we applied it to a satellite design of one of the
agency’s ongoing missions. This dissertation reports on this case study. The case
is currently the largest formal methods study of a satellite architecture reported in
literature.

The sheer size and complexity of the satellite case study indicated several the-
oretical problems. To this end, we developed a reasoning theory based on Craig
interpolants, that generates compositional abstractions from the model. It helps
to understand large models, like the satellite case, more effectively. We further-
more studied the use of Krylov methods for improving the numerical stability of
analysing a notorious class of Markov chains, namely, stiff Markov chains. They
occur naturally in space systems where failure rates have large disparities. Our
controlled experiments show that Krylov methods are superior in such cases.



Zusammenfassung

Modellbasiertes Co-Engineering von Systemsoftware stellt einen natürlichen Evol-
utionsschritt zur Erfüllung der hohen Anforderungen zukünftiger Weltraum- und
Satellitenmissionen dar. Es bietet bessere Abstraktionsmöglichkeiten zum Umgang
mit wachsender Komplexität von Raumfahrzeugen und ermöglicht den Einsatz
einer breiten Auswahl an formalen Methoden, die sich durch ihre mathematische
Stringenz und Genauigkeit auszeichnen. Die vorliegende Dissertation behandelt
sowohl Grundlagen als auch Anwendungen: Wir demonstrieren und evaluieren
den Einsatz modernster Modellierungs- und Analysetechniken basierend auf form-
alen Methoden für die Raumfahrt und entwickeln neue Theorien zum Umgang mit
Problemen in einem industriellen Umfeld.

Konkret wird eine in der Luft-, Raumfahrt- und Automobilindustrie verbreit-
ete Modellierungssprache namens “Architecture Analysis and Design Language”
(AADL) formalisiert. Wir stellen ihre Verwurzelung in den Theorien der diskreten,
Echtzeit- und Hybridautomaten, verschiedenen Markov-Modellen, sowie tempor-
aler und probabilistischer Logik vor. Diese Grundlagen ermöglichen uns die En-
twicklung eines umfangreichen Analysewerkzeugs basierend auf Modelcheckern.
Es bietet eine breite Auswahl an algorithmischen Analysen anstatt der aufwändigen
manuellen Methoden, welche zurzeit in der Raumfahrtindustrie eingesetzt werden.
Dazu unterstützt es die vollautomatische Generierung und Analyse von System-
simulationen, Fehlerbäumen, “failure modes and effects”-Tabellen, Wahrschein-
lichkeitskurven, Diagnoseartefakten und Korrektheitsberprüfungen. Die Methoden
werden durch ausführliche Evaluierungen validiert. Bei der Europäischen Raum-
fahrtagentur (ESA) wurden unsere Techniken während der Entwicklung einer
zukünftigen Satellitenmission angewendet, deren Ergebnisse in der vorliegenden
Dissertation behandelt werden. Diese Fallstudie ist die größte, in der Literatur
erwähnte Studie zum Einsatz formaler Methoden zur Modellierung und Analyse
einer Satellitenarchitektur.

Die schiere Größe und Komplexität dieser Fallstudie stellte uns vor einige Prob-
leme theoretischer Natur. Hierzu entwickelten wir Theorien zur Schlussfolgerung,
basierend auf Craig-Interpolationen, die kompositionelle Abstraktionen des Mod-
ells generieren. Diese unterstützen das Verständnis großer Systemmodelle. Des
Weiteren untersuchen wir die Verwendung von Krylov-Methoden zur Verbesserung
der numerischen Stabilität bei der Analyse einer spezieller, sogenannter “steifer”



Markov-Ketten. Diese treten häufig in Raumfahrtsystemen auf, bei denen die Aus-
fallraten von Komponenten große Diskrepanzen aufweisen. Unsere Experimente
zeigen, dass Krylov-Methoden in diesen Fällen überlegen sind.

(Translation from the English abstract by Tim Lange and Thomas Noll)



Management Summary

This dissertation describes novel software tools, techniques and theories from
the science of formal methods to improve state-of-the-art spacecraft engineering.
Formal methods researchers and practitioners emphasise the expression of hard-
ware and software systems using a formal system (i.e. logical system), benefiting
from its mathematical properties, as consistency, validity, soundness and complete-
ness. These qualities provide clarity and unambiguity to the engineers’ under-
standing of the spacecraft in development, despite of its many interrelations and
complexities. The latter two are rising steadily due to the trends of increasing
mission demands regarding safety and dependability as well as our increasing tech-
nological capability. The effect is particularly visible during assembly, integration
and testing. Increasingly more issues, in particular involving the fault management
systems, are encountered at this phase. Resolving them with the desired level of
effectiveness is typically sustained by increasing costs and staffing, as an increase
of resolving time is often infeasible due to the strict launch windows. Using formal
methods, the spacecraft is modelled early in its engineering lifecycle (e.g. phase
0 to phase C), which enables a wide-range of automated formal analyses perform-
ing early verification and validation on the current design. Many issues currently
encountered during assembly, integration and testing, are thus resolved earlier.

Our modelling formalism is christened SLIM, the System-Level Integrated Mod-
elling language. It is a formal dialect of AADL, the Architecture, Analysis and
Design Language. It provides a hierarchical and component-oriented language to
express system, hardware, software and erroneous aspects in a coherent manner.
System, hardware and software components interact through event and data ports,
and their nominal behaviour is expressed using a (hybrid) state transition system.
Erroneous behaviour is expressed as a probabilistic state machine. A mechanism
called model extension is provided to automatically combine the nominal compon-
ents and the erroneous components into an extended system model. The latter
describes a single integrated model covering the system’s nominal, erroneous and
degraded behaviour.

Upon SLIM, we mapped a wide-range of verification and validation meth-
ods. These methods are automated forms of manual methods of analysis typically
performed in a spacecraft engineering lifecycle. Functional correctness analysis
checks whether a design meets its functional requirements. It does this by employ-



ing model checking, which is an exhaustive technique of verifying a requirement
against all possible system traces. Safety and dependability analyses are provided
through the generation of dynamic fault trees and failure modes and effects tables
(FMEA) from the SLIM model. Risks can be probabilistically assessed by transform-
ing the fault tree to its underlying continuous-time Markov chain. For quantifying
the system performance under degraded modes, performability analysis provides
for cumulative distribution functions plotted as graphs. For analysing the effect-
iveness of fault management systems specifically, we provide for failure detection,
fault isolation and failure recovery analysis. These respectively analyse which
observables are triggered upon occurrence of faults, which combination of faults
trigger observables, and determine whether faults are recoverable. Lastly, we
provide for diagnosability analysis. Diagnosability analyses can prove whether
the observables provide sufficient information to correctly infer a fault. All these
automated analyses can be employed to determine whether the current design, or
competing designs, meet functional, safety, dependability and performance require-
ments. They can also be used to determine whether a design is over-engineered,
and thus provide indication for unnecessary system complexity.

The whole approach is software tool-supported and can be run on ordinary PC
workstations. A graphical drag-and-drop interface called the COMPASS Graphical
Modeller can be used to create a SLIM model. The resulting model can be loaded
into the COMPASS toolset, which is an engineer-friendly graphical environment
for running analyses and investigating their outputs. The technological readiness
level of the tools is laboratory-tested.

As part of this dissertation, an extensive case study was conducted by devel-
oping the largest and most comprehensive system-level model of a spacecraft so
far. Using the deliverables of an ESA satellite in development, its full platform
has been modelled and analysed. This was done in parallel with the actual devel-
opment, this to avoid the bias of modelling a completed, matured and issue-free
design after development. The resulting model has a nominal state space over
48 million states, and when fault injections are injected the state space grows up
to 218· 48 million states. Its large size led us to hit practical computation limits
of the algorithms underlying performability and diagnosability analysis, hinting
directions for future theoretical research. Furthermore, significant practical exper-
ience of using formal methods in an engineering process was gained. It showed
the need for conscious documentation and characterisation of abstraction levels
and maintenance of traceability between the SLIM model and the spacecraft de-
liverables. The resulting model serves as a guiding reference for future formal
modelling initiatives.

The case study clearly indicated the need for handling the size and complex-
ity of spacecraft models by the model checking algorithms underlying the formal
analyses. As a response, we developed a novel theory to exploit the compositional
structure of compositional modelling languages by synthesizing a small environ-
ment of a component in isolation. The synthesis is achieved through a logical
interpolation of the component’s environment transitions. They are reduced to the



variables which are only used for interaction with the component, thus abstract-
ing indirectly (ir)relevant system variables. The environment provides insight on
the possible interactions of the component, thus clearly characterising possible
system-software boundaries, and/or system-fault management boundaries.

We also investigated the use of Krylov subspace methods for computing the
transient probabilities of continuous-time Markov chains. Transient probability
computation is the underlying analysis for probabilistic risk assessment. We ob-
served using a controlled experiment that Krylov subspace methods performs better
on stiff Markov chains. These Markov chains arise typically from systems that have
large disparities between the component failure rates.

Conclusive, we developed a state-of-the-art modelling formalism (SLIM) and a
toolset (COMPASS) to support early verification and validation of functional, safety,
dependability and performance aspects in the spacecraft engineering lifecycle. The
modelling formalism and toolset have been extensively evaluated, and our own
satellite platform case study being the most extensive one. The sheer size of the
latter case study inspired to advance the algorithms underlying the formal analyses.
We thus developed a compositional reasoning theory that copes better with the
increasing size and complexity of future spacecraft. We furthermore report on
the use of Krylov subspace methods, and demonstrated their superiority of more
traditional and commonly-used methods. The overall result of is a set of novel
software tools, techniques and theories that are better equipped for dealing with
the increasing size and complexity of future spacecraft.
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1

Introduction

Space flight is one of the greatest achievements in modern times, utilising the full
body of formal and natural sciences developed so far. And now, the continuing
human presence in low Earth orbit through the International Space Station sets
a distinct mark on our technological capabilities. The ambition is now set to the
Moon, Mars and beyond, with exploration programs and spacecraft already present
and newer ones on course. Going deeper into space presents tougher challenges
and as such, requires a mastery of technology that has yet to be developed. In
line with this, the European Space Agency (ESA) and Thales Alenia Space funded
the research resulting in this dissertation, which specifically aims to improve the
system software of spacecrafts using state of the art formal methods, benefiting
from its mathematical rigour and preciseness.

In this chapter, the prime technological aspect of space-flight is briefly intro-
duced, namely the spacecraft, and the engineering challenges it presents. It is
followed by an introduction to formal methods, and concluded with an overview
of industrial and academic contributions described in this dissertation.

1.1 Going Into Space

The spacecraft is the vehicle used for travel in space, and together with the launcher
(i.e. rocket) and ground systems is one of the main ingredients for a typical mission.
Spacecraft are typically tailored to the mission and its constraints. For example,
a spacecraft that has to operate on Mars needs to account for longer communic-
ation latencies than spacecraft that orbit Earth. Scientific and Earth-observation
spacecraft on the other hand typically have high bandwidth demands, and this
has consequences on the power requirements. Tailored systems like this require
sizeable investments. These investments are of such a degree that a spacecraft’s
failure to meet mission objectives makes it worthwhile to ensure the first mission
attempt is immediately successful. Through decades of experience with space
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flight, a development process for spacecraft emerged that led to safe and depend-
able systems. In the European tradition, the main activities are mission analysis,
requirements analysis, design definition, verification, production, utilisation and
disposal. To control the process, these activities are part of mission phases, during
which a strict schedule of review meetings are planned at which ESA specialists
review all artefacts developed by the contracting company. At the reviews, the
coherence, completeness and consistency of the artefacts are checked for, and if
they meet mission phase requirements, ESA’s review board gives approval to enter
the subsequent phase. Artefacts range from technical documents containing e.g.
design schematics, test reports, justification reports, models, source code to more
physical evidences like early flight prototypes and the eventual system itself. One
trend in the space industry is that the increasing demands on the mission have led
to an increasing prominence of software in the system. Software provides unpre-
cedented functionality to meet mission requirements like for example increasingly
more accurate control algorithms to keep stricter orbits and flight-plans, to highly
automated self-healing systems that enable unprecedented safety and reliability. It
is for this, software has become an important factor for the mission’s realisation
and its success. Its prominence is to such a degree that software impacts the whole
system in many interweaving ways. Some colloquially say that a modern spacecraft
is a flying computer, which is a strong contrast with spacecraft from the sixties,
where nearly all computations were performed on analog signals. The provision
of sufficient artefactual evidence of the coherence, completeness and consistency
of software to ESA’s review board requires a thorough understanding of its rela-
tion and interaction with the overall system. Due to the enormous possibilities of
software, and its near-omnipresence in spacecraft, gaining such an understanding
has become increasingly challenging. We argue that formal methods is the answer
to meet this challenge. It brings the clarity and rigour from mathematical logic to
the system software domain, providing the means to effectively develop systems of
unprecedented functionality and enabling missions which were previously difficult
to realise.

1.2 Unambiguity is Understanding

Formal methods are a particular kind of techniques that emphasize expression of
hardware and software systems using a formal system (i.e. logical system). A
typical formal system has favourable properties as consistency (i.e. no arguments
contradict to each other), validity (i.e. an argument’s conclusion is entailed by its
premises), soundness (i.e. only valid arguments with true premises are used) and
completeness (i.e. all true conclusions are derivable from the axioms through ar-
guments). These qualities enable an unambiguous expression of the system under
development and as such its interpretation is the same among different persons.
This clarity of understanding aids in the development of large and complex inter-
acting systems, where it is human to lose perspective and sight in all interrelations.
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Formality can be exercised in many ways. Natural language in the form of prose
for example, obeys the rules of a language’s syntax and grammar, yet embeds
a great deal of semantics within the words, allowing for varying interpretations.
Structured prose typically restricts points of unambiguity, and thus is considered
to be more formal. Logics and automata are typically considered as the most
formal of formal methods for expressing systems. These expressions can be used in
various points in a system’s development process. A formal model can be used to
express a system and a formal logic can be used to express its requirements. Thus,
it can clarify the system’s specification. If the used formal system is sufficiently
formal, one can derive (i.e. prove) properties from formal models and logics using
the rules of the formal system. This aids the verification and validation process,
during which desirable system’s properties are checked for. At the highest level
of formality, automation of proofs becomes possible if the formal system satisfies
particular conditions, e.g. finiteness. The automation can be provided in the form
of software tools implementing algorithms for proving, avoiding human errors in
the construction of proofs and enabling analysis of systems with larger size and
detail due to the increasing computing performance. This dissertation aligns with
that particular class of formal methods. We argue that the space industry benefits
most from formal methods if it is elevated to the degree of automated analysis.

1.3 Contributions

This dissertation is a mixture of theory applied to practice and practice inspired
theory. It was able to form through the unique opportunities we enjoyed. We,
together with Fondazione Bruno Kessler, were commissioned by ESA to develop
a comprehensive toolset for modelling and analysis of spacecraft using state-of-
the-art-formal methods for improving system-software co-engineering. Through
its industrial evaluation by Thales Alenia Space, which participated by running
case studies and providing their industrial engineering experience, we gained a
deeper understanding of best practices for applying our theories to industrial prac-
tice. This was the Correctness, Modelling and Performance of Aerospace Systems
(COMPASS) project and it ran from 2008 to 2010. A small extension project was
commissioned to us and Ellidiss in 2011 to develop a graphical modelling envir-
onment for COMPASS’s modelling language. From 2010 onwards, we received
research grants by ESA and Thales Alenia Space for the reverse: develop theories
to tackle the problems in practice. Part of this was an one year (cumulatively)
visit to the European Space Research and Technology Centre (ESTEC), which is
the technical heart of the European space industry employing over 2500 persons.
We were provided resources that are typically out of reach for academics, like an
in-house training in space system engineering and its verification and validation,
access to technical designs of spacecraft in development, allowing us hands-on
experience with the domain of discourse and the possibility of inquiry to ESA spe-
cialists, learning from their skill, knowledge and experience. All these were a great



1.3 Contributions 4

source of inspiration for our developed theory.
As this dissertation flows from theory and practice, it is only natural that it

contributes to both sides. Towards industry, its contributions are:

• An AADL-like (cf. Chapter 3) formal modelling language, christened SLIM,
enabling engineers to express both nominal, erroneous, and their interweav-
ing behaviour in a formal, yet user-friendly way.

• A mapping of correctness, performance, safety and dependability analyses to
proofs by (probabilistic) model checking, enabling engineers formal analyses
of SLIM models.

• The COMPASS toolset, implementing the aforementioned formal analyses as
automated programs accessible through a graphical interface.

• Industrial case studies, demonstrating benefits and limitations of state-of-the-
art formal modelling and analysis.

• A formal reference model of a satellite platform, enabling engineers to
quickly pick up formal modelling.

• A set of modelling guidelines, capturing best practices that avoid typical
pitfalls and leverage existing experience.

• Optimisation to functional correctness verification and validation by compos-
itional reasoning, enabling models of higher complexity and fidelity to be
analysed.

• Introduction of a highly numerical stable algorithm for probabilistic risk
assessment, enabling assessments of systems with large disparities in failure
rates.

From an academic perspective, this dissertation’s contributions are the following:

• A formal semantics for a component-oriented language that supports dy-
namic reconfiguration and covers action, timed, hybrid and probabilistic
aspects.

• A notion of model extension that interrelates functional behaviour with erro-
neous behaviour through fault injections using data-failures.

• An approach towards performability by interpreting extended models using
the formal semantics as interactive Markov chains.

• An algorithm for compositional abstraction of a component’s environment
using Craig interpolation.

• An evaluation of Krylov subspace methods and the observation that they per-
form well on stiff continuous-time Markov chains, along with an explanation
for this performance.
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• A large-scale industrial case study as a reference model for comparing and
evaluating algorithms for formal analysis.

We also contributed to the development of a notion of slicing over SLIM mod-
els [ONN10] and a notion of impact isolation over SLIM models [Ern12]. These
are however not part of this dissertation.

1.4 Outline

• In Chapter 2 we discuss the system and software engineering life-cycles and
focus on their verification and validation activities. A section is devoted to
a special case of system software engineering, namely fault management
engineering.

• In Chapter 3 we introduce our component-oriented modelling language
called SLIM, along with our approach towards model extension and a defini-
tion of its formal semantics in terms of a network of event-data automata.

• In Chapter 4 we describe methods for formal analysis over SLIM models.
Simulation, model checking, fault tree generation/evaluation/verification,
FMEA table generation, fault tolerance evaluation, diagnosability, fault de-
tection/isolation/recovery and performability are discussed.

• In Chapter 5 we provide an overview of the inner-workings of the COMPASS
toolset. It describes which software components were reused, adapted and
freshly developed.

• In Chapter 6 we introduce our large scale case study of a satellite platform
of an ongoing ESA project, our verification and validation results and experi-
ences gained from creating it.

• In Chapter 7 we describe our novel approach for compositional reasoning
and invariant verification of compositional modelling languages using Craig
interpolation and bounded model checking.

• In Chapter 8 we report on our investigation of using Krylov subspace methods
for computing transient probabilities over continuous-time Markov chains.
We observed that these methods have a better performance on stiff Markov
chains, and that this can explained by an analysis of the eigenvalues of the
matrix representing the Markov chain.

• In Chapter 9 we reflect back on our work and describe future research lines
of industrial interest.
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2

System-Software Co-Engineering
for Space

The act of verification and validation is about improving the understanding of
a system (under development) in order to make informed decisions. Unknown
or vaguely understood behaviours lead to risky decisions, whereas known and
understood behaviours typically lead to trustworthy decisions. The degree of
verification and validation hence depends on the amount of risk one is willing to
accept. In the European tradition of space engineering, a thorough verification and
validation process is applied throughout the overall system engineering life-cycle,
that prioritises investigation and understanding of safety-critical behaviours. A
strongly increasing contributing factor to these behaviours is software. Software is
present in nearly all parts of the system in intertwining and apparent peculiar ways.
Furthermore, software is flexible for modification and adaptation, yet, changing it
might require a re-investigation of the system’s possible (new) behaviours. Thus,
it has become increasingly challenging to effectively verify and validate software
(under development), and especially its interaction with the rest of the system.

This chapter overviews the European space industry practices on system engin-
eering, software engineering and their verification and validation. In the end of
this chapter, a section is dedicated to fault management engineering (also known
as FDIR: fault/failure detection, isolation and recovery), which is a special case
of system-software engineering. We argue that it poses the greatest challenge in
engineering space systems.

2.1 Systems Engineering

The technological and operational part of a space mission is the space system. In
the following, a typical space system is outlined, along with its life-cycle and the
applicable standards. The contents here reflects practices codified in the ECSS
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Figure 2.1: An example (incomplete) breakdown of a space system. Source: [ECSS-
M-ST-10C].

standards (European Cooperation for Space Standardisation). These standards are
governed by the European Space Agency.

2.1.1 Product Tree

The space system (see Figure 2.1) is generally composed of two segments: the
space segment and the ground segment.

The space segment typically consists of a spacecraft, and in some cases, mul-
tiple spacecraft (e.g. a satellite communication network). Spacecraft are typic-
ally further composed of a platform and a payload part. The payload contains
mission-specific instruments and equipment (e.g. a communication repeater, earth
observation sensory, telescopes, navigation signal emitter), whereas the platform
keeps the spacecraft in space and provides proper conditions for the payload to
function. The ground support equipment (GSE) is used to service spacecraft while
still on the ground. They are typically electric (EGSE) or mechanical (MGSE) in
nature. The platform is further decomposed in subsystems (e.g. structure, thermal
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Figure 2.2: ESA System engineering life-cycle. Source: [ECSS-M-ST-10C].

control, power supply, attitude control, data handling).
The ground segment typically consists of control centres, along with the com-

munications systems. The control centres operate the space segment in order to
fulfil the mission. Since the space segment is not always directly within commu-
nication range from a single location on Earth (e.g. on the other side of the Earth),
the larger space faring nations maintain an extensive communications network
across the globe which relays commands from a central control centre.

Within the scope of this dissertation, the spacecraft in the space segment are
typically of greater interest. The technical requirements for spacecraft have de-
manding requirements as they have to function in a harsher and more alien envir-
onment. Additionally, they cannot be serviced/repaired easily by physical human
intervention.

2.1.2 Systems Engineering Life-Cycle

The typical life-cycle of a space system is depicted in Figure 2.2. It shows that the
life-cycle starts in phase 0, which is mission analysis. During this phase, needs are
analysed and a mission outline is characterised, along with its expected perform-
ance and the required technological resources. The end of phase 0 is marked by
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a mission definition review (MDR). Afterwards, during phase A, the feasibility is
analysed. Management plans, engineering plans and assurance plans are set up,
and the functional aspects are characterised. Critical technologies are identified.
System and operation concepts are crafted, including a design philosophy and a
verification approach. The programmatic risks are also charted. The end of phase
A is marked by a preliminary requirements review (PRR). In phase B, all plans and
schedules are finalised. Trade-off studies are conducted to determine the preferred
system and operation concepts. Afterwards a preliminary design of the system is
defined, along with a refinement of its requirements. The initial reliability and
safety levels are assessed, and the risk assessments are updated. Two milestones
are present in phase B, namely the systems requirements review (SRR) and the
preliminary design review (PDR). When this point is reached, the system require-
ments and functions are elaborated, technical and programmatic constraints are
identified, activities and resources are properly planned and scheduled, and the
risks are assessed. The results described in this dissertation apply in particular to
phase B.

For the sake of completeness, the remaining phases shall be shortly described.
In phase C, the detailed definition phase, and phase D, qualification phase, com-
prise the development and qualification activities. The milestones in these phases
are the critical design review (CDR), qualification review (QR), acceptance review
(AR) and operation readiness review (ORR). Phase E, the operations and utilisation
phase, is generally the most cost-expensive phase. It comprises of space launch,
commission and utilisation of the space system. The milestones are the flight
readiness review (FRR), launch readiness review (LRR), commissioning result re-
view (CRR) and end-of-life review (ELR). In phase F, the disposal phase, the space
system is safely disposed and a mission close-out review (MCR) is held.

This phased approach along with the review meetings are present to control
change, risk and work division from a programmatic perspective. In the next
subsection, it will be described how verification and validation is used to con-
trol technical change, risk and work division, and how this impacts the system
engineering life-cycle.

2.1.3 Technical Risks

Spacecraft face specific hazards, for which no consideration is needed if such a
system would only be used on Earth. The hazards, and their associated risks,
depend heavily on their mission profile, and thus between space missions, hazards
may vary widely. In this subsection, the hazards are summarised, providing a
justification for the commonly used verification and validation methods that are
described later on.

A spacecraft needs to be launched with a launch vehicle (i.e. rocket). During
the first minutes of launch, the spacecraft is under enormous mechanical stress.
Vibrations, shocks, heat and the transition to vacuum are typical for all launchers,
and need to be coped with. Once the launcher reaches the aimed orbit, the space-
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craft is separated from the launcher using a separation mechanism, which needs
to operate while being sufficiently rigid to handle the launch hazards.

Deeper in space, the Earth’s gravitational pull weakens and other gravitational
forces may apply (e.g. by the Sun, Mars, Moon). These conditions are difficult
to mimic on a grand-scale on Earth. Mechanical system behaviour needs to be
designed appropriately. In low Earth orbits (LEO), spacecraft may experience
atmospheric drag, which affects attitude and could shorten orbital lifetime. This
may need countermeasures. Then there are thermal issues. Spacecraft in general
operate in the coldness of space, and appropriate measures need to be taken to
handle that. Spacecraft that go close to the Sun on the other hand experience
intense heat on their Sun-facing side, whereas the other side might be extremely
cold. Additionally, spacecraft might experience issues due to radiation and charged
particles (e.g. plasma effects). Such issues do not emerge on Earth due to the
presence of a strong magnetosphere.

Another class of issues are due to the sheer size of space, and that the laws of
physics apply on a larger scale. On deep space missions, the long distance between
Earth and the spacecraft impair constraints on communications. It might takes
many minutes to have a signal reach a spacecraft on Mars up to hours to reach
a spacecraft near Pluto. Bandwidth might also be an issue. Missions requiring
lots of bandwidth (e.g. telescopes) could use high-frequency bandwidths, but this
increases power usage of the radio. These issues are not of much concern on Earth
due to its small size and its abundance of power generation facilities.

2.1.4 System Verification & Validation

The terms verification and validation are often used in one breath, indicating
the need for increased understanding of the system (under design), and thereby
decreasing programmatic risk by knowing the technical risk. Different engineering
branches throughout different industries have developed varying interpretations
and definitions for these terms. Within the European space industry, the following
definitions from [ECSS-P-001B] are used:

• Verification is the “confirmation through the provision of objective evidence
that specified requirements have been fulfilled.”

• Validation is the “confirmation through the provision of objective evidence
that the requirements for a specific intended use or application have been
fulfilled.”

Essentially, these boil down to respectively “did we build the system right?” and
“did we build the right system?”. The distinction is important, because verifica-
tion emphasises correctness with respect to the requirements, whereas validation
emphasises correctness with respect to the stakeholders intents. Both are needed.
Requirements could be incorrect, and stakeholders intents cannot be checked at
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each phase in the development process. Note that the stakeholder(s) could be dif-
ferent persons in the process. For example, for ground control software, a software
engineer can consider the satellite operator as the stakeholder, whereas the system
engineer might consider the mission program manager as the stakeholder. These
perspectives impact the choice of verification and validation methods.

Planning

Figure 2.2 might suggest that verification (and validation) activities are performed
during production and especially afterwards, to assess the quality of the system
implementation. This is its traditional scope. For critical systems however (e.g.
space systems), the risks are too high for a single verification and validation cycle.
That is why verification and validation activities are performed throughout its
whole life-cycle (see Figure 2.3).

The verification and validation activities in each phase differ depending on the
foreseen available system artefacts. During phase A for example, emphasis is put on
requirements validation, whereas in phase B, emphasis is put on model validation.
During phase D however, emphasis could be put on integrated verification. Also
the granularity of activities can vary. For example, a verification and validation
campaign for a processor module differs much from that of a thermal subsystem.
All activities are tailored based on needs and expectations.

The outputs of verification and validation activities are usually reports, verifica-
tion matrices and traceability tables. The latter two are used to verify completeness
of the verification and validation activities. The outputs are used to refine existing
plans, like the schedule and allocated resources (e.g. manpower, test-facilities) for
upcoming verification and validation activities due to the increased understanding
of the system. It is also used to revise the system design, the requirements or the
mission profile, depending on whether that aligns with the stakeholders intents.
In the end, these activities aim to increase understanding of the system and basing
informed decisions on that knowledge.

Within this dissertation, the early verification and validation activities, i.e.
those during phase A and B, are of particular interest. Decisions made during
these phases have great impact on the subsequent phases. Using our formal mod-
elling and analysis techniques, we argue that an increased understanding of the
system can be gained upon the existing approach of verification and validation.

Methods

Verification and validation activities are performed on system artefacts from which
statements about the eventual flown system can be derived. Roughly speaking,
we distinguish three categories of system artefacts, namely documents, models
and implementations. Documents are printable artefacts that describe (usually
in prose-form) a particular aspect of the system. It could for example describe
requirements, justifications, utilities, trade-off, sizing, feasibility analyses, compli-
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Figure 5-7: Example of verification process phasing with the project life cycle Figure 2.3: Example phasing of verification activities in the systems engineering lifecycle. Only the verification activities are
shown here. A similar planning can be made for the validation activities as well. Source: [ECSS-E-HB-10-02A].
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ance matrices, source code, mission diagrams, etcetera. A model is an artefact that
represents (a part of) the system implementation, but is not the system itself. It
can be either virtual, physical or both. Virtual models are intangible, and can for
example be acoustic models, thermal models, software designs, hardware designs.
Physical models are tangible, and can for example be hardware circuits, structural
model, material models and scaled prototypes. A model can be both, if for ex-
ample a software design is simulated on a hardware circuit (e.g. system-software
co-design testing). Implementations are (parts of) the system itself, but not neces-
sarily the system that will be flown. Multiple implementations may be produced,
whereas one could be dedicated for extensive verification and validation, and an-
other (lighter verified and validated) one could be used for the mission itself. This
is to avoid possible wear on the latter system, which could be critical to the mission.
Multiple implementations could also exist for keeping spares.

In the European space industry, four methods are distinguished for verifying
and validating system artefacts. These are: review of design, inspection, analysis
and testing. These following definitions are from the ECSS standard on verifica-
tion [ECSS-E-ST-10-02C].

• Review of Design: A method typically used for verification where one checks
whether “approved records or evidence that unambiguously show that the re-
quirement is met. Examples of such approved records are design documents
and reports, technical descriptions and engineering drawings”. Requirements
suitable for this method of verification are typically phrased existentially, e.g.
“. . . shall have a monitoring device . . . ”.

• Inspection: This method consist of “visual determination of physical charac-
teristics”. Examples of physical characteristics are dimensions, but in prac-
tice may also include virtual characteristics, like software coding standards.
Requirements suitable for this method are typically phrased physically or vir-
tually quantifiable, e.g. “. . . shall be following C99 standard conventions . . . ”
or “. . . shall be 8 cm . . . ”.

• Testing: This method is the predominant method for verification and valid-
ation, and it is defined as “measuring product performance and functions
under representative simulated environments”. Requirements suitable for
this requirement are typically quantifiable, e.g. performance or physical
quantities, e.g. “. . . shall be less than 36 V at DC . . . ” or “. . . shall sustain 40
Hz vibration for at least 3 seconds . . . ”. Typical tests for space systems are
fit checks (for dimensions), pressure/leakage tests, electro-magnetic com-
patibility tests, mass checks (to stay within the range of launcher capabil-
ities), shock tests, vibration tests, acoustic tests, separation tests, thermal
cycling tests (for heat/cold differences) and vacuum tests. Venues contain-
ing the equipment to simulate space environments are for example avail-
able at ESTEC where these, typically costly, tests are performed. Also at a
higher-level tests are conducted, often for system validation. Typically the
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philosophy at this stage is “test as you fly, fly as you test”. Particular tests
are end-to-end information system testing, where the compatibility of the
spacecraft information systems with those of the ground segment is tested.
Mission scenario tests are conducted, to test whether the flight hardware and
software can execute missions under nominal conditions. Operations readi-
ness tests are typically conducted for checking whether the ground segments
work according to the mission plan, and a launch sequence is simulated to
test whether the spacecraft is compatible with it. Additional stress testing
and simulations are performed to check full system behaviour during simu-
lated non-nominal conditions, and to inform the spacecraft operator on them
and on possible mitigation approaches.

• Analysis: This method consists of “performing theoretical or empirical evalu-
ation using techniques”. Examples are statistical, quantitative and qualitative
analyses. Requirements suitable for this method are typically phrased prob-
abilistically and/or behaviourally, e.g. “. . . shall have a probability of . . . ”
or “. . . shall be designed to . . . ”. Certified analysis methods are typically
preferred. With analysis, typically models are involved, and these need to be
verified beforehand. The use of a particular analysis needs to be justified as
well, e.g. whether it delivers accurate and adequate results and whether test-
ing would not be cost-effective. Due to the theoretical or empirical nature of
the analysis, boundary conditions and assumptions need to be clearly stated
and the analytic uncertainty must be taken into account.

There exists a plethora of analysis techniques, each historically developed
for a particular engineering discipline and scope. In this dissertation, the
ones that analyse technical risk are a core topic. Three dominant techniques
for safety-critical systems are fault tree analysis [ECSS-Q-ST-40-12C], failure
modes, effects and criticality analysis [ECSS-Q-ST-30-02C], availability ana-
lysis [ECSS-Q-ST-30-09C] and probabilistic risk analysis. These analyses are
further elaborated in Chapter 4, where a formal approach towards them is
defined.

2.1.5 Applicable Standards

For the European space industry, the management aspects of the space system
life-cycle are defined in the M-10 series of the ECSS standards, whereas the engin-
eering aspects are captured by the E-10 series. They ought not be followed literally,
but tailored to the mission. The verification aspects are codified in [ECSS-E-ST-10-
02C], and a set of guidelines that accompany these are defined in [ECSS-E-HB-
10-02A]. As testing is the predominant method for verification and validation, a
standard is dedicated to it [ECSS-E-10-03A]. In addition to these general verific-
ation and validation standards, there are several E-10 standards describing test
methods tailored to specific subsystems.
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Outside the European space industry, several standards exist that were formed
through different heritages. NASA for example has its system engineering practices
defined in its Systems Engineering Handbook [NASA/SP-2007-6105]. It is similarly
constructed as its ECSS counterpart, and tends to differ mostly in terminology
and the division of phases. With regard to verification and validation, NASA’s
requirements on that area are codified as part of the overall requirements on the
systems engineering process [NPR 7123.1A]. With regard to safety specifically,
NASA’s counterpart of [ECSS-Q-ST-40C] is [NASA/SP-2010-580]. For probabilistic
risk assessment NASA developed a procedures guide [NASA/SP-2011-3421] for its
managers and practitioners. The US Department of Defense (DoD) maintains a set
of practices [DoDI 5000.02] of which one part specifically reflects application to
space [DTM-09-025].

2.2 Software Engineering

In the early days of the space-age spacecraft were highly mechanical and electronic
in nature. Nowadays however, equipments tend to evolve to digital interfaces and
the whole spacecraft becomes heavily computerised. Software plays an important
role now. The most advanced spacecraft have software on-board that was com-
piled from millions lines of code (e.g. ESA’s Automated Transfer Vehicle). The key
reason is that digital interfaces, micro-processors and software can realise unpre-
cedented functionality, allowing for highly demanding missions where automation
and precision are driving mission success factors.

2.2.1 Software Uses for Space Missions

The acquisition of knowledge through data is a key objective for many space mis-
sions. The first uses of software were therefore in the data handling systems, both
on-board and on the ground. On-board the spacecraft, the data handling system is
responsible for managing, storing and processing all payload data, telecommands
and telemetry. It is the interface with which the operator controls the spacecraft.
The data handling system is at the same time also the interface through which
mission data is retrieved. This data, e.g. from the Hubble telescope to Earth obser-
vation satellites, are vital and once transmitted to ground, are processed, stored,
backed up, formatted and organised through a ground information system. Data
integrity is of utmost importance here.

Spacecraft are furthermore equipped with a plenitude of control software.
Launchers for example rely on guidance, navigation and control software for much
of their mission lifetime. Satellites on the other hand require attitude and orbit
control software. Software is also used for controlling power systems, thermal
regulation systems and communication systems. Functional correctness of the
software is of utmost importance for these applications.
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Figure 2.4: Typical software development process within the systems engineering
life-cycle. Source: [ECSS-E-ST-40C].

The increase of a spacecraft’s autonomy is typically realised through software.
For deep-space missions, autonomy could be a necessity due to short communica-
tion windows and communication delays. Autonomy is also used to reduce costs,
most particularly on the cost of operating the spacecraft. This holds in particu-
lar when constellations of spacecraft are deployed for the realisation of mission
objectives. A special and prevalent type of autonomous functionality is that of
fault management, also called fault detection, isolation and recovery (FDIR). This
kind of functionality is predominantly realised using software, and manages the
system during non-nominal operation and aims to preserve the system assets (e.g.
crew, equipment) during anomalous conditions. These conditions are typically
incurred by system failures or by the environment. Depending on the mission
profile, this kind of software provides service to these conditions, with varying
aims, like resuming nominal operations to mere system safing. The critical nature
of fault management systems tend to make them worthwhile to model and analyse
formally, and a section dedicated to such systems is found in Section 2.3.

2.2.2 Software Engineering Life-Cycle

The space software development process is depicted in Figure 2.4. It shows the
software-related activities with respect to milestones of the systems engineering
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Figure 2.5: Typical software engineering activities in the space domain.
Source: [ECSS-E-ST-40C].

life-cycle, e.g. systems requirements review, preliminary design review, critical
design review, qualification review and acceptance review. The activities are
numbered and refer to sub-activities depicted in Figure 2.5. It shows that the
space software engineering life-cycle resembles common software engineering life-
cycles with two exceptions. The main exception is the elaborate verification and
validation process due to the inherent safety-critical nature of the system under
development. The second exception is that the requirements often express interac-
tion constraints with the system, i.e., the system-software co-engineering aspect.
For regarding spacecraft, software on its own is rarely the end-product, but part of
an overall system. The requirements defining the interaction between the system
and software are thus crucial as input to software engineers, as well as the verific-
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ation and validation of the combination. For this reason, software requirements
engineering (and hence its development) is typically initiated before the system
requirements review. If it were initiated even earlier, insufficient information about
the system under development is available, rendering software design/require-
ments decisions to volatility. During qualification review, it is expected to have
the software functioning. This means that the full space software development
life-cycle is compressed in between. On top of that, the system requirements and
design are still maturing in between, possibly affecting software requirements and
design. Managing these co-engineering issues effectively is crucial for on-budget
and on-schedule system delivery.

2.2.3 Software Considerations

The increased use of software results in an ever growing code base and code
complexity. The first space systems in the 1960-1970 comprised only a few dozens
lines of code. A decade later, the typical software size was around a few thousands
lines. Nowadays, the software code base size goes into millions lines of code, and
the trend is that this number grows exponentially [Dvo09]. The number of failures
in aerospace systems related to software increased exponentially as well [Hec07].

The increase of the code size and complexity has spurred rapid innovations
in this field. The consequence of this however is a less long-lived heritage of un-
derstanding costs, management and technology related to software. Furthermore,
once a software technology has matured, its technological superiority is likely sup-
planted by a novel software technology. Novel (software) technology typically
comes with a novel approach of its use. This makes management of software by
similarity with previous software development projects less obvious.

Verifying software exhaustively is difficult and costly, due to the combinatorial
nature of the offered software functionalities. Software is also easily modifiable,
tempting engineers to restrict the design space on hardware while leaving design
solutions open on the software-side. The margins left for software are however not
physical in nature: whereas a physical component might allow for a few millimetres
in size as a margin, a relaxation of a (combination of) software conditions easily
leads to unaccounted software behaviours. Due to the software’s flexibility, it has
become increasingly acceptable for the final version of the software to be uploaded
to the spacecraft while it is already launched into space. This provides for more
time to have the software mature. Yet, it also adds more risk, as the final system
configuration including its software is not verified and validated completely before
launch, putting more pressure on getting the software correct.

Last but not least, software has become pervasive in every aspect of the space
mission. Software is used in nearly all spacecraft’s subsystems, necessitating com-
plete and unambiguous system-software interaction requirements. In practice how-
ever, the system requirements are maturing during system development. Changes
to those requirements can impact existing software interface requirements. To
compensate for this, software engineers assume a wide-range system behaviours,
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whereas only a subset of it might be feasible. This especially holds for handling
non-nominal operations of the spacecraft. On the other side, hardware engineers
tend to assume software is correct by design, which leaves no margins for software
glitches. On top of this, the software parts in the spacecraft’s subsystems do not
behave in isolation, but communicate heavily, allowing subsystems to account for
other subsystems behaviour. This pervasive and interconnected nature require a
holistic perspective of the system and the software, rather than reason about them
in isolation. These issues are considered the prime system-software co-engineering
issues.

2.2.4 Software Verification & Validation

Software is perceived as a component of the system to meet system objectives.
From this perspective, the stakeholders of the software are not the same as that
of the system. Instead, the stakeholders of the system are typically those who
build the system. In this respect, software validation means checking whether
it meets its requirements with respect to the system, i.e. checking the require-
ments baseline, and the requirements scoped purely to the software itself, i.e.,
the technical specification. Software validation is hence on checking the software
behaviour.

Software verification therefore is not about checking its correctness with re-
spect to “the” requirements, but rather to confirm whether specifications and inputs
are adequate for every software development activity, and that the outputs are cor-
rect and consistent with the specifications and inputs [ECSS-E-ST-40C]. Software
verification is hence on verifying artefacts of the software development process,
rather than the software itself.

Planning

Before the system requirements review (SRR), the software related system require-
ment process (activity 5.2 of Figure 2.5) is started. The outputs of this process are
the functional and performance requirements baseline (RB) for the software, and is
the link between the system and the software. It captures the intents of the system
engineer. During establishment of this baseline, early verification and validation
activities are performed on both the system requirements and the requirements
baseline.

After the system requirements review, software development starts with the
definition of the software requirements, i.e. the technical specification (TS), and
the software architecture. At this point, software validation is performed on the
technical specification by checking it against the requirements baseline. After-
wards, during detailed design and implementation of the software, the validation
against the requirements baseline is recurring, depending on the needed level of
assurance. Once the technical specification has matured, which is typically in the
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early design and implementation process, the software is validated against the
technical specification as well.

Due to the objective of software verification, the activity itself occurs through-
out the majority of the software engineering life-cycle. It checks before and after
the software activities whether their inputs and outputs are correct and consistent.

Methods

A plethora of methods exists for verifying and validating software, and these meth-
ods are typically used in a particular phase of the software engineering life-cycle.
Depending on the situation, methods are also used outside their typical phase.

For early verification and validation of requirements, a typical method is test
case generation. This forces system and software engineers to reason over the
requirements and recognise weaknesses early. Especially the boundary conditions
are of interest. Bidirectional traceability is used to ensure that all requirements
and all components are interrelated. Rapid prototyping is used to deliver tangible
results early, allowing for early feedback by stakeholders. In extremely critical
cases, software requirements are simulated with hardware in the loop.

During architectural and detailed design, reuse analysis is used to determine
suitability of adapting existing software to a new mission. Complexity measures
can be employed, to check whether the software architecture and detailed design
do not grow beyond the intended size. Viability analysis can be used to check
whether the software architecture and/or detailed design provide sufficient func-
tionality and information permitting the software validation engineer to enact
on its activities. Prototyping for qualities does not focus on meeting observable
behaviour, but on its inner qualities, like reliability and performance. Artefacts
generated by this kind of prototyping are then subjected to analysis. Formal veri-
fication is used to check in a semantically rigorous way whether requirements
by the technical specification and requirements baseline are met by the software
architecture and design. It is the emphasized method in this discourse.

During the implementation process, the software becomes shaped in the form
of source code. Inspections can then be performed, checking for example whether
development conventions are met. Continuous integration is typically performed
to check compatibility of separate software components, and understand early
integration issues. Static analysers are used to check the source code on common
semantic errors. Software operational resource assessment monitors the use of
resources by the software, and checks whether they stay within specified bounds.

After implementation follows validation and qualification. Coverage analysis
checks whether test cases exist for every path through the code base. In practice,
full path-coverage is achieved only on parts of the software. Independent testers
are invoked in this phase, as they tend to test the software with different assump-
tions that the software developer did. Differential testing can be performed if a
reference software implementation exists, and results can be compared. Bound-
ary testing is a simulative technique which drives the software implementation
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to boundary conditions, and observing how the software behaves. Non-nominal
behaviour of the system is checked as well, and random reboots can be injected, as
well as hardware failures to see how the software reacts to such situations. Multi-
tasking overload tests can be conducted if the software is required to performs
multiple activities in a scheduled order, and performance of these tasks are critical.
Long-levity tests can be performed to see how software behaves over extended dur-
ations. Performance degradation due to memory leaks can for example be spotted
this way.

Before flight, the software image is checked for corruptions and its authenticity.
If the software is upgradable, the upgrade mechanism is tested too. The software
is also validated through end-to-end information system testing, mission scenario
testing and operational readiness tests.

The list of aforementioned methods is not exhaustive, and its use is not en-
forced. The choice and use of methods are dependent on the amount of acceptable
risk.

2.2.5 Applicable Standards

In the European space industry, the standard on software in the ECSS engineering
series [ECSS-E-ST-40C] describes the requirements and principles related to all
software. Verification and validation aspects of software are part of the ECSS’s soft-
ware product assurance standard [ECSS-Q-ST-80C]. In addition to these standards,
there are three ECSS handbooks related to software, namely one on the reuse of
software [ECSS-Q-HB-80-01A], one on software process assessment and improve-
ment [ECSS-Q-HB-80-02] and one on software dependability and safety [ECSS-Q-
HB-80-03A].

At NASA, its equivalent of ECSS’s software engineering standard is its soft-
ware engineering requirements [NPR 7150.2A]. For software safety, NASA issues
a guidebook [NASA-GB-8719.13] that complements the aforementioned require-
ments. The guidebook is not only on safety, but treats a wide area of topics that
affect safety, like reuse and process improvement.

2.3 Fault Management Engineering

A huge engineering problem which inspires academia is that of fault management
engineering. We define this branch of engineering as “the use of a cooperative
design for flight and ground elements (including hardware, software, software, pro-
cedures, etc.) to detect and respond to perceived spacecraft faults . . . It provides
the ability for the spacecraft to detect, isolate and mitigate events that impact, or
have the potential to impact nominal mission operations. This capability might be
distributed across flight and ground systems, impacting hardware, software, and
mission operation designs” [Fes+09]. It is traditionally perceived as an instance
of software engineering, as the resulting engineering solutions are predominantly
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software-oriented. The methods offered by space software engineering however
do not suffice. The current space software engineering approach is generally
well-suited for engineering software for nominal behaviour. For non-nominal beha-
viour, which is covered by fault management systems, an additional set of unique
problems upon those by software engineering are associated that have various
dimensions. There is no convergence of terminology, little reusable heritage, no
generalised life-cycle and processes, no distinct engineering responsibilities, little
recognition and emphasis, no relevant metrics, no tools and no sound principles
for fault management engineering. As a result, there are currently no mature
industrial engineering approaches. In this section we discuss the most stringent
problems, for which we argue that our methods and tools tackle a part of it. These,
and the non-technical issues, which are left out of scope of this dissertation, are
now an active field of research and development.

2.3.1 Terminology

As no common interpretation for fault management terminology has converged,
we start with defining the terminology we use. It is aligned with the interpretation
described in the recently developed taxonomy by NASA [Fes+09]. We believe those
interpretations are the foundation for future fault management engineering efforts
in the United States of America, and potentially globally.

A failure is an undesired effect, typically characterised by the violation of a
nominal (system) requirement. The cause for a failure is called a fault. Failures and
faults are typically intrinsically related through varying perspectives. For example
a system can fail due to a faulty power supply. The failure of the power supply is
due to a fault in both the batteries and the solar panels. A single event, e.g. the
navigation computer is underpowered, is both a failure and a fault depending on
the perspective, e.g. respectively the power subsystem and the system. Hence a
failure is identified by the effect, whereas a fault is identified by the cause. Then
there are errors. Those are discrepancies between a desired and estimated state.
An error can be the fault for a failure, or a failure itself if the discrepancy is a
violation of a nominal requirement. It can also be neither a fault nor a failure,
since an error does not necessarily have undesired effects, nor does it is necessarily
cause them. Propagation is another particular aspect to fault management. Error
propagation is a trace of states in which each state contains an error. The trace
captures a causal relation between those errors. Failure propagation on the other
hand is defined from a requirements-perspective: it is a chain of faults and failures,
where each fault is the cause for another failure. This is typically chained up to a
system failure.

Fault management itself is often referred to by different terms, as Redundancy
Management, Fault Protection Management, Health Management, Failure/Fault
Detection, Isolation and Recovery (FDIR), Fault Detection, Response, Isolation and
Recovery (FDRIR), Failure Detection, Isolation and Safing (FDIS). In this disser-
tation the term fault management will be used, even though failure management
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would be a more precise definition. This is intentionally, to have the terminology
in this dissertation aligned with NASA’s taxonomy.

2.3.2 Necessity of Fault Management

Fault management is an issue that emerged with particular mission profiles. For
decades, most spacecraft did not go further than Earth orbit. Advanced forms of
fault management were not considered for these kind of missions. The emphasis
of these spacecraft was put on safing, which is the principle of ensuring the space-
craft’s survival and allowing the operator to intervene. Such mechanisms have a
relatively low complexity, as only failure detection mechanisms have to be put in
place.

With deep-space missions, stringent issues with fault management became
more apparent and trending. Operator intervention is not always an option due to
the communication latency, as a spacecraft could fail permanently during the delay.
Also with missions involving highly accurate orbits or trajectories, like navigation
signals or particular scientific missions, may have higher demands on mitigation of
failures. The fault management system in such systems typically acts as a passive
controller of a hybrid system (the spacecraft’s nominal subsystems). It is passive
since is only intervenes when non-nominal behaviour is detected.

Inadequate fault management has led to mission failures in the past. Adequate
fault management has also saved missions. It therefore is a necessity for a multi-
tude of mission profiles.

2.3.3 Issues with Industry Practices

Issues with fault management engineering have been observed and recognised
regardless whether the organisations involved were commercial or governmental.
These issues, manifesting differently across organisations, appear to be systemic,
and are due to an intertwining of issues. This section addresses the main techno-
logical, life-cyclic and organisational aspects of these issues. The contents is an
extract from NASA’s report on the first Fault Management Workshop [Fes+09] and
infused with our experience from our research visits to ESA.

Technologically, fault management systems are complex, and they come with
the issues of system-software co-engineering and more. The functionality provided
by fault management systems is not isolated to a particular subsystem, but ad-
dresses all parts of the system and at all its levels, e.g. system, subsystem, equip-
ment, component and parts. Yet, in the current practice, projects tend to focus
on getting nominal behaviour right first, after which non-nominal behaviour is
considered. The solutions are engineered as such that they can be “bolted” on
the nominal system while meeting (or even exceeding) fault management require-
ments. More elegant solutions that require an intimate symbiosis of nominal
and non-nominal design aspects are rejected, to avoid change of a reviewed and
approved nominal system. Due to this, engineers typically have the gut-feeling
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that the resulting system is overly designed with fault tolerances that exceed the
threshold of the mission risk profile. Furthermore, during operations, the added
complexity due to over-design complicates satellite operation, especially when non-
nominal situations arise. Capturing this degree of complexity is additionally made
difficult due to the lack of standard terminology, interpretations and expressions
means. Terminology and interpretations on fault management tend to be different
throughout organisations, and even within organisations, conflicting interpreta-
tions exist for the same term. This manifests itself during milestone reviews and
discussions. Additionally, there is no commonly agreed approach towards express-
ing fault management aspects, such as its architecture, behaviour, processes and
analyses. The current expressions lack formalisation and rigour, adding more con-
fusion that impose delays on the overall review process. Current methods also lack
suitable tools that effectively support the design and analysis of fault management
systems, resulting in a cumbersome process.

It is yet unclear how the fault management engineering life-cycle should look
like, and how it should fit into the systems engineering life-cycle. There are no
good generalised principles and no solid methodologies. This leads to ad-hoc
engineering of solutions. There is also a lack of usable metrics to evaluate (inter-
mediate) fault management artefacts on desirable qualities, like risk, complexity
and performance. Especially metrics for functional aspects, like diagnosability,
testability, usability and maintainability are lacking. Furthermore, the responsib-
ilities and division of tasks are unclear, leading to a lack of ownership. Currently,
the system engineer typically takes care of fault management issues as a side job.
However due to the lack of priority for addressing non-nominal behaviour, fault
management issues are not addressed at the right moment in the engineering life-
cycle. The issues are then addressed too late. This impacts resource allocation,
as unforeseen additional facilities, equipment and trained personnel have to be
procured. This typically occurs during system integration and testing, where the
overall system, including its fault management system, is pushed towards failure.
More issues than initially estimated, budgeted and resolution time scheduled are
the result. Generally, the fault management engineering life-cycle, as far as it is
present, lacks continuous process improvement with respect to its verification and
validation. Lessons learned earlier in the life-cycle are insufficiently leveraged to
update verification and validation procedures in upcoming phases.

There are additionally issues with the perception of fault management within
organisations. It typically lacks sufficient recognition at phases where it should.
Especially at mission-level, fault management requirements and their impact to
the system are not assessed and elevated to the appropriate levels of manage-
ment. Furthermore, the issues are not tackled with the discipline and rigour it
requires. This is due to the lack of trained personnel capable of dealing with fault
management issues. Besides trained engineers, awareness is not fostered by man-
agers, who tend to prioritise costs and risk different throughout the engineering
life-cycle. Early in a project, the costs are prioritised, whereas later on, (avoidance
of) risks are emphasised. This is especially visible when different organisations
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are involved in the project. Governmental organisations tend to design against
possibility, whereas commercial organisations tend to design against probability.
Varying attitudes towards fault management like this cause friction.

These issues combined can jeopardise the mission’s readiness for launch. For
planetary missions, launch opportunities are very hard deadlines. Budget overruns
are caused to procure additional resources for overcoming the issues within time.
Budget overruns however impact the ability to control costs and to fund new
missions. It is therefore desirable to mature the engineering of fault management
systems from all its dimensions. In this dissertation, we argue that our methods
tackle a substantial part of the technological issues.

2.3.4 Applicable Standards

Fault management engineering has not matured yet to such a degree that standards
on this topic exist. In existing ECSS standards, its issues are often briefly referred
to as a concern to be dealt with. For example, in [ECSS-E-ST-10C], the existence
of a fault management system (referred to as FDIR), is mandated. The same holds
for [ECSS-E-HB-60A; ECSS-E-ST-20C; ECSS-Q-HB-80-04A]. In the standards on
dependability [ECSS-Q-ST-30C] and modelling & simulation [ECSS-E-TM-10-21A],
a few notes on fault management are mentioned that affect the topics covered
by those standards. The space segment operability standard [ECSS-E-ST-70C]
is more elaborate. It describes in six pages the FDIR-paradigm as an approach
to fault management and a few technical issues that require consideration. The
handbook on software dependability and safety [ECSS-Q-HB-80-03A] covers fault
management issues as well, along with solutions, from a software perspective.

At NASA, fault management issues were encountered in nearly all their mis-
sions. In April 2008, a workshop was hosted where fault management practitioners
came together, and formed a white paper on their findings [Fes+09]. Since then,
resources were allocated to form a working group on fault management under
the auspices of the Office of NASA’s Chief Engineer, which led to the development
of the NASA Fault Management Handbook [NASA-HDBK-1002]. At the time of
writing this dissertation, we obtained an early draft of this handbook. It aims to
systematically resolve many issues faced with fault management engineering, with
in particular the life-cycle and organisational aspects.
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Formal Architecture Modelling

To support system-software co-engineering, and especially fault management en-
gineering, we argue that it is crucial to aim for completeness and unambiguity
of the design artefacts (i.e. requirements and early architecture design) that con-
strain the system-software boundary. Furthermore, we argue that if they are spe-
cified with sufficient formality, then safety and dependability artefacts can be
automatically derived from it. This enables early verification & validation results
to system, software, RAMS and fault management engineers to quickly grasp the
consequences of design choices at early engineering phases. Cornerstone of our
approach is the modelling language, christened the System-Level Integrated Mod-
elling Language (SLIM). It can be perceived as a formalised dialect of AADL, the
Architecture and Analysis Design Language standardised by the Society of Automot-
ive Engineers. It is suitable for modelling the system under development during
early phase B, and especially before the system requirements review (SRR). Its
formal character naturally pushes engineers to explore and reason critically over
boundary conditions of the system’s behaviour, motivating one to resolve issues
early. This avoids the risk of underspecification and ambiguity that comes with
it. Challenging is however to ensure that our modelling language is usable by
focussing on architectural and behavioural detail without the need of capturing
implementation-specific detail. Its notation needs to be attractive to engineers, and
equally important, it needs to fit in the space systems engineering life-cycle.

3.1 Nominal Behaviour

The nominal part of SLIM is inspired by AADL 1.0 [SAE-AS5506], and in fact can be
considered to be its extended subset. This section overviews the offered constructs.
Later in the chapter, in Section 3.6, the differences between SLIM and AADL are
discussed. Throughout this chapter, a running example of a battery-powered power
system is used to exemplify the modelling language. Note that throughout this
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section, the exact syntax and syntactic restrictions are omitted, as this dissertation
emphasises the semantics. A complete description of the syntax and its restrictions
can be found in [Nol11b].

3.1.1 Structure

Components are first-class entities over which the engineers reason. In SLIM, they
are reflected by a component type and one or multiple component implementa-
tions.

A component type describes the externally visible characteristics (i.e. inter-
face) against which other components operate. In Listing 3.1, the Battery type
is described as having three features, which are ports along which information is
exchanged between components. The three features are an empty event, an input
data port named tryReset and an output data port named voltage that has the
initial value of 6.0. Ports are elaborated in Section 3.1.2.

Listing 3.1: Component type of a Battery.

1 system Battery
2 features
3 empty: out event port;
4 tryReset: in data port bool default false;
5 voltage: out data port real default 6.0;
6 end Battery;

Whereas component types describe what a component communicates, com-
ponent implementations describe how a component communicates. It does this
by defining its internal structure in terms of subcomponents, and how the inter-
action with the component’s environment occurs along the ports defined by the
component type. An example component implementation of a battery is shown
in Listing 3.2. It contains details like modes which are discussed in subsequent
subsections.

Part of the internal structure of a component are its subcomponents. These
subcomponents can be either internal data (e.g. the subcomponent energy in List-
ing 3.2), or instantiations of other component implementations. The component-
subcomponent relation gives rise to a component hierarchy, where the root com-
ponent reflects the overall system, and the leaves the atomic components of which
the system is composed. An example of this is shown in Listing 3.3, where a power
system is composed of two battery components and a monitoring component.

In SLIM, component types, and their associated component implementations,
are associated with a category which can be either hardware, software or a com-
posite. Hardware categories are processor, memory, bus, and device. Software
categories are process, thread group, and thread. A composite component is
categorised as a system. This distinction can be used to clearly identify the system-
software boundaries. Akin to AADL, SLIM allows to define bindings between the
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Listing 3.2: Component implementation of a Battery.

1 system implementation Battery.Imp
2 subcomponents
3 energy: data continuous default 1.0;
4 modes
5 charged: activation mode while energy' = -0.02 and
6 energy >= 0.2;
7 depleted: mode while energy' = -0.03 and energy >= 0.0;
8 transitions
9 charged -[then voltage := 2.0* energy + 4.0]-> charged;

10 charged -[reset when tryReset]-> charged;
11 charged -[empty when energy = 0.2]-> depleted;
12 depleted -[then voltage := 2.0 * energy + 4.0]-> depleted;
13 depleted -[reset when tryReset]-> depleted;
14 end Battery.Imp;

system-software boundaries, indicating that a process is stored in a particular
memory using the keywords stored in, that a process is running on a particu-
lar process using the keywords running on, or which bus is accessed by which
hardware components using the keyword accesses.

3.1.2 Communication

Ports are the visible entities for other components to communicate with. In SLIM,
we distinguish two types of ports, namely event ports and data ports. Event ports
allow for rendez-vous communication between components. An example of this is
the empty event in Listing 3.1. Event ports can be used as triggers between mode
transitions, which are discussed in Section 3.1.3. Data ports allow for exposing
information to other components. Ports are typed as either integer (i.e. int), real
(i.e. real), enumeration (i.e. enum), or boolean (i.e. bool).

Ports are either incoming (i.e. in event port or in data port) or outgoing
(i.e. out event port or out data port). Incoming ports represent the compon-
ent’s inputs, and the outgoing ports represent the component’s outputs. This
characterisation of ports affects the semantics of the enabledness of transitions (cf.
Section 3.4) if they are labelled with an event.

Port connections can be used to relay events and data through components.
A port connection between two incoming ports can for example represent the
delegation of an event to another component, whereas a port connection between
two outgoing ports typically represents exposure of information at lower levels of
the system hierarchy to its higher levels. An example of this is shown in line 12
of Listing 3.3, where a connections part is specified. It is also possible to specify
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Listing 3.3: Component type and implementation of a Power system.

1 system Power
2 features
3 alert: out data port bool observable;
4 end Power;

6 system implementation Power.Imp
7 subcomponents
8 batt1: system Battery.Imp accesses mybus in modes (primary);
9 batt2: system Battery.Imp accesses mybus in modes (backup);

10 mon: device Monitor.Imp accesses mybus;
11 mybus: bus Bus;
12 connections
13 data port batt1.voltage -> mon.voltage in modes (primary);
14 data port batt2.voltage -> mon.voltage in modes (backup);
15 data port mon.alert -> alert;
16 data port mon.alert -> batt1.tryReset in modes (primary);
17 data port mon.alert -> batt2.tryReset in modes (backup);
18 modes
19 primary: activation mode;
20 backup: mode;
21 transitions
22 primary -[batt1.empty]-> backup;
23 backup -[batt2.empty]-> primary;
24 end Power.Imp;
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a port connection between an outgoing port and an incoming port. This typically
represents communication between components where the receiving side directly
uses that information. It is possible to have multiple port connections targeting
the same incoming event port, indicating a fan-in of events. This is however not
possible for incoming data ports. It would be unclear which data source would be
used at a particular moment. Fan-out is possible for both event and data ports. It
is typically used to describe situations where information is broadcast to multiple
components.

Data port connections relay information verbatim instantaneously. For many
modelling cases, it is useful to relay processed information instantaneously. Flows
are used in SLIM to achieve this. A flow is an assignment that is applied continu-
ously. In Listing 3.4 for example, the flow defined on the outgoing port alert states
that it becomes true whenever the voltage drops below 4.5. Only incoming data
ports of the respective component, or the outgoing data ports of its subcomponents
are allowed to be referred. The left-hand side must be an outgoing data port of
the component, or an incoming data port of its subcomponents.

Listing 3.4: Component implementation of the monitor system.

1 device Monitor
2 features
3 voltage: in data port real;
4 alert: out data port bool;
5 end Monitor;

7 device implementation Monitor.Imp
8 flows
9 alert := (voltage < 4.5);

10 end Monitor.Imp;

3.1.3 Modes

Modes serve two intertwined purposes. One, to provide an abstraction of behaviour
of the concrete behaviour of a component and second, to provide anchors on which
system topologies can be defined, such that these can be changed dynamically
throughout the system’s life-time.

Regarding behaviour, modes describe the possible states in which a component
can reside. A change of component’s mode is achieved by a transition, which
is of the form m1 -[e when g then f]-> m2. The mode m1 is the source mode,
mode m2 is the destination mode. If an event e is provided, the transition is
either triggered externally if the event e is an incoming event port. If event e is
an outgoing event port, then it must rendez-vous with an incoming event port.
The guard when g is a boolean expression, which, when provided, only allows
the transition to occur if g evaluates to true. If the transition occurs, one or more
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transition effects, i.e. then f, may occur. Effects are assignments, denoting an
update of a data subcomponent or an outgoing data port. This is visible in the
transitions part in Listing 3.2.

The example also shows the annotation of modes with hybrid behaviour. This
behaviour is expressed through trajectory equations and mode invariants. The
trajectory equation describes how the valuation of the variable changes over time.
They are used for describing the evolution of a physical entity, like energy or
temperature. For example the trajectory equation energy' = -0.02 denotes that
the energy variable decreases its value by-0.02 every time unit. Mode invariants
are bounds to this behaviour. For example, the mode invariant energy >= 0.2
indicates that the system can only stay in the mode it is annotated to as long as
energy is larger or equal than 0.2. In SLIM, a data subcomponent of type clock is
offered which is a special case of hybrid behaviour where the slope of the trajectory
equation is simply 1.

Behaviour and structure are interrelated through mode dependencies, which
allow for dynamic reconfiguration of the system’s component hierarchy. Using
the clause in modes, port connections, flows and subcomponents are activated
only in those particular modes. An example of this is shown in Listing 3.3, where
the active battery’s ports are rerouted based on the current mode. The in modes
clause can also be used on flows. The absence of the in modes clause means that
the element is active in all modes.

Using dynamic reconfiguration, components can be activated, deactivated and
reactivated in their lifetime. If a component resets its state after reactivation, the
keyword activation has to be used to denote the mode to which the component
initialises and reinitialises. If a component does not reset after reactivation, the
keyword initial has to be used to denote the mode at which the component initial-
ises. In the latter case, upon reactivation, the component resumes from the mode
in which it was active before deactivation.

3.1.4 Packages

SLIM offers packages to group components into a single namespace, allowing for
the creation of libraries of reusable components. As they are a purely syntactic
feature, and do not concern semantics, its discussion is omitted in this dissertation.

3.2 Erroneous Behaviour

Erroneous behaviour in SLIM is modelled using error model types and error
model implementations, which is inspired by AADL’s Error Model Annex 1.0 [SAE-
AS5506/1]. The error behaviour of a complete system emerges from the combin-
ation of individual error component models. Failing components can affect other
components due to their interaction, or because due to their shared hardware
resources, which are defined through their bindings (cf. Section 3.1.1).
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Error model types describe an interface in terms of error states and error
propagations. Once an error model is associated with a nominal component, error
states represent its current configuration with respect to the occurrence of errors.
Error propagations are used to exchange error information between error models.
This is useful when the nominal behaviour abstracts behaviour that could form a
pathway for erroneous interaction. It is the modelling concept that explicitly intro-
duces the possible erroneous interaction despite the abstracted nominal behaviour.
An example of an error model is shown in Listing 3.5, line 3. The example shows
an example of state history using the keyword initial. It is similar in concept to
mode history (cf. Section 3.1.3).

Listing 3.5: Error model type for battery failures.

1 error model BatteryFailure
2 features
3 ok: initial state;
4 dead: error state;
5 resetting: error state;
6 batteryDied: out error propagation;
7 end BatteryFailure;

Error model implementations capture the behavioural aspect of the error model.
An example of an error model implementation is shown in Listing 3.6. An error
model implementation is defined by a (probabilistic) state machine whose states
are declared in the error model type. Transitions between error states can be
triggered by error events, reset events or error propagations. Error events are
internal to the component and can reflect local faults or repair operations. They
can be annotated with an occurrence rate. In SLIM, this is restricted to exponential
distributions due to the underlying mapping to continuous time Markov chains.
Take for example lines 10 and 11 in Listing 3.6. The error state resetting has two
outgoing transitions, one that leads to the ok state due to a work event, which is
annotated with the rate 0.2. The other one goes to the state dead due to the event
fails, which is annotated with the rate 0.8. The probability that state resetting
is left after waiting t time units is therefore 1− e(0.2+0.8)t . The probability that it
goes to state ok is 0.2/(0.2+ 0.8)(1− e(0.2+0.8)t), whereas the probability that it
goes to state dead is higher than for ok, namely 0.8/(0.2+ 0.8)(1− e(0.2+0.8)t).
Error models are not only about failures. Reset events (cf. line 9) are the built-in
communication means between the nominal model and the error model. From
the nominal model, these are typically sent when a successful repair occurred, and
that the erroneous state needs to be updated accordingly.

Listing 3.6: Error model implementation for battery failures.

1 error model implementation BatteryFailure.Imp
2 events
3 fault: error event occurrence poisson 0.001;
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4 works: error event occurrence poisson 0.2;
5 fails: error event occurrence poisson 0.8;
6 transitions
7 ok -[fault]-> dead;
8 dead -[batteryDied]-> dead;
9 dead -[reset]-> resetting;

10 resetting -[works]-> ok;
11 resetting -[fails]-> dead;
12 end BatteryFailure.Imp;

3.3 Model Extension

On its own, error models bear no tight relation with nominal models. The only and
loose relation is the reset event. It can be used by the nominal model to indicate
repairs. For the other direction, namely that erroneous behaviour affects nominal
behaviour, a link is needed which is called a fault injection. It consists of three
parts (s, d, a). The affected data element (i.e. data port or data subcomponent) in
the nominal model is indicated by d, the fault expression is indicated by a, and
the relevant error state is s. It means that whenever the error model is in error
state s, the nominal value of d is overridden by a, the fault expression. Multiple
fault injections are possible. With this approach, all possible data-failures can be
captured.

Given the nominal models, the error models and the fault injections, an overall
model is constructed called the extended model. The construction process itself
is called model extension. The extended model is a single comprehensive model
capturing both nominal and erroneous behaviour, and their interrelations. The
principal idea is that the nominal and error models run concurrently. A state
in the extended model consists of pairs of the nominal models and error states.
Each transition in the extended model is due to a nominal transition or an error
transition, or a synchronisation of both in case of a reset transition. To account for
the fault injections, the nominal values of injected data elements are overridden by
fault expressions if the error model is in the erroneous state specified by the fault
injection.

More formally, the construction of the extended model occurs in two steps. First
the error model component type and implementation are converted to a nominal
component type and implementation. Then the nominal model is modified to
incorporate the component types and implementations from the first step, and
account for the failure effects.
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3.3.1 Extended Error Model

Each error model type and implementation is converted to a nominal component
type and implementation according to the following:

features Error events become outgoing event ports. Outgoing error propagations
become outgoing event ports and incoming error propagations become incoming
event ports.

modes Error states become modes. The initial/activation mark is preserved.

transitions Error transitions become mode transitions. For any mode without an
outgoing reset transition, a self-loop is added with #reset as the trigger.

An example of these construction rules is shown in Listing 3.7. It is obtained
by injecting the fault expression voltage := 0 upon entering error state dead.

Listing 3.7: Part of the extended model describing the erroneous behaviour of
battery.

1 system BatteryFailure
2 features
3 #reset: in event port;
4 #fails: out event port;
5 #batteryDied: out event port;
6 #works: out event port;
7 #fault: out event port
8 end BatteryFailure;

10 system implementation BatteryFailure.Implementation
11 modes
12 ok: initial mode;
13 resetting: error mode;
14 dead: error mode;
15 transitions
16 ok -[#fault]-> dead;
17 dead -[#batteryDied]-> dead;
18 dead -[#reset]-> resetting;
19 resetting -[#works]-> ok;
20 resetting -[#fails]-> dead;
21 ok -[#reset]-> ok;
22 resetting -[#reset]-> resetting;
23 end BatteryFailure.Implementation;

3.3.2 Extended Nominal Model

This nominal representation of the error model is added as a subcomponent to the
nominal component, with additional modifications. The construction rules are:



3.3 Model Extension 37

features Nominal features are preserved. Ports are added due to error propaga-
tion. Incoming error propagations become incoming event ports and outgoing
error propagations become outgoing event ports.

subcomponents Nominal subcomponents are preserved. A subcomponent named
._error is added whose type is the nominal equivalent of the error model imple-
mentation.

connections Nominal port connections are preserved. Port connections are added
by making error propagations between extended subcomponents explicit. This is
due to either of the following:

• two subcomponents are bound to each other by accesses, running on,
stored in, and one offers an outgoing error propagation and the other one
accepts a matching incoming error propagation, or

• if two subcomponents are bound to each other by accesses on another com-
mon subcomponent, and one offers an outgoing error propagation and the
other one accepts a matching incoming error propagation.

Also, error propagations in both directions between components in a super- and a
subcomponent relation are made explicit.

flows Nominal flows are preserved, except for those with a fault injection. Those
flows become the following:

• the fault expression, under the condition that the _error is in the injected
error state.

• the nominal flow expression, under the condition that the _error is not in
the injected error state.

modes Nominal modes are preserved.

transitions There are five types of transitions, namely

• Nominal transitions without fault injection. These are nominal transitions
with their guards further constrained to non-injected error states.

• Nominal transitions with fault injection. These are nominal transitions with
their guards further constrained to injected error states, and that the fault
expression overrides the nominal expression of injected data elements.

• Error transitions without fault injection. These are nominal transitions that
react to transitions leading to non-injected states from the error model.

• Error transitions with fault injection. These are nominal transitions that
react to transitions leading to injected states from the error model. The fault
expression overrides the nominal expression of injected data elements.
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• Resets. These are nominal reset transitions that communicate explicitly with
the resets of the error model.

The extended model shown in Listing 3.8 exemplifies the use of the aforementioned
model extension rules.

Listing 3.8: Extended model of a battery.

1 system Extended_batt1_Battery
2 features
3 voltage: out data port real default 6.0;
4 #batteryDied: out event port;
5 empty: out event port;
6 end Extended_batt1_Battery;

8 system implementation Extended_batt1_Battery.Imp
9 subcomponents

10 energy: data continuous default 1.0;
11 _error: system BatteryFailure.Implementation;
12 connections
13 event port _error.#batteryDied -> #batteryDied;
14 modes
15 depleted: mode while energy' = -0.03 and energy >= 0.0;
16 charged: activation mode while energy' = -0.02 and
17 energy >= 0.2;
18 transitions
19 -- nominal transitions
20 charged -[when _error.state != dead
21 then voltage := 2.0 * energy + 4.0]-> charged;
22 charged -[empty when energy = 0.2 and
23 _error.state != dead]-> depleted;
24 depleted -[when _error.state != dead
25 then voltage := 2.0 * energy + 4.0]-> depleted;
26 -- nominal transitions with fault injection
27 charged -[when _error.state = dead then voltage := 0]-> charged;
28 charged -[empty when energy = 0.2 and _error.state = dead
29 then voltage := 0]-> depleted;
30 depleted -[when _error.state = dead
31 then voltage := 0]-> depleted;
32 -- error transitions
33 depleted -[_error.#works
34 when _error.state = resetting]-> depleted;
35 charged -[_error.#works
36 when _error.state = resetting]-> charged;
37 -- error transitions with fault injections
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38 depleted -[_error.#fault when _error.state = ok
39 then voltage := 0]-> depleted;
40 charged -[_error.#fault when _error.state = ok
41 then voltage := 0]-> charged;
42 depleted -[_error.#batteryDied when _error.state = dead
43 then voltage := 0]-> depleted;
44 charged -[_error.#batteryDied when _error.state = dead
45 then voltage := 0]-> charged;
46 depleted -[_error.#fails when _error.state = resetting
47 then voltage := 0]-> depleted;
48 charged -[_error.#fails when _error.state = resetting
49 then voltage := 0]-> charged;
50 -- resets
51 charged -[_error.#reset when tryReset]-> charged;
52 depleted -[_error.#reset when tryReset]-> depleted;
53 end Extended_batt1_Battery.Imp;

3.4 Formal Semantics

The formal semantics maps a SLIM specification to an automata-like formalism,
namely a network of event-data automata. Each event-data automaton is the
representation of a SLIM component. From these automata-like formalisms, a
transition system can be spawned, representing its behaviour in a formal way.

3.4.1 Event-Data Automata

This subsection introduces the definition of an event-data automaton (i.e. EDA),
and defines how a single SLIM component is mapped to it. Afterwards its semantics
are defined as a transition system. The battery component of the power system
example is used to exemplify these notions.

Definition

An event-data automaton is a tuple of the form

A= (M, m0, X, v0,χ,ϕ, E,−→)

where

• M is a finite set of modes.

• m0 ∈M denotes the starting mode.

• X is a finite set of variables, partitioned into
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– input variables, IX,

– output variables, OX,

– local variables, LX.

• v0 ∈ VX is the initial valuation where VX denotes the set of all valuations, that
is, partial functions that assign values to the elements of X.

• χ : M → (VLX → B) specifies the mode invariants (where we assume that
χ(m0)(v0|LX) =>).

• ϕ : M→ (LX→ R) specifies the trajectory equations by associating with each
local variable its derivative in the current mode.

• E is a finite set of events, partitioned into

– input events, IE,

– output events, OE.

• −→ ⊆ M × Eτ × (VX → B) × (VX → VX) ×M is a finite (mode) transition
relation where Eτ := E∪ {τ}. The τ event indicates the absence of an event

trigger. A transition is represented in the form m
e,g, f
−→ m′, and e, g, and f

which are respectively called the trigger, the guard, and the effect. Here f is
only allowed to modify output and local variables, that is, f (v)(x) = v(x)
for each v ∈ VX and x ∈ IX.

For the sake of generality, we do not restrict the value ranges of the partial functions
in VX . In our concrete setting, valuations assign, e.g., Boolean, integer, and real
values to the variables in X.

Furthermore, we assume that each invariant χ(m) with m ∈ M is given by a
Boolean expression over local variables where each arithmetic subexpression is
linear. Also trajectory equations are only defined for local variables and their evol-
ution is described by linear functions. If x is a discrete variable, then ϕ(m)(x) = 0;
if x is a clock, then ϕ(m)(x) = 1; otherwise x is a continuous variable. Our se-
mantics can support more involved trajectory equations, but we restrict ourselves
to constant slopes for feasibility of conducting analyses.

Mapping from SLIM

A SLIM component has a straightforward representation as an EDA. It is based on
the following associations:

• the modes M are mapped from the modes part in a SLIM component imple-
mentation:

modes . . . m: tp mode . . .

If that occurs, then
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– m ∈M, and

– m0 = m if tp ∈ {initial,activation}.

• the variables X comprise IX ∪ OX ∪ LX, which are obtained from the data
ports and the data subcomponents:

– any data port from features part of the SLIM component type:

features . . . p: io data port . . . default a;

If io = in, then p ∈ IX. If io = out, then p ∈ OX.

– any data subcomponent from the subcomponent part of the SLIM
component implementation:

subcomponents . . . sc: data . . . default a;

Then sc ∈ LX.

• the initial valuation v0 of variables is defined through the default keyword.
For data ports, as described with the previous point, v0(p) = a. For data
subcomponents, it means that v0(sc) = a. Otherwise v0(p) is undefined in
the EDA, although it has to be defined through other ports in the NEDA (cf.
Section 3.4.2).

• the mode invariants χ and trajectory equations ϕ are defined through the
while part of a mode declaration:

modes . . . m: . . . mode while iv; . . .

The expression iv is composed of conjuncted subexpressions iv1∧. . .∧ivn. If a
subexpression ivi is a trajectory equation, i.e. ivi is sc' = s, then ϕ(m)(sc) =
s. The remaining subexpressions must be Boolean expressions that, when
conjuncted, represent the mode invariant χ(m).

• the set of events E comprises of IE∪OE, where

– an incoming event port in the features part of the component type:

features . . . p: in event port; . . .

result to p ∈ IE. For each subcomponent sc of the component, its
outgoing event ports are also included in IE.

– an outgoing event port in the features part of the component type:

features . . . p: out event port; . . .

results to p ∈ OE. For each subcomponent sc of the component, its
incoming event ports are also included in OE.
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The component’s subcomponent ports are used to enable event communica-
tion between the component and its (active) subcomponent(s).

• the transition relation −→ emerges from the transitions part in the SLIM
specification. More specifically, a transition of the form

transitions . . .m -[e when g then f]-> m'

results to a transition in (m, e′, g ′, f ′, m′) ∈−→. The event e is mapped to e′

if it is present, otherwise e′ = τ. The guard g is mapped to g ′ if it is present,
otherwise g ′ =>. The transition effects f ′(v) = v′ are defined as follows:

– for each d ∈ IX it holds that v′(d) = v(d).
– for each d ∈ OX it holds that

v′(d) :=
�

¹aº(v) if f contains assignment d := a
v(d) otherwise

– for each d ∈ LX it holds that

v′(d) :=







¹aº(v) if f contains assignment d := a
v0(d) else if d inactive in mode m
v(d) otherwise

The notation ¹aº(v) means a single value that is the result of an evaluation
of expression a using the valuation mapping v.

Transition System

The operational semantics of an EDA is given as a labelled transition system whose
states, called configurations, are pairs of modes and valuations. Transitions either
model the passage of time, involving an update of the local variables (but no mode
change), or are internally triggered by events, including the internal event τ. The
second case requires the guard of the respective transition to be enabled, and
then modifies the valuation of the variables according to the transition effect. It is
assumed that the processing of events is instantaneous, i.e., takes no time.

The definition of the semantics employs the following notation. Given a valu-
ation v ∈ VX , a time delay t ∈ R>0, and a mapping ϕ : LX → R of derivatives, the
notation v + t · ϕ denotes the corresponding temporal modification of the local
variables, that is, for each x ∈ X,

(v+ t ·ϕ)(x) :=
�

v(x) + t ·ϕ(x) if x ∈ LX
v(x) otherwise

Given these definition, we formally give the semantics of an EDA by a labelled
transition system

(Cnf ,κ0, L,−→)
with
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• the set of (local) configurations Cnf :=M× VX ,

• the initial configuration κ0 := (m0, v0) ∈ Cnf ,

• the set of transition labels L := R>0 ∪ Eτ, and

• the (local) transition relation −→⊆ Cnf × L× Cnf , given by either a

– time transition:
(m, v)

t−→ (m, v+ t ·ϕ(m))
if t ∈ R>0 and the invariant of mode m, χ(m)(v + t ′ ·ϕ(m)) holds for
any t ′ ∈ [0, t].

– internal or event transition:

(m, v)
e−→ (m′, f (v))

if a transition triggered by e ∈ Eτ is enabled in mode m and also the
invariant of target mode m′ is valid after applying the transition effect,

that is, there exists m
e,g, f
−→ m′ such that g(v) => and χ(m′)( f (v)|LX) =

>.

Example

The battery example in Listing 3.2 yields the following event-data automaton
A= (M, m0, X, v0,χ,ϕ, E,−→) where

M = {charged,depleted}
m0 = charged

X = {tryReset}
︸ ︷︷ ︸

IX

∪{voltage}
︸ ︷︷ ︸

OX

∪{energy}
︸ ︷︷ ︸

LX

v0 = [tryReset 7→ ⊥,voltage 7→ 6.0,energy 7→ 1.0]
χ(charged)(v) = (v(energy)≥ 0.2)
χ(depleted)(v) = (v(energy)≥ 0.0)

ϕ(charged)(energy) = −0.02

ϕ(depleted)(energy) = −0.03

E = ;
︸︷︷︸

IE

∪{empty}
︸ ︷︷ ︸

OE

−→ (charged) = {(τ,>, v[voltage 7→ 2.0 · energy+ 4.0],charged),
(reset, v(tryReset), v,charged),
(empty, (v(energy) = 0.2), v,depleted)}

−→ (depleted) = {(τ,>, v[voltage 7→ 2.0 · energy+ 4.0],depleted),
(reset, v(tryReset), v,depleted)}
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The operational semantics of the EDA that is obtained from the Battery specifica-
tion gives rise to the trace shown in Figure 3.1. Here we denote a configuration by
a pair of the form 〈m, v〉 where m ∈M and v ∈ VX .

〈 charged, [energy 7→ 1.0, tryReset 7→⊥,voltage 7→6.0]〉
↓ 30.0

〈 charged, [energy 7→ 0.4, tryReset 7→⊥,voltage 7→6.0]〉
↓ τ

〈 charged, [energy 7→ 0.4, tryReset 7→⊥,voltage 7→4.8]〉
↓ 10.0

〈 charged, [energy 7→ 0.2, tryReset 7→⊥,voltage 7→4.8]〉
↓ τ

〈 charged, [energy 7→ 0.2, tryReset 7→⊥,voltage 7→4.4]〉
↓ empty

〈depleted, [energy 7→ 0.2, tryReset 7→⊥,voltage 7→4.4]〉
↓ 5.0

〈depleted, [energy 7→0.05, tryReset 7→⊥,voltage 7→4.4]〉
↓ τ

〈depleted, [energy 7→0.05, tryReset 7→⊥,voltage 7→4.1]〉

↓
...

Figure 3.1: An example trace of the Battery component.

3.4.2 Network of Event-Data Automata

The global system behaviour of a SLIM specification emerges from the interaction
between EDAs. This interaction is highly dynamic as local transitions can cause
subcomponents to become (in-)active, and can change the topology of event and
data port connections and flows. On the level of the formal semantics, which is
given as a network of EDAs, this means that both the activation of the component
EDAs and their interconnections depend on the modes of the individual EDAs. In
the sequel, let [n] for a natural n denotes the set {1, . . . , n} and ¹¹Ë denotes a
partial function.

Definition

Formally, a network of event-data automata (NEDA) is a tuple of the form

N= ((Ai)i∈[n],α, EC, DD)

where

• each Ai is an EDA of the form Ai = (Mi , mi
0,Xi , v i

0,χi ,ϕi ,Ei ,−→i) with i ∈
[n],
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• α : M→ 2[n] is the activation mapping where M :=
∏n

i=1 Mi denotes the set
of global modes,

• EC : M → ({i.oe | i ∈ [n], oe ∈ OEi} × { j.ie | j ∈ [n], ie ∈ IE j}) is the event
connection mapping, and

• DD : M → ({i.x | i ∈ [n], x ∈ IX i ∪ OX i} ¹¹Ë { j.a | j ∈ [n], a ∈ Exp(IX j) ∪
OX j}) is the data dependence mapping where Exp(IX j) denotes the set of all
expressions over IX j .

The activation mapping α specifies the active (sub)components in a given global
mode. In other words, α(m1, . . . , mn) is the set of components that are active in
mode (m1, . . . , mn), where mi denotes the local mode of component i.

The mapping EC provides mode-dependent interdependencies between event
ports. If (i.oe, j.ie) ∈ EC(m1, . . . , mn), then in mode (m1, . . . , mn), the outgoing
event port oe of component i is connected to the incoming event port ie of com-
ponent j. Here, EC is a binary relation (and not a function) as our specification
language supports fan-in for event ports.

The mapping DD provides mode-dependent interdependencies between data
ports. If DD(m1, . . . , mn)(i.x) = j.a, then either data port a of component j is
connected to data port x of component i in mode (m1, . . . , mn), or there is a flow
relation for component i = j in mode mi which defines the value of data port x by
the expression a. Both out-to-out, out-to-in, and in-to-in connections are possible.
In the second case, x must be an outgoing port and a must be an expression
over the incoming ports of the same component. Here, DD is a proper (partial)
mapping as our specification language does not support fan-in for data ports since
this would not yield unique values.

Mapping from SLIM

The mapping of a full SLIM specification to a network of event-data automata
accounts for dynamic reconfigurations using the in mode clauses in the SLIM spe-
cification and for event communication across the component hierarchy. The latter
can occur by chaining event port connections, so that events from a component
can synchronise with transitions that are beyond their direct supercomponent and
subcomponents.

Formally, given the collection of components in the SLIM specification, the
association of a corresponding NEDA,

NS = ((Ai)i∈[n],α, EC, DD),

can be defined as follows:

• each Ai with i ∈ [n] is an EDA representing a component instance in the
component hierarchy. It is constructed according to the description in Sec-
tion 3.4.1,
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• the activation mapping α : M → 2[n] is defined recursively from the root
component. For each (m1, . . . , mn) ∈M,

– the root component, designated as 1 is always active, more formally
1 ∈ α(m1, . . . , mn), and

– a subcomponent sc designated active of an active component ci is also
active, i.e. for the following piece of SLIM specification associated with
Ai:

subcomponents . . . sc: . . . in modes (AM); . . .

where AM is a subset of modes, i.e., AM ⊆ Mi of EDA i. Let j ∈
[n] be the EDA associated with sc and i ∈ α(m1, . . . , mn) then j ∈
α(m1, . . . , mn).

• the event port connections EC(m1, . . . , mn) are determined by event port con-
nections occurring in the connections part of a component implementation,
i.e.:

connections . . . event port c1.p1 -> c2.p2 in modes (AM);

If the referenced port occurs in the current component, then the subcompon-
ent identifier, e.g. c1 or c2 is absent. From the port connections, which are
only active in the set of modes given by AM , a part of EC is built up by:

{(i.op, j.ip) | i, j ∈ [n], op ∈ OEi , ip ∈ IE j , (ci .op, c j .ip) ∈ ECon+}

Active event port connections can be chained, so that transitions can syn-
chronise with those of other components beyond its direct super-component
or subcomponents. Such a chain is captured by ECon+ where (ci .op, c j .ip) ∈
ECon+ means that, in the global mode (m1, . . . , mn), there is a chain of con-
nections from the output port op of component ci to the input port ip of
component c j , in the order

1. (zero or more) out-to-out event port connections,

2. (exactly one) out-to-in event port connection, and

3. (zero or more) in-to-in event port connections.

There are also implicit event-port connections between super- and subcom-
ponents. Two cases are possible, namely that a super-component refers to
an incoming event as a transition trigger or to an outgoing event. Both are
captured by respectively

{(i.(sc.ip), j.ip) | i, j ∈ [n], j ∈ α(m1, . . . , mn), ci .sc= c j , sc.ip ∈ OEi}

and

{( j.op, i.(sc.op)) | i, j ∈ [n], j ∈ α(m1, . . . , mn), ci .sc= c j , sc.op ∈ IEi}

The three sets unioned together form EC.
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• any value of an incoming or outgoing data port is defined as follows for each
(m1, . . . , mn) ∈M, i ∈ [n], and x ∈ IX i ∪OX i ,

DD(m1, . . . , mn)(i.x) :=























j.y if (y, sc.x) ∈ DCon(c j , m j) and c j .sc= ci
or (sc1.y, sc2.x) ∈ DCon(ck, mk) and

ck.sc1 = c j , ck.sc2 = ci
or (sc.y, x) ∈ DCon(ci , mi) and ci .sc= c j

i.a if (a, x) ∈ Flw(ci , mi)
- undefined otherwise

In the above, the set DCon(c j , m j) describes the data port connections oc-
curring in component c j and that are active in mode m j . They are obtained
from the SLIM component implementation via

connections . . . data port c1.p1 -> c2.p2 in modes (AM);

where m j ∈ AM and c j is the component in which the data port connection
is set between two subcomponents of component c j . Data port connections
can also occur from super-components to subcomponents, which would be
then as follows:

connections . . . data port p1 -> c2.p2 in modes (AM);

or from subcomponents to super-components:

connections . . . data port c1.p1 -> p2 in modes (AM);

The set Flw(ci , m j) describes the flows occurring in component c j and are
active in mode m j . They are obtained from the SLIM component implement-
ation via

flows . . . d := a in modes(AM);

Each flow (a, d) ∈ Flw(ci , m j) is determined by the flow expression a and
the outgoing data port d for which it is defined. It is active if m j ∈ AM . It is
undefined in all other cases, in which the data port is assigned by transitions
effects or by a data port connection.

Transition System

The semantics of a NEDA is given by the labeled transition system

(Cnf ,κ0, L,=⇒)

which is defined in terms of the local transition systems (Cnf i ,κ
i
0,Li ,−→i) with

i ∈ [n] of the constituent EDAs as follows

• the set of (global) configurations is given by Cnf =
∏n

i=1 Cnf i ,
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• the initial configuration is κ0 = (κ1
0, . . . ,κn

0),

• the set of transition labels is L= R>0 ∪ {τ}, and

• the (global) transition relation, =⇒⊆ Cnf × L× Cnf , is given by

– time transition:

κ= (κ1, . . . ,κn)
t
=⇒ (κ′1, . . . ,κ′n)

if

· t ∈ R>0 and
· all active EDAs are involved in the time step: for each i ∈ [n],
κi

t−→ κ′i if i ∈ α(mod(κ)), and κ′i := κi otherwise.

The auxiliary function mod is defined on page 48.

– internal transition:

κ= (κ1, . . . ,κn)
τ
=⇒ cnsκ(nxt(κ, {(i,κ′i)}))

if

· the ith EDA is active and can perform an internal step: there exists
i ∈ α(mod(κ)) and κ′i ∈ Cnf i such that κi

τ−→i κ
′
i .

The auxiliary functions cns and nxt are defined on page 49.

– multiway communication transition:

κ= (κ1, . . . ,κn)
τ
=⇒ cnsκ(nxt(κ, {( j,κ′j) | j ∈ J ∪ {i}}))

if

· the ith EDA is active and offers an output transition: there exists
i ∈ α(mod(κ)), oe ∈ OEi , and κ′i ∈ Cnf i such that κi

oe−→i κ
′
i , and

· there is at least one active neighbor EDA that offers a corresponding
input transition via an event port connection:

J = { j ∈ α(mod(κ)) \ {i} |
exists ie ∈ IE j s.t. (i.oe, j.ie) ∈ EC(mod(κ))

and κ j
ie−→ j κ

′
j}

6= ;.

The definition employs the following auxiliary functions:

• mod : Cnf →M, extracting the mode information from a given global config-
uration:

mod(κ1, . . . ,κn) := (mod(κ1), . . . , mod(κn)) with mod(m, v) := m.
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• nxt : Cnf×2
⋃

i∈[n]{i}×Cnf i → Cnf , which reflects the impact of mode transitions
occurring in the constituent EDAs, taking the current glocal configuration
(first parameter) and the new local configurations (second parameter) into
account. This impact is defined as follows:

– Each EDA occurring in the set enters the new configuration.

– Next, the impact of the mode transitions on the affected components
is determined as follows. Each component that is re-activated in the
transition (that is, it is inactive in the source mode but active in the tar-
get mode) and that does not support mode history (that is, its starting
mode carries the activation attribute) is restarted. This means that it
enters its starting mode, and that its data elements obtain their default
values.

Formally, this is described as follows.

nxt(κ, N) := restartκ(config(κ, N))

where

config(κ,;) := κ

config((κ1, . . . ,κi , . . . ,κn), {(i,κ′i)} ∪ N) := config((κ1, . . . ,κ′i , . . . ,κn), N)
restartκ(κ

′
1, . . . ,κ′n) := (κ′′1 , . . . ,κ′′n)

with

κ′′i :=







κi
0 if i ∈ α(mod(κ′1, . . . ,κ′n)) \α(mod(κ)) and

mod(κi
0) is an activation mode

κ′i otherwise

• cnsκ : Cnf → Cnf , making a global configuration consistent by taking the
(unique) solution of the equation system that is implied by the data de-
pendence mapping. In addition, input or output variables that have been
disconnected in the transition (that is, the variable occurs as a target in the
data dependence relation of the old mode but in no data dependence of the
new mode) are reset to their default values:

cnsκ((m1, v1), . . . , (mn, vn)) := ((m1, v′1), . . . , (mn, v′n))

if, for each i ∈ [n] and x ∈ IX i ∪OX i ,

v′i (x) =















¹aº(v′j) if DD(m1, . . . , mn)(i.x) = j.a
v i

0(x) if DD(m1, . . . , mn)(i.x) is undefined and
DD(mod(κ))(i.x) is defined

vi(x) if DD(m1, . . . , mn)(i.x) is undefined and
DD(mod(κ))(i.x) is undefined
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Example

The specification of the power system gives rise to a NEDA with four EDAs, rep-
resenting the main power component (A1), the two batteries (A2 and A3), and
the monitor (A4). This yields the following mappings, assuming that P and B
represent any global mode (m1, m2, m3, m4) with m1 = primary or m1 = backup,
respectively:

α(P) = {1,2, 4};
α(B) = {1,3, 4};

EC(P) = {(2.empty, 1.batt1.empty)};
EC(B) = {(3.empty, 1.batt2.empty)};

DD(P)(1.alert) = 4.alert,
DD(P)(2.tryReset) = 4.alert,

DD(P)(4.voltage) = 2.voltage,

DD(P)(4.alert) = (4.voltage < 4.5),
DD(B)(1.alert) = 4.alert,

DD(B)(3.tryReset) = 4.alert,
DD(B)(4.voltage) = 3.voltage, and

DD(B)(4.alert) = (4.voltage < 4.5).

This four-component NEDA of the power system exhibits the transitions shown
in Figure 3.2. Configurations are represented as c1 ‖ c2 ‖ c3 ‖ c4 where c1
is the current configuration of component Power, c2 of batt1, c3 of batt2, and
c4 of component mon. In each configuration, the mode information of active
components is underlined.

3.5 Graphical Notation

As an extension of the COMPASS project, we, together with Ellidiss, developed a
graphical notation of SLIM and a graphical editor for it. Given SLIM’s component-
oriented nature, it lends itself well for a visualisation as a graph-like shape. This
enables the engineer to visually see port connections between components quickly.
Furthermore, many SLIM syntax rules that are typically checked after construction
of the textual SLIM model, can be checked for while it is being created through
drag-and-drop of graphical elements. All this together increases the usability of
the modelling language, and hence aids to its acceptance by engineers.

The graphical notation is described in [Nol11a] and it is inspired by AADL
Annex A [SAE-AS5506/1], the graphical AADL notation. It is slightly adapted to
handle SLIM specifics features, like flows and hybridity. It is extended with a novel
notation for error models, which is not present in AADL Annex A. An example of
the notation is shown in Figure 3.3.
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〈primary, [alert 7→ ⊥]〉 ‖
〈charged, [energy 7→ 1.0, tryReset 7→ ⊥,voltage 7→ 6.0]〉 ‖
〈charged, [energy 7→ 1.0, tryReset 7→ ⊥,voltage 7→ 6.0]〉 ‖

〈m0, [voltage 7→ 6.0,alert 7→ ⊥]〉
⇓ 30.0

〈primary, [alert 7→ ⊥]〉 ‖
〈charged, [energy 7→ 0.4, tryReset 7→ ⊥,voltage 7→ 6.0]〉 ‖
〈charged, [energy 7→ 1.0, tryReset 7→ ⊥,voltage 7→ 6.0]〉 ‖

〈m0, [voltage 7→ 6.0,alert 7→ ⊥]〉
⇓ τ

〈primary, [alert 7→ ⊥]〉 ‖
〈charged, [energy 7→ 0.4, tryReset 7→ ⊥,voltage 7→ 4.8]〉 ‖
〈charged, [energy 7→ 1.0, tryReset 7→ ⊥,voltage 7→ 6.0]〉 ‖

〈m0, [voltage 7→ 4.8,alert 7→ ⊥]〉
⇓ 10.0

〈primary, [alert 7→ ⊥]〉 ‖
〈charged, [energy 7→ 0.2, tryReset 7→ ⊥,voltage 7→ 4.8]〉 ‖
〈charged, [energy 7→ 1.0, tryReset 7→ ⊥,voltage 7→ 6.0]〉 ‖

〈m0, [voltage 7→ 4.8,alert 7→ ⊥]〉
⇓ τ

〈primary, [alert 7→ >]〉 ‖
〈charged, [energy 7→ 0.2, tryReset 7→ >,voltage 7→ 4.4]〉 ‖
〈charged, [energy 7→ 1.0, tryReset 7→ ⊥,voltage 7→ 6.0]〉 ‖

〈m0, [voltage 7→ 4.4,alert 7→ >]〉
⇓ empty

〈primary, [alert 7→ ⊥]〉 ‖
〈depleted, [energy 7→ 0.2, tryReset 7→ >,voltage 7→ 4.4]〉 ‖
〈charged, [ 7→ 1.0, tryReset 7→ ⊥,voltage 7→ 6.0]〉 ‖

〈m0, [voltage 7→ 6.0,alert 7→ ⊥]〉

⇓
...

Figure 3.2: An example trace of the Power system.

3.6 Differences between SLIM, AADL and Annexes

AADL 1.0 by itself expresses only architecture, and not so much behaviour. The
behaviour in AADL 1.0 is primary emergent by subprograms that are invokable
within the architecture. Alternatively, the annex mechanism can be used to intro-
duce behaviour using the specification language as described in AADL’s Behaviour
Annex 1.0 [SAE-AS5506/2]. In SLIM, architecture and behaviour are intimately
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Figure 3.3: Power system visualised using the SLIM graphical notation.

integrated, incorporating aspects from AADL 1.0, its Error Annex 1.0 and its Beha-
viour Annex 1.0 in a coherent and integrated way. Furthermore, SLIM is designed
to be expressive enough for the space systems engineering domain, while on the
other hand formal enough to be subjected to formal analysis. This implies that
SLIM aims to suit late requirements engineering and the preliminary design phase,
whereas pure AADL 1.0 typically is employed in the detailed design phase with
possible refinements of the model to the early implementation phase.

SLIM – AADL 1.0 The different intended usage scenario’s of SLIM and AADL
1.0 have led to small deviations between the two languages. From a syntactic
perspective, SLIM differs from AADL 1.0 on the following:

• Subprograms. Not present in SLIM, present in AADL. SLIM does not link at
source level with other languages.

• Properties. Not present in SLIM, present in AADL. In SLIM all required
characteristics are part of the core language.

• Annexes. Not present in SLIM, present in AADL. SLIM embeds aspects of
relevant annexes as part of the language’s syntax.

• Flows. In SLIM flows are concrete data paths expressed by flow expressions.
In AADL flows are abstract data paths expressed by flow paths.
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• Data. In SLIM data declarations are always variables. In AADL they can be
a structure of variables. Furthermore, in SLIM data elements need to have
an initial value. In AADL, this is undefined.

• Ports. In SLIM, a port is either an event or data port. In AADL, there are
also event data ports and port groups.

• Event queuing. In SLIM, transitions rendez-vous on events. In AADL, events
can be queued on the event data ports.

SLIM – Error Annex 1.0 A majority of the elements from AADL’s Error Model An-
nex have been incorporated in SLIM. The approach in SLIM is however simplified,
and more oriented towards data-failures rather than event-failures. The resulting
differences are:

• Interaction between error and nominal model. In SLIM, model extension
using fault injections are used. With the Error Model Annex, the annex
keyword is used to associate an error component with a nominal component.
Furthermore, in SLIM, the error model influences the nominal model through
errors in data elements. In the Error Model Annex, the error model influences
the nominal model through mangling of events.

• Error propagation. In SLIM, propagated errors are matched by their identifier.
In the Error Model Annex, filters, guards and masks can be defined for
expressing fine-grained propagations.

• Derived error models. In SLIM, only basic error models are possible. In the
Error Model Annex, both basic and derived error models are possible. The
latter models describe behaviour of a component as a function of the error
states of its subcomponents.

SLIM – Behaviour Annex The Behaviour Annex was still under development
while SLIM was designed. SLIM’s behavioural specification is therefore inherently
different than that in the Behaviour Annex. In SLIM, nominal behaviour emerges
from transitions between modes. In addition to them being event triggered, as
in AADL, in SLIM they can also be guarded by boolean expressions over data
elements and can change values of data elements. With the Behaviour Annex,
a state machine that allows guards and effects is defined that co-exists with the
mode transition system. Another substantial difference is that SLIM allows for the
expression of hybrid evolution of continuous elements using trajectory equations
and mode invariants. These are neither present in AADL nor in its Behaviour
Annex.

To conclude, the major difference between SLIM, AADL and its annexes, is that
SLIM provides a coherent, and complete formal semantics for the combination of
dynamic reconfigurable architectures, their functional behaviour as mode trans-
itions and errors to that behaviour due to error models. For AADL, there are



3.7 Discussion 54

semantics for AADL in combination with the Error Annex, or AADL in combination
with the Behaviour Annex, but not the combination of all three. This makes SLIM
suitable for capturing dynamic reconfigurable system architecture and behaviour
under degraded conditions. It is also expressible with AADL and its annexes, but the
formal semantics of the combination is undetermined. SLIM’s formal semantics are
defined with the rigour of transition systems. It leaves no unambiguity about con-
current behaviour, along with its typical issues of atomicity and non-determinism.

3.7 Discussion

AADL 1.0 without its annexes provides the means to express dynamic reconfig-
urable embedded systems architectures from both the hardware and software
perspective, supporting the system-software engineering process. From this per-
spective, architecture is the glue and the foundation upon which the system is
built. The first tools for AADL have therefore been designed for this aim. An
example of this is TASTE [Per+12], a toolset developed by the European Space
Agency with its partners from the space industry. It allows engineers to integrate
heterogeneous source code (e.g. in C, ADA) and generate an executable prototype
of the system. During our research visit at ESA we shared the corridor with the
principal developers of TASTE. Our discussions and experiments resulted in most
of Section 3.6.

AADL’s properties mechanism provides means to express timing characterist-
ics that impact schedulability of tasks by accounting for their worst-case execu-
tion times. An approach towards schedulability analysis in AADL is described
in [Sin+05] and is called Cheddar. It has become part of TASTE. Afterwards,
the first wave of verification tools were developed that checked for functional
correctness. Our work was one of the first. Around the same time, a work was
published [RKH09] that maps the time-constrained event-behaviour captured by
AADL’s mode transitions to timed Petri nets. They also mention the possibility of
using colored Petri nets to handle data-dependent constraints. When the Beha-
viour Annex started to mature, many tool-supported approaches emerged that
tackled verification of behaviour. One of the earliest maps AADL and a frac-
tion of its Behaviour Annex to BIP [Chk+08]. BIP is then mapped to the IF
model checker [Boz+04], enabling the verification of safety properties. Another
work [Ber+09] maps AADL and a fraction of its Behaviour Annex to Fiacre, which
is then mapped to a timed Petri net. Later, after the acceptance of the Behaviour
Annex, a work [Bjo+11] was published that describes a denotational semantics for
a subset of AADL and its Behaviour Annex. A CTL model checker called ABV was
built that implemented that semantics. All these works follow the asynchronous
nature of AADL’s component interaction. A work that reinterprets this interaction
as a synchronous system is described in [Bae+11]. It maps a fraction of AADL and
its Behaviour Annex to real-time Maude. Using the Maude model checker, LTL
and timed CTL properties can be verified. All these approaches follow the level
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of abstraction aimed originally for AADL, where hardware components induce a
great part of the system architecture and software induces behaviour subject to
analysis. In our approach, hardware and software are considered perceived from
a higher abstraction-level, namely to the level where they have a behaviour that
provides a functionality. As such, in SLIM, they are seen as communicating com-
ponents, and the hierarchy of components induces the system architecture, not
only the hardware. Second, all these approaches implicitly or explicitly have a
formal semantics defined, but neither of them account for the probabilistic aspect
of error behaviour. Neither do they cover hybrid behaviour. In their current shape,
their formal semantics are designed to cover a specific analysis, like model check-
ing, but are not suitable for a wide range of analyses (including probabilistic risk
assessments for example), as we aimed for with SLIM. We argue that a formal
semantics needs to cover a broad range of behavioural aspects in order to ensure
that analyses provide results that are coherent with each other. For this, a formal
semantics needs not only to cover discrete behaviour, but also timing, probabilistic
and hybrid behaviour, as SLIM does.

We had few approaches in mind for interrelating nominal behaviour with error
behaviour. In AADL and its Error Annex, the annex mechanism is used to attach
erroneous behaviour to a nominal component. Then rules are defined that allow er-
roneous events to mangle nominal events. In [RKK07], it is shown how to map the
result to a generalised stochastic Petri net. We considered this approach too, but
found that the mangling rules ill-suitable to specify data failures. The other option
was to have the user directly specify the extended model. This however defies the
separation of concerns of the nominal and error behaviour, which are traditionally
served by different fields of engineering, namely system engineering versus RAMS
engineering. Model extension provides for the separation of concerns while en-
abling injection of data-failures. It is adapted from FSAP’s approach towards model
extension [BV03a]. Both FSAP and our approach separate the concerns of nominal
behaviour and the fault model, which are then married through fault injections.
The slight difference is that FSAP did not support arbitrary error transition systems,
but only ones shaped as a two-state loop, where one state represents a nominal
operating mode, and the other one a particular failure mode. This modification is
necessary to express multiple degraded modes of operation.

Our early approach towards fault injection differs from our final approach. Ini-
tially, we defined fault injections between an error model implementation and a
nominal model implementation instead of a nominal instance. During our early
evaluation, we observed that the former approach was too limited, because it as-
sociated a single error model with the same set of fault injections to all instances
of the affected component implementation. It would not be possible to associate
different erroneous behaviour to a component implementation with the same ab-
stract behaviour, which for example can happen if a particular component design
is realised with a different choice of materials.

Our approach of combining the nominal and error model through model ex-
tension also inspired our users to identify their own needs. Throughout our case
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studies, of which the one in Chapter 6 is an example, modellers have expressed
the wish to inject faults into trajectory equations. They could for example be over-
ridden by a faulty trajectory equation. Furthermore, it some cases, it was desired
to force a nominal event to happen upon entering an error state. The principal
effect is similar to the approach by AADL and the Error Annex, which only support
this kind of errors. Lastly, we observed the possible need to make fault injections,
and perhaps even the associated error model implementation, additionally mode-
dependent. This enables engineers to express different error behaviours during
different nominal modes of operation. For example, the erroneous behaviour of a
satellite might briefly alter during launch and a solar eclipse. The exact implica-
tions and the desirability to express such granular erroneous behaviour needs to
be further investigated.



4

Formal Architecture Analysis

Verification and validation in early phases of the space systems engineering process,
like phase A and B, is typically oriented towards inspection, review and analysis, as
testing requires are particular design fidelity that is not yet attained in those phases.
In this dissertation, and this chapter in particular, analysis is emphasised, as we
define several formal analysis methods over our modelling formalism described
in Chapter 3. They are based on algorithms from state-of-the-art formal methods
research. The results they automatically generate are in the current engineering
practice obtained manually, or are a formal expression of reasoning that occurs
implicitly during verification and validation of the design in phase B.

The offered analyses are categorised into the following: correctness analysis,
safety and dependability analysis, fault management effectiveness analysis, prob-
abilistic risk assessment and performability analysis. Each section represents an
analysis, whose purpose is described, along with the approach towards its imple-
mentation, an example, and a discussion on its strengths and known limitations.
The referred analyses are scoped to the capabilities of the COMPASS toolset (cf.
Chapter 5). The examples are based on the sensor-filter model which is provided
in Appendix A. It is possible to define other analyses over SLIM models, using it
formal semantics, like criticality analysis [Ern12]. These are however out of the
scope of this dissertation.

4.1 Fault Injection

Fault injection marries fields of engineering which are traditionally separated.
These are all the engineering disciplines that concern themselves with the nom-
inal behaviour of the system, as this is the intended and typically the behaviour
the system exhibits most of the time. The other one is safety and dependability
engineering, whose engineers concern themselves with behaviour that is typically
sporadic, yet have potential critical consequences. These disciplines generate their
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own artefacts, which through fault injections are combined into an extended model
(cf. Section 3.3) that exhibits both nominal and non-nominal behaviour.

Fault injections are orthogonal upon the analyses described in subsequent sec-
tions. Its main purpose is to apply the effects of faults upon the nominal behaviour,
which typically leads to non-nominal behaviour. Different configurations of fault
injections trigger different non-nominal behaviours, which might require under-
standing depending on their anticipated criticality.

In our context, the error models and fault injections are developed by the
safety and dependability engineers using the early FMECA tables and fault trees as
input. This is a modelling process in itself, which may reveal improvements and
additions that can be used to enhance the FMECA tables. If neither FMECA tables
and fault trees are existent, typically boundary conditions need to be analysed of
data elements, and reason how these boundary conditions lead to failures. The
outcome of such an analysis indicates for possible fault injections. The resulting set
of fault injections can be used to generate the FMECA tables (cf. Section 4.8) and
fault trees (cf. Section 4.5), which can be provided as input to the space system
engineering process.

4.1.1 Approach

After loading the nominal model and the error model, it becomes possible to relate
them by fault injections. A single fault injection consists of the following parts:

• reference to an error model implementation,

• reference to an error state occurring in this error model implementation,

• reference to the affected nominal component instance,

• reference to the affected data element,

• a fault expression, representing the effect of the fault.

These are the elements for performing model extension, as described in Section 3.3.

4.1.2 Complexity Analysis

Fault injection is not time nor memory consuming by itself. It does affect the
model extension process, which takes the fault injections, the nominal model and
the error model as inputs. Model extension takes O(n) time where n is the amount
of fault injections. Yet, the absolute time spent on model extension is neglectible
compared to the analyses described in this chapter, as the number of fault injections
is typically small and the analyses have a heavier time-complexity. A particular
choice of fault injections however affects the resulting extended model. If the
injected faults enable elaborate (recovery or degraded) behaviour, the state space
associated with the extended model increases significantly. This was also observed
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(a) Form for entering a single fault
injection.

(b) Overview of injected faults.

Figure 4.1: Fault injection in COMPASS.

during our case studies (cf. Chapter 6). We observed that fault injections increase
the amount of system behaviours, and hence its state space. The degree does not
necessarily correlate with the amount of fault injections, but rather with the kind
of fault injections. This observation is discussed in depth in Section 6.5.

4.1.3 Example

An example of a fault injection in COMPASS on the sensor-filter case study (cf.
Appendix A) is shown in Figure 4.1(a). It describes that whenever the sensor dies
(i.e. error state Dead in error model SensorFailures), the first sensor’s output (i.e.
port output of sensors.sensor1) sticks to 0. Other possible fault injections for the
sensor-filter case study are:

Error model Nominal model

Implementation State Instance Data element Effect

SensorFailures Dead sensors.sensor2 output 0
FilterFailures Dead filters.filter1 output 15
FilterFailures Dead filters.filter2 output 15

Once a fault is injected, it automatically becomes an enabled injection. This can
be verified by inspecting the checked box on the left in Figure 4.1(b), which
shows the list of fault injections. By enabling/disabling an injection, different fault
configurations can be explored and understood. A particular combination of fault
injections upon a model gives rise to a particular extended model, and this can be
inspected by viewing it in textual SLIM form (cf. Section 3.3).
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4.1.4 Discussion

The theoretically oriented discussion on fault injection coincides with that of model
extension, and as such is already part of Section 3.3. On a usability note, we
received feedback from engineers that our approach does not require that all error
states have faults injected. It can happen that an error state is entered, but no
faults effects are observed. In industrial practice, this is rather uncommon, since
error states typically have effects. We intentionally kept our original approach,
enabling the modeller to run analyses without the need for injecting all faults,
which is a typical use case for a model under construction.

4.2 Properties

The premise of an analysis is the hypothesis of a system’s behaviour, which needs
to be proven or rejected. With respect of analysing a SLIM model, the formal
shape of a hypothesis is dependent on the employed analysis. For most analyses,
the hypothesis is shaped as a property. In case of model verification, the model is
typically derived from design documentation, and the model needs to be checked
with the requirements. Each requirement is then represented by properties. Typic-
ally, detailed and specific requirements are mapped to a single property, whereas
more general requirements can be traced to multiple properties as they are aimed
to cover more of the system’s behaviour. For model validation, the model and
properties are typically not obtained from the design and the requirements. The
model is typically derived from the requirements and parts of the early design and
then needs to be checked with the stakeholder’s understanding. This means that
properties are coming from the user or stakeholder directly. This usually happens
during requirements engineering and early design, where both requirements and
design are not in their definitive stages, and formal analysis aids to their crystal-
lisation. For both verification and validation, property is a characteristic of the
model that we check for. They are cornerstone to analysis, and for most of them,
they are, together with the model, input to the analysis. Since the formal shape
of a hypothesis depends on the employed analysis, its use varies across different
analyses.

For formal analysis, properties need to be expressed formally, typically accord-
ing to a logic, like linear temporal logic (i.e. LTL) or computational tree logic (i.e.
CTL). These logics have however a steep learning curve to those unfamiliar with
notations from mathematical logic. Exposing them in their pure form, as employed
by academics, is likely to be disadvantageous to its acceptance into an engineering
process, where steep learning curves require a clearly quantified return on invest-
ment. In our approach, we implemented a middle-way, which balances the need
for formality, while keeping its format closer to engineering practice.
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4.2.1 Approach

Our approach is inspired by Dwyer et. al [DAC99], who developed a pattern-based
approach towards requirements specification. Their study, based on analysing
over 500 industrial requirements, revealed that 92% of them can be captured in
eight patterns. A pattern contains blank parameters, which have to be filled, i.e.
instantiating the pattern to a property. The pattern has a single interpretation, but
different notational expression, depending on the user’s familiarity. It can be noted
in structured (English) prose, or graphically in Graphical Interval Logic [Dil+94],
or as LTL or CTL formula. Due to these direct translations, a user unfamiliar with
LTL can prefer the structured prose instead. In our approach, we distinguish three
classes of patterns, namely:

Propositional These properties correspond to a proposition, like error = er-
ror:transmittedFault and are used for particular analysis like
fault tree analysis or failure modes and effects analysis.

Functional For performing qualitative analyses (that is, without any prob-
abilistic aspect), the properties should be expressed using
CTL/LTL patterns as given in Table 4.2.

Probabilistic For performing quantitative analyses that are probabilistic in
nature. They are outlined in Table 4.3.

The patterns have parameters to be filled up by the engineer. They are composed
of operators that connect atomic propositions, which may be the following:

• Ports, e.g. sc.ssc.port1, where sc is a subcomponent identifier, ssc is a
subcomponent of the implementation of sc and port1 is the port identifier.

• Data subcomponents, e.g. sc.data1, where sc is a subcomponent identifier
and data1 is the data subcomponent identifier.

• Constant values:

– Integers, e.g. 42,

– Reals, e.g. 42.001,

– Booleans, e.g. true,

– Enumeration literals, e.g. enum:C1, where C1 is the literal.

• Mode variables, e.g. sc.mode where sc is the identifier of a subcomponent
of the root component, representing the current mode of the subcomponent
sc.

• Mode names, e.g. mode:m1, where m1 is the mode.

• Error variables, e.g. error, referring to the current state of the error model
that has been associated with the root component.
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Table 4.2: The functional patterns for capturing properties.

Pattern Description Logic (CTL/LTL)

Global absence The atomic proposition φ never
holds.

∀�¬φ
�¬φ

Global existence The atomic proposition φ shall even-
tually hold.

∀♦φ
♦φ

Global universal The atomic proposition φ globally
holds.

∀�φ
�φ

Global precedence The atomic proposition φ globally
precedes ψ .

¬∃(¬φ
⋃

(ψ∧¬φ))
(�¬ψ)∨ (¬φ

⋃

ψ)
Global response Whenever the atomic proposition φ

holds, this is eventually responded
with ψ .

∀�(φ =⇒ ∀♦ψ)
(�φ =⇒ ♦ψ)

Exists responsea Whenever atomic proposition φ
holds, it may be eventually responded
with ψ .

∀�(φ =⇒ ∃♦ψ)

a This is a CTL-only pattern. It is not available for activities that require LTL
patterns.

Table 4.3: The probabilistic patterns. p is the probability of interest.

Pattern Description Logic (CSL)

Probabilistic
invariance

The invariant φ holds continu-
ously between t1 and t2 with
probability p.

P=p(�[t1,t2]φ)

Probabilistic
existence

φ will eventually become true
within t1 and t2 with a prob-
ability p.

P=p(♦[t1,t2]φ)

Probabilistic
until

φ will eventually become true
within t1 and t2 after ψ held
continuously with a probability
p.

P=p(ψ
⋃[t1,t2]φ)

Probabilistic
precedence

φ precedes or enables ψ
within t1 and t2 with a prob-
ability p

P=1−p(¬φ
⋃[t1,t2](¬φ ∧ψ))

Probabilistic
response

After φ holds, ψ must become
true within t1 and t2 with a
probability p.

P=1�(φ =⇒ P=p(♦[t1,t2]ψ))
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• Error state names, e.g. error:e1, where e1 is the error state.

4.2.2 Complexity Analysis

The translation of a pattern to its logical form is one-to-one. The complexity of
the translation process is therefore constant time. In the tool, there is additionally
a check on the validity of the atomic propositions by analysing the model under
analysis. This check, which computes all valid atomic propositions and their cor-
responding types is linear to the size of the model. The absolute time needed for
both the translation and the check is neglectible compared to the analyses in this
chapter.

4.2.3 Example

Properties that can be used for the sensor-filter case study (cf. Appendix A) are:

• Propositional value >= 15, i.e. that the sensor fails.

• Propositional value = 0 or value >= 15, i.e. that either the sensor or filter
fails.

• Global response that the monitor reacts on filter failures, i.e.

φ ≡ value = 0 and filters.mode = mode:Backup
ψ ≡ alarmF

• Probabilistic existence that the sensors or filters die within 76 time units,
i.e.

φ ≡ (sensors.sensor1.error = error:Dead and
sensors.sensor2.error = error:Dead) or
(filters.filter1.error = error:Dead and
filters.filter2.error = error:Dead)

t1 ≡ 0
t2 ≡ 76

• Probabilistic precedence that the sensor bank fails before the filter bank fails
within 512 time units, i.e.

φ ≡ sensors.sensor2.error = error:Dead
ψ ≡ filters.filter2.error = error:Dead
t1 ≡ 0
t2 ≡ 512
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4.2.4 Discussion

Patterns have been used in many areas as a solution to reoccurring problems.
For software specifically, software design patterns have been thoroughly investig-
ated [Gam+95] and applied to software engineering practice. The first work we
are aware of that introduced the concepts of patterns to formal requirements is
that by Dwyer et. al [DAC99]. Our approach can be considered as an implement-
ation of that work. We added an additional pattern, the existential response, to
cover our own anticipated need for checking whether the system has a possibility
for repair. The work by Dwyer et. al led to several derivative works [Kon+03;
Smi+02], among which the probabilistic one by Grunske [Gru08] is used by us as
well.

Regardless of the pattern system used, the choice of supported atomic propos-
itions correlates directly to the modelling language. In our case, data elements
and modes can be referred to. In our case studies (cf. Chapter 6), this has shown
to be sufficient. Shortly after development of the COMPASS toolset, an idea was
raised to support events as atomic propositions as well. An issue with that idea
that needs to be resolved is whether a referred event in an atomic proposition
relates to enabledness of the transition, or whether it refers to a state that directly
follows after the occurrence of the event. Also, its exact use cases need to be
further investigated.

4.3 Simulation

A simulation produces a trace of states occurring in the order from the initial
state. It is one of the most natural types of analysis. Simulation (cf. Figure 4.2)
is typically used as a sanity check before more resource-consumptive analyses are
run. In our approach, we defined three ways of generating a simulation:

• randomly, where at each state, a successor state is randomly chosen from the
one-step reachable states,

• step-by-step, where at each state, a successor state is chosen by the user from
the one-step reachable states,

• constraint-based, where at each state, a successor state is determined by
user-defined constraints on the one-step reachable states.

Simulation can be performed with fault injections or without, allowing for explor-
ing purely nominal behaviour or the extended behaviour.

4.4 Model Checking

Whereas simulation explores a single trace, model checking exhaustively explores
all traces. If fault injections are enabled, these traces also account for behaviours
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Figure 4.2: Trace of a simulation from the COMPASS toolset.

due to fault effects. In that respect model checking resembles a form of exhaust-
ive use case testing (cf. Section 2.1.4). Model checking is however precise and
systematic. It avoids overlooking use cases that lead to difficult to spot boundary
conditions (cf. boundary analysis in Section 2.2.4). The set of all traces can be
visualised as state space. For realistic models, the state space easily grows into an
order of trillions states, making them difficult to visualise in a sensible manner for
manual inspection. Hence, instead of visualising the state space, we use it to check
a property (cf. Section 4.2) against it. If the property holds for the state space, it is
a property that holds for the model. Otherwise, the model checker can provide a
counterexample describing a trace that violates the property. Model checking is typ-
ically used to verify the functional correctness, in which case properties represent
desired global behaviour.

4.4.1 Approach

Model checking is formally defined as M |= φ, where M is the model and φ is the
property to be verified. The model M is our case expressed in SLIM, i.e. MSLIM.
The property φ is expressed in a property pattern (cf. Section 4.2) which has
a direct CTL equivalent. Instead of model checking the model in SLIM directly,
we follow a translation based approach. Using SLIM’s formal semantics (cf. Sec-
tion 3.4), we map MSLIM to NuSMV’s input language, i.e., MSMV. This way, we
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use NuSMV’s existing model checking algorithms to model check SLIM. In case a
counterexample is returned by NuSMV, all NuSMV symbols are remapped back to
their SLIM counterparts.

We distinguish and two techniques for checking M |= φ, namely one using
binary decision diagrams (BDD) as data-structures for representing the state space,
and one using SAT-formula’s to represent (a part of) the state space. Both ap-
proaches have their advantages and disadvantages.

The BDD-based technique is intrinsically limited to finite structures, and hence
to the finite part of SLIM, i.e. models containing real variables and trajectory
equations are not suitable for this approach. Early phase B design information
typically does not describe system behaviours in such detail, and rather expresses
a finite abstraction of this, which are perfectly modelled using the finite part of
SLIM.

The SAT-based technique handles both finite and infinite structures, and hence
covers SLIM’s full language. It encodes all possible traces up to a given bound,
and checks whether a property holds. If it does, it is ensured that the property
holds up to the depth given by the bound. For behaviours beyond that bound,
the correctness is inconclusive. If a violation is detected, and a counterexample is
generated, is it ensured that it is a correct counterexample. For this, the SAT-based
approach is typically suitable for falsification of properties, especially if the user
suspects that the violation of the property occurs early in the state space.

4.4.2 Complexity Analysis

The complexity for translating a SLIM model to NuSMV takes linear time in the size
of the model. This is neglectible compared to the complexity of model checking.
BDD-based model checking uses the CTL representation of the properties since
all the patterns in Section 4.2 have a mapping to CTL. CTL model checking has a
complexity in O(|TS| · |φ|) where |TS| is the size of the state space and |φ| the size
of the formula [BK08]. For the SAT-based techniques, this is different. It is based
on [Bie+99], which encodes a LTL model checking into a Boolean satisfiability
problem. LTL model checking is known to be PSPACE-complete [BK08]. Boolean
satisfiability is however known to be NP-complete, meaning that the SAT-based
technique of LTL model checking is NP-complete as well [Bie+99].

4.4.3 Example

From the properties in Section 4.2.3, the global response property is amenable for
model checking the sensor-filter model (cf. Appendix A). It states that whenever
value = 0 and filters.mode = mode:Backup, this is eventually responded by
alarmF. As the sensor-filter model is a finite model, BDD-based techniques are
used by default, although SAT-based techniques can be chosen instead. The prop-
erty as it is holds on the model. If we however change φ to value = 0, and
model check the resulting property against the sensor-filter model, then we get a
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Figure 4.3: A model checking counterexample whether the filter alarms are raised
when value drops to 0.

counterexample (cf. Figure 4.3). The counterexample shows that at the second
state (step 2), value drops to 0. This is however not responded by alarmF, as the
counterexample shows a loop (indicated by an downwards arrow) between the
states in step 16 and step 17 where alarmF stays false.

4.4.4 Discussion

During one of our own internal side-track projects [Ode10], we occasionally en-
countered an inconsistency between outcomes of models checked with the SAT-
based technique and the BDD-based technique. After inquiry with FBK, we were
informed that this is related to deadlocks and the implementation of the model
checking algorithms. When the BDD-based algorithms are used, the exploration
of the state space is restricted to infinite paths, disregarding paths that lead to a
deadlock. If a property is only violated on paths leading to a deadlock, NuSMV
would not detect it, and it reports that the property holds for the model. When
SAT-based algorithms are used, the exploration of the state space also regards paths
leading to deadlocks. If such a path is violating the property, the model checker
would report this as a counterexample. It can hence happen that the BDD-based
algorithms report that a property holds, whereas the SAT-based algorithms do not,
while checking the same model. The assumption of NuSMV is however that the
model is free of deadlocks, and when this is the case, the model checking results
are consistent. This reason is additional to the traditional scope of deadlock check-
ing, namely whether the reactive system does not terminate. This behaviour is also
a FAQ-point on NuSMV’s FAQ page at http://nusmv.fbk.eu/faq.html.

Given the choice between the two techniques for model checking, SAT or BDD-
based, there are three main concerns of preferring one over another. The first
concern may be that of computing resources. Depending on the model, the BDD
representing its state space may grow in unpredictable ways. This growth de-
pends heavily on the chosen variable ordering. With the SAT-based technique, the
SAT formula grows too, but in a more predictable manner. It has been shown
earlier [Bie+99] that SAT-based techniques can be more efficient than BDD-based
techniques on particular models. The second concern is that of expressiveness.

http://nusmv.fbk.eu/faq.html
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The BDD-based technique accepts only finite SLIM models, whereas the SAT-based
technique accepts the full scope of SLIM, including the parts induced by trajectory
equations and the use of real variables. The third concern is that of completeness.
BDD-based techniques provide conclusive results, whereas SAT-based techniques
by default remain inconclusive if the property is not falsified. An alternative SAT-
approach, which is included in our work, is the Simple Bounded Model Checking
technique. It uses a different encoding of the model checking problem to SAT, and
can decide whether the bound is sufficient for completeness. This however only
works for the finite part of SLIM, which is generally better served by the BDD-based
technique .

When SAT-based techniques are used for checking hybrid SLIM models, three
intertwining modelling issues needed to be accounted for, otherwise the checking
may at first sight deliver unexpected outcomes. The first are Zeno cycles. The
notion of “Zeno behavior” refers to traces involving an infinite number of discrete
(i.e., mode transition) steps within a bounded period of time. An example of this is
shown in Listing 4.1 in case a = c = 0. A cycle between m0 and m1 can be taken
infinitely often within a bounded period of time. In the example, it even occurs
without time passing.

Listing 4.1: Example exhibiting a Zeno cycle, a time lock and time divergence.

1 system implementation Timed.Imp
2 subcomponents
3 t0: data clock;
4 t1: data clock;
5 modes
6 m0: initial mode while t0 <= b;
7 m1: mode while t1 <= d;
8 transitions
9 m0 -[when t0 >= a then t1 := 0]-> m1;

10 m1 -[when t1 >= c then t0 := 0]-> m0;
11 end Timed.Imp;

Zeno cycles contradict the natural assumption that only finitely many events can
happen in a finite amount of time, which is valid for any realistic system. They
occur due to abstraction, where the timed behaviour of the actions occurring in
the Zero cycle are underspecified. Zeno cycles can be difficult to spot. They can
be detected syntactically by checking whether the model meets the Strong Non-
Zenoness property [Tri99]. In SLIM, one can check for this by checking every
component of the system and on each cycle in the mode transition diagram of that
component, there is a clock variable t that is reset, and that occurs in a transition
guard of the form t> k or t>= k, where k is a strictly positive constant. A model
that has the Strong Non-Zenoness property is ensured to be free from Zeno cycles.
The property is sufficient but not necessary: there exist non-Zeno models which
do not meet the Strong Non-Zeno property. Weaker forms of the property have
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been investigated which take additional factors into account, like synchronisation
between components. In [BG06], a sufficient-and-necessary condition is proposed
by a combination of static analysis and reachability analysis. It is proven to be
correct on a subclass of models expressible in SLIM, namely only those with clocks
(thus not continuous variables), resets are zero-valued and that mode invariants
are right-closed intervals. In [HS11], this is further investigated and shown that the
time-complexity for detecting Zeno cycles depends on the coarseness of abstraction
employed for representing the state space. It is not (yet) known how to perform a
precise Zeno cycle detection on more expressive (i.e. hybrid) models.

An additional potential issue with SAT-based techniques is that of deadlocks. A
deadlock occurs in a state when for that state there is no transition possible, either
by contradicting restrictions by the mode triggers and guards, or by the mode
invariants. In Listing 4.1, a deadlock occurs when a = 2 and b = 1. This is the
simplest case. In more complicated settings, deadlocks can emerge from improper
synchronisation between several components. The main problem with deadlocks
is that the corresponding manual detection of them is non-compositional: the
combination of two (or more) subsystems without deadlocks can result in dead-
locking behaviour. Many forms of reachability analysis include the possibility of
detecting deadlocks. For the purely real-timed case especially, the region-graph
construction by Alur et al. [ACD93] can be used to detect sink nodes, which cor-
respond to deadlocked states. Subsequent investigations have been investigated on
more different state space representations, like zone-based representations. The
work by [Tri99] from 1999 provides an overview on those. In a recent work by
[HSW12], a precise characterisation of the coarsest abstraction has been determ-
ined while still preserving the correctness of reachability (and hence also deadlock
checking). Deadlock detection techniques for more generalised hybrid systems are
under active research. The work by [Aba+09] hooks into that area.

The third issue with SAT-based techniques is that of time divergence. This
happens on infinite paths where time is allowed to grow arbitrarily. In Listing 4.1 a
time divergent path occurs when the transition effect t1 := 0 and the mode invari-
ant t1 <= d are removed. Time divergence can easily be excluded by requiring for
each component of the system that on every cycle in its mode transition system,
every clock is reset at least once. This can be checked syntactically. As far as we
know, there are no sufficient-and-precise conditions and algorithms for detection
of time divergent traces.

The main issue of SAT-based model checking, is that traces that either are a
Zeno cycle, deadlocking or time divergent, are not part of the (bounded) state
space expressed by the SAT-formula. If a property does not hold on such traces, but
it does on all others, then the property is considered to be valid for the model. If
all traces in the model are either Zeno cycles, deadlocking or time divergent, then
the set of traces in the (bounded) state space is empty and the property trivially
holds for it. This might be perceived as unexpected by the user, and hence it is
wise to check whether the model can have such behaviours. Detection by itself
is useful, but not sufficient for industrial relevance. A diagnostic means, like a
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counterexample, is necessary that demonstrates and proves the existence of the
trace and also provides useful input towards the engineer to correct the model
accordingly.

A more general issue is that of fairness constraints. During our case study
(cf. Chapter 6), they could be useful to ensure that components would not starve.
They can be expressed at the level of NuSMV, which is not engineer-friendly. An
intermediate solution is to adapt the model and ensure a scheduling behaviour
where components cannot starve. It however increases the size and behavioural
complexity of the model.

4.5 Fault Tree Generation

Fault trees are the artefacts of choice when analysing safety-critical systems [ECSS-
Q-ST-40-12C; NASA/SP-2010-580]. Originally developed in 1961 by H.A. Watson
to study the Minuteman Launch Control System, it was picked up quickly by Boeing
and the nuclear power industry. Fault tree analysis results in a fault tree, which
describes how combinations of error events relate to a top-level event, which
typically is a fault or failure state of the system. In the original fault tree definition,
which we shall refer to as static fault trees [BCS07], the relations are expressed
in OR and AND gates. In case of an OR gate, the gate fires if either of its children
fire. In case of an AND gate, the gate fires if all its children fire. An extension
of static fault trees are dynamic fault trees [BCS07]. Dynamic fault trees provide
additional gates and types of basic events, namely cold, warm and hot basic events
and priority AND, functionally dependent, voting and spare gates. These additions
provide a more fine-grained expression of failing behaviour.

Fault tree analysis is typically performed several times during a space system
engineering life-cycle. The first time is during the early phase B, after which the
fault tree is subsequently refined. The analysis is often done manually by reasoning
top-down over the product tree. Starting from a system-level failure, its possible
causes are deduced in terms of subsystem-failures and so on (see also Figure 2.1
for the product tree of a space system). The quality and fidelity of the resulting
fault tree depends heavily on the skill of the safety engineer. The effort itself is
time-consuming for large and complex systems. Failures may occur at all levels
of the system, and may interrelate in unique ways to the system-level failure of
interest, and hence require a full system-level understanding of its degraded be-
haviour. Despite the time-consuming effort of developing a fault tree, its benefits
have repeatedly proven itself, and is therefore the safety analysis of preference.
The fault tree itself is used for understanding critical events. This itself supports
the understanding of design choices and especially its consequences from a safety
and dependability perspective. It also enables prioritisation of development, veri-
fication and validations efforts, as to put focus on critical parts of the system. It
is further amenable to quantification of technical risk through probabilistic risk
assessment, and an automated assessment approach is described in Section 4.6.
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Finally, during operations it is used as a diagnostic means, helping to understand
causes for observed degraded system behaviours during operations.

4.5.1 Approach

Our approach generates a fault tree in an automated manner from a SLIM model,
instead of manually analysis and construction. The generation approach is built
upon FSAP [BV03a]. The inputs are an extended model (errors events need to be
present that affect the system) and a top-level event φ. The latter is represented
as a propositional property (cf. Section 4.2), and represents a particular (set of)
fault/failure state(s) of interest. All paths that lead to a state satisfying φ are those
leading to the fault/failure state(s) of interest. Error events, from the error model,
occurring on those paths are an explanation why φ occurred from a fault/failure
perspective. A set of such error events is called a cut set. The occurrence of the
top-level event can be considered as a Boolean formula f where the events in a
cut set are conjuncted and where the cut sets themselves are disjunctive. From
the set of all paths leading to φ, it is possible that not all events in a cut set are
causally related to φ. It could be that another path exists to a state satisfying φ
from which a proper subset of the cut set can be derived. Such a smallest subset is
called a minimum cut set. To determine the minimum cut sets of a fault tree, the
Boolean function f is minimised using circuit minimisation algorithms [Weg87].
The resulting function is then represented as a fault tree.

The algorithm for fault tree generation by [BCT07] does not store all paths, as
this would become easily intractable memory-wise for larger models. Instead, it
adds an additional variable, called a history variable, for each possible error event.
The history variable is initially false. When the error event occurs, the associated
history variable turns and stays true. Then, for a state that meets φ, the cut set
can be obtained by looking up the error events for which its history variable is true.
Our approach includes the algorithm by [BCT07] which considers ordering of fault
events, enabling the generation of priority AND gates (PAND). The technique for
detecting the ordering of events is described in [BV03b].

4.5.2 Complexity Analysis

The computation of the cut sets is a specific instance of reachability analysis of
♦φ which has a time complexity of O(|TS|), where TS is the size of the state
space. The state vector for fault tree generation is slightly larger than that for
reachability analysis on a SLIM model, as for each error event, an additional history
variable is added. Once the cut sets are computed and the Boolean formula f is
constructed, this formula is minimised. This is the same as the circuit minimization
problem [BCT07] whose time-complexity is known to be NP-hard in the length
of the unminimised Boolean formula representing the fault tree [Weg87]. This
is typically not a dominating factor, since the size of the state space is typically
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Figure 4.4: Dynamic fault tree generated from the COMPASS toolset. The gate
marked with Top_Level_Event is an OR-gate. The gate marked fault_cfg_1 is a
PAND gate. Events E1, E2 and E3 are basic events and correspond respectively to
sensors.sensor1.die, sensors.sensor1.drift and sensors.sensor1.dieByDrift.

manifold larger than the size of the unminimised Boolean formula resulting from
reachability analysis.

4.5.3 Example

An example fault tree from the sensor-filter model (cf. Appendix A) is shown in Fig-
ure 4.4. It is a dynamic fault tree obtained from the top-level property value >= 15,
a propositional property. It consists of two minimum cut sets, which are called
fault configurations. They are {E2, E3} and {E1}. The gate on fault_cfg_1 is an
example of a fault PAND gate. It means that there exists a path towards a state on
which value >= 15 holds, and on that path, event E2 occurs before the occurrence
of event E3. If a static fault tree were generated for the same top-level event, the
PAND gate would be an AND gate.

4.5.4 Discussion

A fault tree can be interpreted as an over-approximation of traces that all lead to
the top-level event and represented in a compact manner using AND and OR gates.
It can be generated using BDD techniques, provided the SLIM model is finite (cf.
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Section 4.4), or using SAT-techniques. For the latter, a bound must be given, which
may lead to incompleteness of the generated fault tree.

Fault tree analysis is closely related to failure modes and effect analysis, and
this relation is discussed in Section 4.8. Fault tree analysis is also closely related to
performability analysis, and this relation is discussed in Section 4.12.

In practice, fault trees are developed (manually) in a top-down manner. The
occurrence of a top-level event at system-level is described as a fault tree with basic
events representing subsystem-level faults. Those basic events are again considered
to be top-level events for the subsystem, and in this way, the fault tree can be
recursively constructed up to the atomic components. This compositional nature is
one reason why fault tree analysis has been successful in industrial practice, since
it scales easily with increasing system complexity.

Concerning the generation of fault trees from AADL models, a closely related
work is that by [JVB07] and an extension [Li+11] to that also generates PAND-
gates. Both uses a different semantics for error modelling and nominal behaviour.
In fact, the error behaviour semantics are only interrelated with the system’s topo-
logy. It does not account for the intertwining with nominal behaviour, and those
effects on the fault tree structure. In our approach, we account for the intertwin-
ing of error behaviour, nominal behaviour and the system’s topology by using the
extended model.

4.6 Probabilistic Fault Tree Evaluation

Probabilistic fault tree evaluation computes the probability that the top-level event
occurs. This quantification of the technical risk supplements the benefits of fault
tree analysis (cf. Section 4.5). In engineering practice, this is also referred to as
probabilistic risk assessment.

In engineering practice, the probability of the top-level event should be used
to compare alternative designs, or ordering criticalities of system elements within
the same system. The quantification is therefore a relative measure for comparing
against a particular baseline. This interpretation comes from the (lack of) accuracy
of the used failure rates that are input to fault tree evaluation. A failure rate is the
frequency with which a component fails. It is typically expressed in FITs. A FIT is
a unit describing the amount of expected failures in one billion hours of operation.
While typically the failure rates give rise to a Poisson process describing purely
the erroneous behaviour, distributions other than the exponential, e.g. Weibull
or Gaussian distributions, are occasionally applied too. Accurate failure rates are
difficult to obtain in the space domain. The components tend to be tailored and
specialised to the space domain and hence the equipment is manufactured in small
batches. Also, they are designed and manufactured with different environmental
hazards than consumer electronics. This negates the ability to collect data sets
of failing behaviour, and derive statistically confident failure rates. In practice
therefore, an estimation of failure rate is used based on anticipated environmental
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factors, usage characteristics, quality of the manufacturing process and the quality
of the used material (cf. [MIL-HDBK-217F]). A conservative attitude is taken in
this, leading to rather conservative failure rates. The probabilities of top-level
events computed from such sources generally provide an overly pessimistic view,
ensuring unaccounted risk is not taken.

4.6.1 Approach

In our approach, all failure rates have to be exponentially distributed, such that
a fault tree can be mapped to a continuous-time Markov chain. Inputs are a
fault tree, the mission time and the failure rates of the fault tree’s basic events.
The latter are automatically derived from the SLIM model using the occurrence
keyword. Then the probability is computed that the top-level event occurs between
0 and the given mission time. The latter is typically the anticipated economic
lifespan of the system. Using the mapping of dynamic fault trees to Input/Output
Interactive Markov Chains (I/O IMC’s) [BCS07], the underlying Interactive Markov
Chain is obtained. The mapping considers each gate and basic event as a single
I/O IMC. It is structured to have input actions which are fire events by children
gates/events, and an output action, indicating a fire event by the gate/event. The
event of interest is then the output action representing the top-level gate. The
state reached by that output action is marked by an unique atomic proposition,
let us say γ. A dynamic fault tree is then a set of I/O IMC’s that communicate
with each other and thus is composed to a single I/O IMC, which again gives rise
to an IMC. Weak bisimulation simulation is then performed on the IMC [Her02]
to obtain the underlying Continuous Time Markov Chain (CTMC), after which
the probability of eventually reaching γ is computed using probabilistic model
checking techniques [Bai+03].

4.6.2 Complexity Analysis

Each basic event and gate in the fault tree is one-to-one mapped to an I/O IMC,
resulting in a set of I/O IMCs. As these I/O IMCs are composed together as
asynchronous processes that synchronise on their common interaction alphabet,
the composed I/O IMC M could be a blow-up process, depending on the fault
tree. Weak bisimulation minimisation over M occurs in two phases, namely the
computation of the transitive closures of internal transitions followed by parti-
tion refinement. The former can be computed in O(n2.376) and the latter can be
computed in O(m · log n), where m is number of transitions and n is the num-
ber of states [Her02]. The resulting CTMC M ′ is then subjected to a probabilistic
reachability analysis which can be reduced to a transient analysis. We use the
Krylov-based method described in Chapter 8 whose time-complexity is discussed
in Section 8.3.2.
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(b) I/O IMC for the basic event of E2.

E2? E3? cfg_1!

E3?

(c) I/O IMC for the PAND gate.

Figure 4.5: Example I/O IMC’s for the fault tree depicted in Figure 4.4.
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cfg_1!dieByDrift
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Figure 4.6: Composition of the I/O IMC’s associated with basic events E2, E3 and
the PAND gate.

4.6.3 Example

Consider the dynamic fault tree of Figure 4.4. The basic event E2 is mapped to
the I/O IMC shown in Figure 4.5(b). The other basic events are mapped similarly.
Fault configuration 1 is mapped to the I/O IMC shown in Figure 4.5(c). The I/O
IMC for the top-level event is shown in Figure 4.5(a). When the I/O IMC for fault
configuration 1 is composed with the I/O IMC’s associated with basic events E2
and E3, the result is the I/O IMC shown in Figure 4.6. Once all I/O IMC’s derived
from the fault tree are composed, all action transitions are made hidden and weak
bisimulation minimisation is performed. The result is the continuous-time Markov
chain shown in Figure 4.7. Given a mission duration parameter t, the probability
for the CSL formula P=p(♦[0,t]γ) is computed, which is the probability for the
top-level event to trigger.
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Figure 4.7: Continuous-time Markov chain underlying the fault tree in Figure 4.4.
The rates associated with dieByDrift, die, drift are found in Appendix A.

4.6.4 Discussion

Static fault trees are combinatorial, and technically it is not necessary to map them
to a Markov chain for their probabilistic evaluation. This allows them for prob-
abilistic distributions other than the exponential one, like a Weibull or Gaussian
distribution. The probabilistic evaluation is then simply computing the probab-
ilities of the basic events given a mission time, and multiply/add those discrete
probabilities depending whether they are respectively connected to AND or OR-
gates. We intentionally restricted ourselves to exponential distributions, allowing
us to support dynamic fault trees. In the latter case, dynamic fault trees bring
ordering information in addition to the combinatorial information captured by
static fault trees. In order to reason probabilistically over ordering of events, the
memory-less property of the exponential distribution is convenient.

A major issue with dynamic fault trees is that of non-determinism. Depending
on how the dynamic fault tree is structured, weak bisimulation minimisation might
not result into a deterministic IMC. This essentially means that depending on the
choice of occurrence of events, the probability of the top-level event might differ.
Possible scenarios for this are outlined in [Car11]. In our approach, we stop the
evaluation and notify the user that the analysis cannot be continued. In 2008,
when we designed and implemented dynamic fault tree evaluation, that was state
of the art research. In 2010 however, a method was published to compute min-
imum and maximum probabilities [ZN10]. A minimum probability would indicate
that from all the choices that one could take at non-deterministic states, that prob-
ability would be the smallest possible probability for the top-levent event to trigger.
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The same holds for maximum probabilities and largest possible probability. This
work was further extended by [Guc+12] which describes how to compute minim-
um/maximum expected times and long-run averages on IMCs. In [Car11], the use
of these methods was successfully investigated to non-deterministic dynamic fault
trees. It is possible to retrofit our approach with these improved methods.

An issue with fault trees and their evaluation is whether the evaluation can
be handled compositionally. With static fault trees, this is industrial practice. A
system-level fault typically follows the product tree decomposition and when prob-
abilistic risk assessments are conducted, they are typically done at each level of the
system. As long as the probabilities were computed with the same mission time,
the combinatorial nature of AND and OR-gates allows the probabilities to be com-
bined through respectively multiplication and addition. With dynamic fault trees,
this is not possible. As the ordering of events also imply a possibility of different
timings between them, the probability of the top-level account need to account
for all orderings of events and their possible timings. This information is only
present when the full dynamic fault tree exists, hence the probabilistic assessment
of dynamic fault trees cannot be trivially divided and composed.

4.7 Probabilistic Fault Tree Verification

Probabilistic fault tree verification is a generalisation of evaluation (cf. Section 4.6).
Instead of computing the probability of the top-level to occur, which is a probabil-
istic existence property (cf. Section 4.2), any arbitrary probabilistic property can
be verified. The atomic propositions are expressed over gates. The approach works
over both static and dynamic fault trees. It is especially useful to assess whether
particular gates fire before other gates, or whether they fire in a particular order.
Such assessments have no equivalent in industrial practice.

The approach is similar to probabilistic fault tree evaluation up to the point
where atomic propositions are added. For evaluation, there is only one atomic
proposition, namely that the top-level event fires. In Section 4.6, this was referred
to as γ. For verification, the atomic propositions refer to fault configurations. For
example, the probabilistic response pattern (cf. Section 4.2) can be used on the
fault tree in Figure 4.4 where φ ≡ fault_cfg_1 and ψ ≡ fault_cfg_2. These
atomic propositions are then added after the respective gate has fired. For φ, the
state after the cfg_1! event in Figure 4.5(c) would be labelled with the atomic
proposition fault_cfg_1. The resulting continuous-time Markov chain obtained
through weak bisimulation minimisation can differ from the one used for fault tree
evaluation due to the difference of labelling.
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4.8 Failures, Modes and Effects Table Generation

Failure modes and effects (FMEA) table outlines the possible failure modes and
their effects on the system. It is similar to FMECA, but without the criticality ana-
lysis for each failure mode and effect combination. It is the inductive counterpart
of fault tree analysis. The analysis, which in industrial practice is manually done,
starts with identifying the possible failure modes. From these failure modes, the
possible effects are analysed. FMECA/FMEA tables, along with fault trees, provide
necessary input to the development of the fault management system. Its bene-
fits are similar to those of fault tree analysis, but is different as it is an inductive
technique.

4.8.1 Approach

The necessary inputs for FMEA table generation is the extended model, a set of pro-
positional properties that express the possible failure effects, and a cardinality that
represents the maximum number of error events for constituting a particular fail-
ure mode. Using the same algorithm as for fault tree generation (cf. Section 4.5),
the cut sets are determined. For FMEA, this is a bit simpler, since a cardinality is
provided which bounds the size of the cut sets. The result is a table in which each
row indicates a fault configuration its associated failure effect.

Three options are provided to refine the default generated FMEA table. One
is the cardinality. When this is set to 1, the generation considers single-faults and
effects only. It is however possible that due to fault management strategies, failure
effects only become emergent after multiple failures. By increasing the cardinality,
these failure effects can be detected. The second option is the dynamic option.
Its purpose is similar to dynamic fault trees, namely considering the ordering of
events occurring in a fault configuration. The occurrence order of the resulting
failure mode needs to be read from left to right. The underlying algorithm to detect
orderings is also the same as for dynamic fault trees. The last option is compacti-
fication. It reduces the FMEA table by detecting entries whose fault configuration
is a proper subset of another fault configuration with the same failure effect. This
implies that other failures are superfluous to the failure effect. Compactifaction
weeds these entries out.

4.8.2 Complexity Analysis

FMEA table generation uses the same approach for cut set computation as for fault
trees (cf. Section 4.5). The time complexity for this is O(|TS|), where |TS| is the
size of the state space. All cut sets whose size is larger than the given cardinality
are omitted afterwards.
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4.8.3 Example

Examples of generated FMEA tables is shown in Figure 4.8. They are all gener-
ated from the failure effect value >= 15 or value = 0. For cardinality one (cf.
Figure 4.8(a)), two entries are shown, namely either first sensor dies, or that the
first filter dies. When cardinality two is considered (cf. Figure 4.8(b)), entry 6
shows that the failure effect can also occur by a death by drift and drifting. If
the dynamic options would be chosen, the occurrence of this fault configuration
would be detected and displayed as drift & dieByDrift. The compactified version
of Figure 4.8(b) is shown in Figure 4.8(c), and is substantially smaller. Entries
like 7 and 8 in Figure 4.8(b) are also covered by the single fault configuration
filters.filter1.die.

4.8.4 Discussion

FMEA and FTA are closely related. In a typical space system engineering process,
they supplement each other as FMEA provides a bottom-up reasoning of failures,
whereas FTA provides a top-down reasoning of failures. In the former, the direct
failure impact is typically more emphasised, whereas in the latter, the indirect
failure impact by fault propagation is accounted for. In this perspective, an FMEA
table provides information that is close to understanding local fault effects, and
hence allows engineers to design means to detect and mitigate them. A fault tree
on the other hand describes how global failure effects are derivable from local
faults. The local fault effects are then merely described in higher-level fault effects.
In our approach, the top-level events and the local effects are treated equally,
and thus only error events that relate to the given effects given by propositional
propositions are detected. In [Ern12], a method of impact of isolation over SLIM
models is described, which can extract local effects from SLIM models, and its
results are more similar to the FMEA tables that are obtained through manual
analysis.

4.9 Fault Tolerance Evaluation

Fault tolerance evaluation analyses a set of generated fault trees on their cut sets.
For the same system different top-level events could be triggered by the same
minimum cut set. To evaluate the fault tolerance, it is desired to understand the
unique minimum cut sets, and especially their size. In our approach, fault tolerance
is computed as the amount of unique minimum cut sets given a set of fault trees,
and then ordered by their cardinality. For example, for the singleton set consisting
of the fault tree depicted in Figure 4.4, there is one unique minimum cut set of
cardinality one, and one unique minimum cut set of cardinality two. It can be
concluded with the given singleton set, there is no single-fault tolerance. This
evaluation is performed in linear time to the number of cut sets in all fault trees.
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(a) Cardinality 1

(b) Cardinality 2

(c) Cardinality 2 and compactification

Figure 4.8: Generated FMEA tables from the failure effect
value >= 15 or value = 0. In the screenshots, the failure effect column is
omitted for readability.
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4.10 Diagnosability

When a system is monitored, by either an operator or another system, it is im-
portant to know whether sufficient information is exposed by the system for the
monitor to derive valid conclusions regarding a system’s state. For spacecraft op-
erators, the available means for (correct) telemetry are essential for obtaining a
quick understanding of the system under operation. If particular telemetry is not
available, a memory dump of the spacecraft needs to be commenced, and the
dump, which is typically sizeable, needs to be analysed. The additional time and
resources needed puts pressure on the time-constrained schedule of spacecraft op-
erators. In case the system (i.e. the plant) is monitored by another system, e.g. a
fault management system, then having sufficient observables is essential for distin-
guishing failures and nominal from non-nominal states. If insufficient observables
are designed for during the design of the nominal behaviour, then observability
issues typically arise during the design of the fault management system. In the
worst-case, the nominal design has to be modified, whose changes ripple through
(and possible delay) the overall system development schedule. For this reason, the
nominal system is typically designed to be overly diagnosable, i.e., there are more
observables present than needed to distinguish failures, nominal and non-nominal
behaviour. This however adds unnecessary design complexity.

Diagnosability analysis can be used to check whether a model representing the
system provides sufficient information for distinguishing a diagnosis condition of
interest. If it is, alternative less complex models with different (and perhaps less)
observables can be constructed and analysed, to see whether they provide sufficient
diagnosability characteristics. In case the system is insufficiently diagnosable, the
analysis provides an counterexample. It can be used to understand which parts of
the design are responsible for the insufficient diagnosability.

4.10.1 Approach

We perform diagnosability analysis by the approach of [CPC03]. Data ports tagged
with observable are taken as the points which can be used by the observer (e.g.
operator or a monitoring system) to infer a diagnosis. Let O = {o1, . . . , on} be a set
of all observable data ports occurring in the model. A particular condition that has
to be diagnosed is provided as a propositional property φ, e.g. the occurrence of a
failure. The diagnosis condition is to distinguish the occurrence of a failure φ from
the absence of a failure ¬φ using only information derived from the observables.
This can be computed by partitioning the set of all reachable states into two sets,
namely the states that satisfy φ and the states that satisfy ¬φ. If the former set
does not intersect with the latter set with respect to the valuations on O, then we
can conclude that φ is diagnosable. If however there is a non-empty intersection,
then it means there are two reachable states which have the same valuation on O,
but that one state satisfies φ and the other satisfies ¬φ. Such a counterexample
can be provided by two traces from the initial state to the two respective states.
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The algorithmic approach towards this is by coupled reachability. Given a
model M which has O as the set of observables and φ as the condition to be
diagnosed. A twin model M ′ is constructed from M which is identical in structure
as M , but whose state variables are different (e.g. primed) from M . This means
M ′ has a set of (primed) observables O′. To prove whether φ is diagnosable, one
verifies a reachability property on the asynchronous composition of M and M ′,
namely M ||M ′ |= ♦(o1 = o′1 ∧ · · · ∧ on = o′n ∧φ ∧ ¬φ

′). If the property holds on
M ||M ′, then it means φ is not diagnosable in M . The trace towards the reached
state is the counterexample. The unprimed variables in the trace represent the part
to which φ holds, whereas the primed variables represent the part to which ¬φ′,
while having the same valuation to the observables.

The space and time-complexity for diagnosability analysis is relatively high
due to the asynchronous composition of M and M ′ The user can provide two
additional inputs to filter and optimise the analysis. First, the diagnosis context
can be provided. It is an additional propositional property ψ and has to hold on all
states for which the diagnosis condition is checked, i.e. M ||M ′ |= ♦(ψ∧ψ′ =⇒
(o1 = o′1 ∧ · · · ∧ on = o′n ∧ φ ∧ ¬φ

′)). This filters possible false undiagnosability
reports, as it could be the case that a diagnosis condition needs only to hold
in particular system modes (e.g. safe modes). Second, path restrictions can be
provided. These are additional propositional properties, that are provided in an
order of interest. Diagnosability analysis will only traverse the part of the state
space for which these propositional properties hold in their occurring order.

4.10.2 Complexity Analysis

Diagnosability analysis is reduced to coupled reachability. Reachability by itself is
O(|TS|), where |TS| is the size of the state space. In the coupled case, it means
that state vector is doubled in size. Also, the amount of parallel processes doubles.
In the worst-case, i.e., when no observables are present, no interaction occurs
between M and M ′, leading to a state space of size 2 · |TS|. Hence the worst-
case time-complexity of coupled reachability is O(|TS|). In practice, diagnosability
analysis is performed on observables that are synchronised. The resulting state
space is smaller than 2 · |TS|.

4.10.3 Example

For the sensor-filter case study in Appendix A, there are two observables, namely
alarmF and alarmS. From the fault injections in Section 4.1, let us consider only
the ones on the first and second sensors. If we would like to check whether a
sensor failure is diagnosable, the propositional property value >= 15 is provided
as a diagnosis condition. The reachability property for diagnosability becomes
♦(alarmF = alarmF′ ∧ alarmS = alarmS′ ∧value >= 15 ∧ ¬(value′>= 15)).
The property holds (cf. Figure 4.9), as there is a state in M for which the first
sensor has died, but where in M ′ this has not happened. Yet, their observables
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Figure 4.9: Proof that value >= 15 cannot be diagnosed on the sensor-filter model.
At the sixth state (step 2), the value of the left side satisfies the diagnosis condi-
tion, whereas the right side does not. Yet, they have the same valuations for the
observables (not visible in the screenshot).

are the same. The observable alarmS is however only raised when the second
sensor has failed, meaning the diagnosis context should be that the second sensor
is active, i.e. ψ is sensors.mode = mode:Backup. When this diagnosis context
is used, we find that the model is diagnosable.

4.10.4 Discussion

For hybrid models, one must be careful when working with assignments to observ-
able variables (Boolean data ports or data subcomponents) that refer to variables
with a continuous domain. For instance, if a certain continuous value x goes from
−1 to 1, it crosses the value 0. If the diagnosability condition depends on the
fact that x = 0, and x is tested in an assignment to an observable data port p,
the observation that x = 0 might go by unnoticed. The reason for this is that
the discretization of the continuous variable for delivery to the data port happens
non-deterministically at random intervals, which means that it is possible but not
guaranteed that p detects the value x = 0. If this however is explicitly desired,
discretization at x = 0 must be manually specified in the SLIM model. This can
be accomplished, for example, by splitting the mode that defines the dynamics
of x into two sub-modes where the first is taken for non-positive values of x (by
requiring the invariant x <= 0), and is left when the value x = 0 is reached. To
this aim, the corresponding transition to the second sub-mode is guarded by the
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condition x = 0, and sets p to the value true.
Diagnosability analysis is, compared to the other analyses, expensive due its

use of coupled reachability. If the state space of the system is large, then typically
that of coupled reachability is significantly larger. This is a concern for scalability.
In recent literature the issue of scalability has been tackled [SP07]. That solution
however only applies if the system satisfies particular preconditions on their inter-
component communication, like that all variables are accessed within their strictly
hierarchical scope. SLIM models, with their data port connections, do not satisfy
this condition by definition.

Our approach only handles direct diagnosability. For direct diagnosability, there
is a bijective relation between the diagnosis condition and the values of observ-
ables. This bijection holds for each state in the state space (or its subspace in case
path/context constraints are provided). For fault management, if the occurrence
of a failure does not directly trigger a change of observables, the failure cannot be
diagnosed using direct diagnosability. It can be using delayed diagnosability, or
sometimes called ∆-diagnosability conditions [Tri02]. In such an approach, a ∆ is
provided, which is a time window in which a diagnosis condition should become
observable. In our approach, ∆-diagnosability conditions cannot be handled.

Our approach to diagnosability analysis is formulated as a decidability problem:
whether a system is, or not, diagnosable. During the project, the idea was coined,
whether the issue of diagnosability could be presented as a synthesis problem:
assuming a system that is overly diagnosable, which minimum set of observables
are needed to infer correctly a set of diagnosis conditions? This synthesis problem
has been explored in [Bit+11a].

4.11 Fault Management Effectiveness

Fault management effectiveness analyses provide insight how and whether a sys-
tem, in the presence of errors and a fault management system, handles these events
effectively. The provided analyses are organised according to the FDIR-paradigm,
and offer a method to analyse the effectiveness of failure detection, fault isolation
and failure recovery. The analyses specialise existing analysis techniques as model
checking and fault tree generation by tailoring them as solutions to problems en-
countered during the development of fault management systems. They have no
direct counterpart in the space system engineering life-cycle.

4.11.1 Approach

Fault detection analysis questions, given a propositional property φ, which ob-
servables Oφ ⊂ O, with O the set of all observables, change value with respect to
their default value in their initial state I . When φ expresses the occurrences of
a fault or failure, then the resulting observables are its possible detection means.
It can be casted as a model checking problem, namely by checking the property



4.11 Fault Management Effectiveness 85

�(φ =⇒ (φ
⋃

(o = ¬I(o)))), where o is an observable and ¬I(o) is the negation
of observable o’s initial value. When the property holds for observable o, then it
means observable o is (part of) the detection means for the event expressed by φ.

Fault isolation analysis questions, given all observables in the model, what (set
of) error events trigger each observable. The result of this analysis is a fault tree
for each observable, and where the basic events are error events that through AND
and OR-gates can trigger the observable. For perfect isolation, each observable
is triggered by only one error event. Fault isolation analysis rehashes fault tree
generation by generating a fault tree for each o ∈ O with the top-level event the
propositional property o = ¬I(o).

Fault recovery analysis questions whether a recovery property holds. The prop-
erty is expressed using the property patterns as discussed in Section 4.2. An
additional pattern is supported here, which is named existential response. It is
typically used when a fault or failure occurs, whether there is a path towards a
recovered state. This contrasts with global response, where all paths would need
to lead to a recovered state. Upon violation of a property, a counterexample is
presented. Fault recovery analysis is therefore the same as model checking.

4.11.2 Complexity Analysis

Fault detection analysis and fault recovery analysis are mapped upon model check-
ing. The complexity of that is discussed earlier in this chapter (cf. Section 4.4.2).
Fault isolation analysis is mapped upon fault tree generation. The associating
complexity is discussed in Section 4.6.2.

4.11.3 Example

Consider the sensor-filter model (cf. Appendix A) with the fault injections from
Section 4.1.3 applied. If we would compute the observables for the death of the
first sensor, i.e. sensors.sensor1.error = error:Dead, the list of observables is
empty (cf. Figure 4.10(a)). If we would do the same for the death of the second
sensor, i.e. sensors.sensor2.error = error:Dead, the observable alarmS would
be triggered (cf. Figure 4.10(b). This is expected behaviour, as the sensor alarm is
only raised by the monitor when the redundant sensor has failed too.

Fault isolation on the sensor-filter model results in two fault trees, as there
are in total two observables present in the model. For each fault tree associ-
ated with an observable, its top-level event is the value change of the observ-
able itself. That means for the sensor alarm and the filter alarm, they are re-
spectively alarmS = true and alarmF = true. An example of the fault tree for
alarmS = true is shown in Figure 4.11.

For an example of fault recovery, we refer the reader to Section 4.4.3, which
demonstrates model checking on a typical recovery property.
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(a) The set of observables is empty for the occurrence death of the first sensor.

(b) The observable alarmS is triggered after the death of the first sensor.

Figure 4.10: Fault detection analysis.

Figure 4.11: Fault isolation of the observable alarmS.
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4.11.4 Discussion

Fault detection and isolation analysis bear a resemblance to diagnosability analysis
(cf. Section 4.10). There are however distinct differences, and depending on the
objective, either analysis could be preferred over another.

The output of failure detection analysis provides less information than diagnos-
ability analysis. With fault detection analysis, the set of triggered observables does
not imply that that set is bijective with respect to failure occurrences. Depending
on the model, fault detection analysis can generate the same set of observables for
another failure, which would be a proof of undiagnosability. The proof however
does not state the causal reasons for undiagnosability, contrary to diagnosability
analysis. Fault detection analysis is however less resource-consuming as it does not
require a coupled reachability analysis.

The output of fault isolation analysis also provides less information than dia-
gnosability analysis. If fault tree isolation analysis shows that an observable is only
triggered by a single fault, then there is a bijective relation of that fault with an ob-
servable, leaving no doubt about the degree of diagnosability. If a system triggers
multiple observables upon occurrence of faults, and that a set of observables are
needed to infer a correct diagnosis, then the resulting fault trees must be studied
whether each combination of observables has an unique fault mapping. This allows
one to decide whether a system is diagnosable. However, if it is not diagnosable,
fault isolation analysis does not provide a causal explanation of non-diagnosability.

4.12 Performability Analysis

The combination of performance evaluation and dependability analysis is perform-
ability [Mey92]. Performance evaluation quantifies how well the system does an
activity or a function. Dependability encompasses the concepts availability, re-
liability and maintainability. Reliability for example concerns itself purely with
occurrence of failures, and typically how often they occur. Using failure rates,
and use them in a modelling and analysis formalism like reliability block dia-
grams [MIL-HDBK-338B], Markov models, Monte Carlo simulations or fault trees,
it is determined how composite systems, and in particular the overall system can
fail, and how often. Availability on the other hand concerns itself purely with
system downtime and uptime, and the typical measure of interest is its ratio. It
is typically computed by MTBF/(MTBF+MTTR), where MTBF is the mean time
between failures and the MTTR is the mean time to repair. Other factors that
do not relate to failures but impact system functions like long start-up times, or
short operational time windows, also may impact availability. Maintainability con-
cerns itself with restoring the system to an operational state. A typical measure
that relates to failures is the MTTR. It is not strictly related to failures, as main-
tainability concerns can also originate from changes of the system’s operational
environment and its necessary adaptations for it. Dependability tends to overlap
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with safety if its aspects, e.g. unavailability and failures, impact safety concerns as
human life, the environment, property, spacecraft, launcher and ground systems.

When these aspects are interrelated due to failures, we get the notion of per-
formability, which intuitively is captured as the performance under degraded
modes of operation. Its analysis is vital to systems which are designed with a
degree of fault tolerance, e.g. a redundant processor system with multiple pro-
cessor modules, or four-axis gyroscopes where the fourth axis can compensate for
either of the other three axes. These degradable system can also be higher-level,
like a full mission, where there is a satellite constellation, of which the satellites
are fault tolerant to a certain degree, but that after a satellite has failed, a spare
satellite needs to activated, the spare needs to be replenished in due time, and
that there are several strategies for replenishment. What would be the availability
in the presence of such tolerances to various faults, failures and possible repair
strategies? Typical modelling formalisms in literature suitable for such analysis
objectives are stochastic (timed) Petri nets and Markov reward models. In space
engineering practice, it is typical to use Monte-Carlo simulations over Simulink
models, or in case a probabilistic measure of performability needs to be obtained,
stochastic timed Petri nets.

4.12.1 Approach

Our approach towards performability is by computing a probabilistic measure over
the Markov model underlying the state space of the extended model. The needed
inputs are an extended SLIM model and a probabilistic property expressed in CSL
φ. The latter is obtained through the probabilistic patterns described in Section 4.2.
Initially, the full discrete state space of the extended model is generated, i.e. the
transition system TS = (Cnf ,κ0,L,=⇒) resulting from the network of event-data
automata. The transitions =⇒ are then partitioned in to two non-overlapping
sets, namely Markovian transitions and interactive transitions. Markovian trans-
itions are those triggered by error events that have an occurrence rate associated.
All other transitions are interactive transitions. The propositions from φ are at-
tached to the states (in Cnf) satisfying them. The result is an interactive Markov
chain [Her02]. The typical state space of a realistic industrially sized model is large,
and hence first stochastic weak bisimulation is performed. All action transitions are
made internal before this happens. The resulting is a smaller IMC that preserves
the (dis)satisfaction of φ. If it does not contain internal non-determinism, then
the IMC is equivalent to a continuous-time Markov chain, upon which we model
check φ. We used a Krylov-based method for this (cf. Chapter 8), as its numer-
ical stability is better for occurring rates with large disparities. Then probabilistic
model checking is performed for varying upper time bounds from which we plot a
cumulative distribution function.
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Figure 4.12: Cumulative distribution function between 0 and 512 of
P=1−p(¬φ

⋃[0,512](¬φ ∧ψ)) on the Markov chain depicted in Figure 4.13.

4.12.2 Complexity Analysis

Perfomability analysis starts with the generation of the state space, which is form-
ally characterised as the tuple TS = (Cnf ,κ0, L,=⇒). Weak bisimulation minimisa-
tion is then performed over it. As discussed in Section 4.6.2, the time complexity of
that is O(n2.376+m · log n). Note that contrary for fault tree evaluation, m= |=⇒ |
and n = |Cnf |. This is significantly more complex than for fault tree evaluation
where the underlying IMC is derived from the fault tree. The CTMC resulting from
weak bisimulation minimisation is then subjected to probabilistic model checking of
the CSL property φ. The time-complexity of verifying φ is dependent of its length
in terms of subformula’s and the time needed for transient analysis [Bai+03]. Our
approach uses the probabilistic patterns (cf. Section 4.2). In this pattern system,
either there are no subformula’s, or there is at most subformula (e.g. probabilistic
response pattern), thus bounding the length of φ to 2. The time-complexity for
computing the transient using Krylov subspace methods is discussed in detail in
Section 8.3.2.

4.12.3 Example

An example cumulative distribution function from the sensor-filter model (cf. Ap-
pendix A) is shown in Figure 4.12. It is obtained from the probabilistic preced-
ence pattern stating that the sensor bank fails, i.e. φ is sensors.sensor2.error =
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error:Dead, before the filter bank dies, i.e. ψ is filters.filter2.error = error:Dead,
within 512 time units (cf. Section 4.2.3). Its underlying interactive Markov chain
consists of 161 states. After weak bisimulation minimisation, the Markov chain is
reduced to 18 states. The result is shown in Figure 4.13. As the Markov chain does
not contain internal transitions, it can be interpreted as a continuous-time Markov
chain. On this Markov chain, we check the property P=1−p(¬φ

⋃[0,512](¬φ ∧ψ)),
which is the CSL property underlying the probabilistic precedence pattern, and
then plot the cumulative distribution function as shown in Figure 4.12.

4.12.4 Discussion

In our approach, performability analysis and fault tree evaluation are based on
the system’s behaviour captured by the state space and as such they bear a strong
resemblance. Their main difference lies in their degree of abstraction. Whereas
fault tree generation abstracts the state space into a tree shape, performability
analysis considers a more fine-grained abstraction of the state space using a notion
of stochastic weak bisimulation equivalence on the state space of the extended
model. Both abstractions have their drawbacks. Fault tree generation generates
at most PAND-gates for capturing orderings of events. Performability takes more
subtle orderings in account, like those induced by repairs. Even cyclic behaviours
can be accounted for in performability. The drawback is the increased time and
space complexity. Performability generates the full state space, after which it
performs stochastic weak bisimulation minimisation. The resulting IMC is typically
smaller, so the time needed for transient analysis (cf. Chapter 8) over it is typically
negligible. Note that in industrial practice, the relation between performability
analysis and fault tree evaluation is typically not so obvious, given that for both
analyses specialised models are manually developed and analysed, and that their
(only) commonality is that use the technical documents as inputs.

Non-determinism was also, akin to fault tree evaluation in Section 4.6, an issue
with performability. If the IMC after weak bisimulation minimisation contains
non-determinism, then we stop the analysis. Akin to fault tree evaluation and
verification (cf. Sections 4.6 and 4.7 for the discussion on non-determinism in
that context), this was state of the art in 2008, when we developed our approach
towards performability. By using the works by [ZN10] and by [Guc+12], it is now
possible to compute minimum/maximum probabilities and expected time instead.

Performability cannot be performed on hybrid SLIM models. The problem to
this is fundamental in nature. The state spaces by hybrid SLIM models have three
types of transitions: action, Markovian or timed. The combination of action and
Markovian transitions are interactive Markov chains. The combination of action
and timed transitions are timed automata. However, for state spaces that have
both timed and Markovian transitions, no underlying formalism exists that have
semantics that align with expected system behaviour that is both consistent and
complete. More specifically, consider a state s which has a Markovian transition
towards state s′ and a guarded time transition to state s′′ and both transitions
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Figure 4.13: Continuous-time Markov chain obtained for performability analysis. The upper state is the initial state.
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are enabled. It is unclear how the transient should be computed on models that
capture that.

During our modelling efforts, we observed that our approach towards perform-
ability cannot handle reactive systems. In reactive systems, there is an cycle of
action-transitions present in the state space. In the IMC formalism, there is the
assumption that any action-transition is always taken over a Markovian transition,
which is called the maximum progress assumption. When this assumption is ap-
plied to a reactive system, the only behaviour that remains is the original nominal
behaviour. Degraded behaviour, which can occur from Markovian transitions that
were induced by faults, are unreachable due to the maximum progress assumption.
We tried to resolve this by replacing all action-transitions with a very fast rate
which would represent a near instantaneous probabilistic transition. If the rate
is sufficiently large, its impact on the computed probabilities is small. Since the
replacement rate should be very fast compared to the other occurring rates, the
problem of stiffness kicks in, and in particular how to deal with it in a numerical
stable way. Then secondly, the replacement rate affects the resulting probabil-
ities, although the impact is small, it is an open question how to quantify this.
We therefore consider performability analysis for reactive systems still an open
problem.



5

Inside the COMPASS Toolset

The COMPASS toolset is an integration of various existing software components
and additional software to handle previously non-existing functionality. The two
main software components, the NuSMV model checker and the Markov Reward
Model Checker (MRMC), are its core engines. They contain the algorithms that
perform the time and memory consuming analyses. The amount of lines of ad-
ditional code are near the 100,000, and was written within two years, by 16
different developers located at three development sites in three countries, using
five different source languages. The overall architecture of COMPASS was aimed
with the primary values of reuse, enable effective remote cooperation between the
developers and meeting the project deadlines.

This chapter presents an overview of the COMPASS’s internal structure with in
particular the core components that do the parsing, checking and transformations
to and from the existing software components.

5.1 Building Blocks

The component diagram of the core components in the COMPASS toolset is shown
in Figure 5.1. The reading direction is from left to right and from top to bottom.

SLIM compiler Parses and checks nominal and error models according to the
SLIM language specification outlined in [Nol11b]. The com-
piler is based on the ANTLR parser generator [Par07]. The
target language is Python, and the SLIM itself is then trans-
formed to a object-oriented datastructure called CompileInfo.
The CompileInfo represents the full SLIM model.
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Model extension The CompileInfo datastructure is also the input and the out-
put for model extension. It is written in Python. Its main
function is to apply fault injections, specified in a XML format
whose meta-model is captured by a XSD (provided in the COM-
PASS toolset), to link the parsed nominal and error models
and creating the extended model. The latter is represented as
an object of CompileInfo as well.

SLIM to SMV For all analyses, the CompileInfo data-structure is trans-
formed to a SMV model, which is the input to the NuSMV
model checker [Cim+02]. This component, called SLIM to
SMV, is written in Python, and handles both extended models
and purely nominal models.

Property manager Parses properties specified using the patterns (cf. Section 4.2)
and written in a XML format whose meta-model is captured by
a XSD (also provided in the COMPASS toolset). The patterns
itself are also described by a XML format whose meta-model
is also captured by a XSD. This allows for flexibility on adding
new patterns when fit. The property manager can handle
the generation of LTL, CTL and CSL formulae in respectively
textual NuSMV and MRMC format.

NuSMV This model checker is one of the core engines that implements
the model checking algorithms, and providing a framework
for many other analyses supported by the COMPASS toolset.
Additions and enhancements were made to meet the project
requirements. Existing FSAP-functionality [BV03a] generating
safety and dependability artefacts like fault trees and FMEA
tables was slightly modified to handle the arbitrary structure
of the error model transition systems. Also two additional
modules were developed, one for handling the FDIR analyses,
and one providing a cornerstone block in performability ana-
lysis, named SMV to Sigref. The latter outputs the state space’s
transition system as a BDD expressed in Sigref’s XML format.

Sigref Two components were developed that specialise
Sigref [Wim+06] to two cases, namely the case where
a dynamic fault tree has to be transformed to its Markov
model, i.e. DFT to MRMC, and the case where the state space
interpreted as an IMC has to be transformed to a CTMC,
i.e. Sigref to MRMC. Both employ Sigref’s weak bisimulation
minimisation algorithms on IMCs.
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MRMC This core engine is responsible for probabilistic model check-
ing [Kat+11]. To overcome anticipated issues with numer-
ical instability rising from stiffness in the failure rates, we
enhanced MRMC with a Krylov-based method (c.f. Chapter 8)
for computing transient probabilities.

All these building blocks together provide the core functionality of the COMPASS
toolset. There are two interfaces with which the user can interface, namely the
console-based interface and the graphical user interface. These interfaces invoke
functionality of the building blocks and transform results back to an user-friendly
representation. The two interfaces will be briefly discussed in respectively Sec-
tion 5.3 and Section 5.4.

5.2 Extensions

Extension have been developed upon COMPASS, but did not (yet) become part of
the COMPASS distribution. By our idea and under our supervision, these extensions
were developed as Master’s final projects during the development of COMPASS
itself.

One extension does a translation to Promela instead of SMV. It was developed
to explore the merits of using the SPIN model checker as a backend to SLIM. One of
the advantages of the Promela translation is that it can handle reals in an explicit
state way, whereas the SMV translation resorts to an encoding to SAT. See the
Master’s thesis [Ode10] for more details on this extension.

Slicing is the second extension. It takes a CompileInfo data-structure along
with a set of properties of interest. By computing a smaller model that preserves
validity of the properties of interest on the model, less verification resources is
needed. The slicing algorithm does a static analysis on the data and control flow
by accounting for the properties. Preliminary results indicate that the performance
gain depends heavily on the properties. See the Master’s thesis [Ode10] for more
details on this extension.

Impact isolation is the third extension. It determines how transition effects have
impact on future transitions by analysing the partial order relation in the global
state space. This allows the user to determine to which degree SLIM transitions can
affect others, such that a boundary scope of isolation is formally set up. It leads to
an increasing understanding of coupling and cohesion, which benefits verification
and validation efforts. The prototype implementation, written in Java, relies on
the SLIM to Promela translator and a modified SPIN model checker, and then can
visualise the range of impact of a single transition. See the Master’s thesis [Ern12]
for more details on this extension.
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Figure 5.1: UML Component diagram of the COMPASS toolset.
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Figure 5.2: Screenshot of the COMPASS’s main window.

5.3 Console Interface

The console interface is designed to enable running analyses in (repeated) batches
and allow for the integration of COMPASS functionality in other tool-chains. It
is purely non-interactive and all inputs have to provided to the command-line.
The COMPASS user manual [Bit+11b] provides examples and explanations on the
console interface.

5.4 Graphical Interface

The graphical interface is designed to run analyses while developing the model.
See Figure 5.2 for the main screen. It allows for single click reloading of the model.
Furthermore, it provides user-friendly means for expressing fault injections and
properties, by presenting them as on-the-fly validating forms. See Figure 4.1(a)
for the form of fault injection and Figure 5.3 for the property entry form. The
graphical interface can export fault injections and properties to its XML format,
which can be used for the console interface to run the analyses.

The graphical interface is written in Python, GTK, PyGTK and the PyGTKMVC
framework. It defines each function as a model, view and controller, and interre-
lated information between GTK models is updated through an event-subscription
system.
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Figure 5.3: Screenshot of the COMPASS’s property form.

5.5 COMPASS Graphical Modeller

The COMPASS graphical modeller (i.e. CGM) provides a drag-and-drop graphical
user interface (see Section 3.5) enabling the user to construct SLIM models graph-
ically (see Figure 5.4 for an example of the graphical notation). The SLIM models
constructed by the CGM are saved as a XML format called the SXML format. The
CGM provides an export to SLIM function, such that the graphical SLIM models can
be loaded into the COMPASS toolset. To ensure that exported SLIM files are valid,
the SLIM compiler from the COMPASS toolset is enhanced to interact with CGM.
Syntax violations detected by the SLIM compiler are pinpointed to a graphical
SLIM element and the CGM will highlight those errors. Additionally, a function is
added to import SLIM models that were not developed by the CGM. As they have
no graphical layout, a rudimentary graph layouting algorithm is used to provide
an initial layout that can be further refined by the user.
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Figure 5.4: Screenshot of the COMPASS graphical modeller.



6

Satellite Platform Case Study

Industrial case studies have been conducted earlier within the COMPASS project,
such as a satellite’s FDIR mode management system and a satellite’s thermal reg-
ulation system [Boz+10a]. These studies were focussed on critical subsystems of
a satellite, and did not cover the full functionality of a satellite platform such as
the interaction between several subsystems. This chapter presents a newer and
more comprehensive case study covering a satellite platform that is currently under
development. Due to the confidential nature of the case, the model is not publicly
available.

6.1 Case

At the highest conceptual level, the satellite is composed of the payload and the
platform. The payload comprises mission-specific subsystems and the platform
contains all subsystems needed to keep the satellite orbiting in space. The payload
is usually designed and tailored from scratch, whereas for the platform lots of
design heritage applies. For this reason, our case study focuses on a SLIM model
of the platform, as this might benefit future projects too. A decomposition of the
platform into selected subsystems is shown in Figure 6.1.

The majority of these subsystems are designed with degrees of fault-tolerance,
depending on the criticality of the subsystem. Hot and cold redundancies with re-
configurations, voting algorithms, correcting codes and compensation procedures
are part of comprehensive strategies for achieving fault-tolerance. In the extreme
case, the satellite should survive a particular number of days without ground inter-
vention assuming no additional failure occurs. As faults could occur at any level
in the system’s hierarchy (system, subsystem, equipment), the fault management
system obeys a cross-cutting design according to the Fault Detection, Isolation and
Recovery (FDIR) paradigm. This paradigm separates fault managements into three
functions. The function of fault detection continuously monitors the system and
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Figure 6.1: Decomposition of the case study’s satellite. OCS consists of a series of
thrusters for orbit corrections. AOCS is a control system consisting of several kinds
of sensors for acquiring and maintaining a correct attitude and orbit. CDU is the
main computer. EPS consists of solar arrays and batteries for satelite power. TT&C
is the radio communication interface for ground control on Earth.

in case of anomalous values, emits appropriate events to react upon them. Mon-
itoring is decentralised and performs at all levels of the system’s hierarchy. After
emitting fault detection events, fault isolation kicks in. This function is responsible
for identifying the affected system’s scope by determining the cause of the fault
events. The function of fault recovery then takes appropriate actions to mitigate
the fault events, and if possible, return to a nominal state.

As faults can occur at all levels, and that their effects can propagate throughout
the system horizontally (same level) and vertically (across levels), the system is
partitioned into five levels, in which the complexity of FDIR functions are organ-
ised:
Level 0 Failures are associated to a single unit and recovery can be performed

by the unit itself.

Level 1 Failures are associated to single subsystem, and an external subsystem,
the on-board software is responsible for its mitigation.

Level 2 Failures are associated to a multiple subsystems, and an external sub-
system, the on-board software is responsible for its mitigation.

Level 3 Failures are occurring in the on-board software or in the processor
modules. Dedicated reconfiguration modules are responsible for its
mitigation.

Level 4 Failures that are not covered by lower level failures and are completely
managed by hardware.
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Failures are mitigated at its appropriate level. As with most Earth orbiting
satellites, this satellite is required to be single-fault tolerant. If a fault is detected,
all FDIR monitoring is ignored and the isolation and recovery of the detected fault
is prioritised. As such, it can only handle one fault at a time.

6.2 Objectives

We started our case study at the preliminary design review stage (PDR) of the
satellite project, where the details of design started to mature. In the traditional
space engineering process, several objectives have to be met in order to proceed to
the critical design stage, among which the following are of interest to us and thus
within the scope of this case study:

• compliance of the preliminary design with the functional and operational
requirements and justifications.

• demonstration of compliance with preliminary reliability, availability, failure
tolerance, and failure propagation requirements

• consistency of HW/SW redundancies and FDIR concepts.

• evidence of tracking/implementation of preliminary RAMS recommenda-
tions.

• consistency and completeness of the preliminary RAMS analyses.

• completeness, credibility, and consistency of the preliminary design.

The satellite’s development team was on a strict schedule, and hence it would
be unwise to inject novel development approaches – like our initiative – into the
production process. We ran our case study in parallel with the actual development
as an experimental side-track. This benefits us, because we were not presented
with fully crystallized and matured design documentations, but with volatile design
information that was undergoing improvement and refinement. Findings in our
case study were therefore directly relevant and could be provided as feedback to
the satellite development team. Furthermore, we had to learn to cope with the
constant influx of updated design details and how to continually adapt our own
model to that. This experience, and the model itself, were our main objectives,
which are identified as follows:

• Reference model: obtaining a formal model of a satellite platform as a refer-
ence for future formal modelling.

• Toolset capability: obtaining a model that pushes the limits of the COMPASS
toolset and revealing directions for further research.
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• Modelling guidelines: develop best practices for effective (e.g. fast) formal
analysis using model checking techniques.

• Improve software development life-cycle: understand how formal analysis sup-
plements and/or replaces existing practices as defined in ECSS (cf. Chapter 2.
In particular, to understand the impact of increasing design maturity on
formal modelling.

Note that for the latter, it is imperative that the case study is run in parallel with the
system’s active development. If our case study were run after its realization, the
effort became an afterthought in which design information has fully crystallised
and matured.

6.3 Modelling

The overall composite system is described by two important modes of satellite
operation: nominal and safe. The nominal mode describes a set of satellite con-
figurations in which the system functions within nominal conditions. Upon the
detection of faults, recoveries might be attempted for resuming nominal operation.
Otherwise a transition is made into safe mode for which the system reconfigures
itself for survival until ground can perform an intervention. This important trans-
ition has system-level effects and hence is critical. In the remainder of this chapter
this important event is called TLE-1 (first top-level event).

During modelling, we focused on a subsystem/equipment at a time as the
design of each corresponded more or less to a specific (section of a) design and
a requirements document. We progressively increased coverage by adding more
detailed subsystems to the overall model, while keeping high-level abstractions or
stubs for the remaining subsystems. The metrics of the full model are described
in the upper part of Table 6.1. Due to model confidentiality, we only highlight
generalised modelling aspects and practices.

6.3.1 Discretisation

Various design aspects are often specified in terms of ranges. Like for the Sun
sensors, ranges are used in degrees of Sun ray impact to determine exposure to
the Sun. For the power system, over-currents are specified by voltage transfer
functions. To avoid a combinatorial explosion of the state space, these ranges have
to be abstracted with respect to the desired functionality, e.g. a Boolean indicating
Sun exposure (or not) and respectively a Boolean indicating over-current (or not).
Enumerations are used when there are gradations within the ranges.
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Table 6.1: Metrics of the full satellite platform model and requirements.

Scope Metric Count

Model

Components 86
Ports 937
Modes 244
Error models 20
Recoveries 16
Nominal state space 48421100
LOC (without comments) 3831

Requirements

Propositional 25
Absence 2
Universality 1
Response 14
Probabilistic Invariance 1
Probabilistic Existence 1

6.3.2 Timing

Real-time correctness is an important aspect for various subsystems, especially with
regard to the recovery procedures. For example, the recovery modules contain a
table of Programmable Alarm Patterns (PAP), which upon a match looks up a
corresponding recovery procedure which is described by a Compressed Command
Sequence (CCS). Each individual command in a recovery procedure is annotated
with its maximum task duration. To enforce this timing behaviour in our model,
a timer is added and transition guards over the timer are defined. If only guards
were used, it would be possible for the system to stay in a mode forever (i.e. time
divergence). To avoid this, mode invariants are added to force a transition when
the invariant becomes invalid by the passage of time. A second concern with
modelling timed aspects is to ensure the absence of Zeno behaviour. Otherwise
the model could take infinitely many steps within a finite time-span. The presence
of time-divergence and Zeno behaviour leads to invalid outputs, and hence their
absence needs to be ensured. This is elaborated and discussed in Section 6.6.

6.3.3 Hybridity

Hybrid aspects (e.g. temperature evolution or fluid pressure) are a generalization
of real-time constraints. They need to be incorporated into the model without
discretisation if one wants to check compliance of range requirements, e.g., the
temperature stays between a lower and upper limit in the presence of a (redundant)
heating system. To ensure computational tractability [Aud+05], the COMPASS
toolset only supports simple linear differential equations for time-dependent evol-
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ution. As many equations are not specified in this form, the engineer needs to
abstract the original equations into linear ones. Additionally, the concerns of Zeno
behaviour and time-divergence also apply in a similar fashion to timed models.

6.3.4 Reconfiguration

SLIM offers mode-dependent activations as a first-class language construct, al-
lowing the enabling/disabling of components based on the current mode. Fault
tolerance by redundancy can thus be easily expressed by modelling multiple com-
ponents of equal functionality which are active in disjunct modes, like two pro-
cessor modules being active in respectively the nominal and safe mode. Events
from a recovery procedure can trigger transitions between the modes, resulting in
a reconfiguration of the system topology.

6.3.5 Errors and Fault Injections

Our primary source for error modelling is the preliminary FMECA. It lists the
possible detectable failures as an event and relates it to the effect on the system.
This mapping is nearly equal to the fault injections. It also provides the information
for constructing the error models. We found that in all cases, the probabilistic
behaviour was either shaped as a single step from an error-free state to an error
state (so-called permanent errors), or that they follow a fault-repair loop-structure
on the error-free/error states (so-called transient errors). The FMECA is also
the source for failure rates. They are expressed in failures in time (FIT), which
indicates the expected number of failures in 109 hours.

6.3.6 Traceability

For any system under development, and especially in the preliminary design phase,
the design is susceptible to changes. Every few months a new version of design doc-
uments is distributed with detailed change-logs. To keep track of the changes, we
maintained a traceability spreadsheet that maps each SLIM part to the correspond-
ing points in the design documents. Upon a new revision, we simply traversed the
change-logs, pinpointed the affected parts in the SLIM model and updated them
to reflect the change accordingly.

6.3.7 Assumptions

At first sight, the amount of design information is so overwhelming, that it is
inconceivable to comprehend the system all at once, especially if one is not familiar
with the system under development. Information might be perceived as incomplete,
unclear, or wrong due to this, and this delays the modelling phase. We developed
a practice of quickly continuing modelling using assumptive modelling decisions:
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Abstraction Describes how a SLIM element abstracts a part of the
system.

Assumption Describes how a SLIM element captures an assumptive
understanding of the system.

Direct Conversion Describes how a SLIM element maps directly to a part of
the system.

Underspecified Describes how parts of the system design documentation
were insufficient for formal representation.

Explained Are assumptions that have been clarified during review
meetings.

During review meetings, we had the opportunity to check assumptions, and once
these were clarified, the assumption was resolved (Explained).

6.4 Requirements Specification

Requirements documents are developed for all parts of the satellite at all levels
(system, subsystem, equipment, etcetera). Furthermore, a particular set of require-
ments (e.g. system-level requirements) could function as a baseline for a set of
lower-level requirements (e.g. subsystem requirements). Not all requirements
were amenable for formal analysis. This has several reasons.

High-level requirements typically function as an umbrella for more detailed
requirements. They typically lack the detail needed for formal verification. This
can be seen in there form, which is typically prose-like, e.g. “FDIR functions must
be active in all AOCS modes”.

A significant part of the requirements do not only cover behaviours, but also
reflect the system’s organisation. They state which components should be present,
and they state how a component is structured in subcomponents, and which com-
ponents may communicate with each other. They give rise to the system hierarchy.
As these a static in our modelling language, verification of them is out of the scope
of our activities.

In early design, often requirements are specified about the existence of a beha-
viour, without describing how to realise this behaviour. An example is that FDIR
behaviour should be present to detect, isolate and mitigate faults, but it is left
unspecified how to achieve this. These kind of requirements are typically subject
to refinement is detailed design, where decisions are made on the exact required
behaviour. These requirements are typical intended underspecification.

Also, unintended underspecification of requirements might occur. These are not
trivially perceived as the requirements specifications we used do not explicitly mark
requirements as intentionally underspecified. Without an extensive background in
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satellite engineering, and as such a clear picture of unintended underspecification,
it is difficult to spot them.

In other cases, requirements can describe behaviours that are out of scope of
our objectives. These requirements could for example cover behaviours that are
intentionally abstracted away in the model. The behaviour of the AOCS control
loop is an example which is typically expressed in terms of transformations of
sensor-data (e.g. Sun light angles, Earth sensor intensities). Such behaviour is
typically abstracted to the status of the behaviour, e.g. whether it is nominal,
degraded, or failed. Also, requirements could also refer to the payload, and this
was intentionally left out the scope of our objectives.

From the several thousands of requirements we obtained, we analysed 106
requirements and checked them using the above criteria. From the 106 require-
ments, 24 were suitable and used for our model. Once deemed suitable, they had
to be mapped to a specification pattern. In many cases, clarifications are needed
during the mapping. For example, which analysis (and why) is suitable for verifica-
tion? What are the applicable modelled components? What constitutes the atomic
propositions (e.g. what is exactly a FDIR function)? Hence for the analysis and
mapping of requirements, we additionally maintained an assumptions spreadsheet
and a traceability spreadsheet, just like we did for modelling. Similar to the studies
in [DAC99; Gru08], we tracked the kind of patterns (cf. Section 4.2) used and
these are shown in the lower part of Table 6.1.

6.5 Analyses

Modelling is highly intertwined with analysis, since the output from analysis
provides valuable information for possible refinements of the model. The most
widely-used analysis method during modelling is model simulation, as inspection
of traces is a fast sanity check before running a resource-consuming analysis.

During all analyses, particular sets of fault injections were disabled/enabled
depending on the aim. This was needed for this case study as we observed that
fault injections lead to a significant increase of the state space (see Figure 6.2).
This is not surprising. A fault injection basically yields the cross-product of the
subsystem to which the error is injected, and the error model. There is no direct
correlation between the amount of fault injections and the increase, although there
is a relation between the kind of fault injections and the increase. Fault injections
that have system-level impact (e.g. processor module failures) add more behaviour
than fault injections with lower-level impact (e.g. Earth sensor failures) as they
affect a larger fragment of the state space.

All analyses were run on a set of identical computers running 64-bits Linux,
each with a 2.1 GHz AMD Opteron CPU and 192 GB RAM. The consumption of
peak resources for each analysis is shown in Table 6.3.
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Figure 6.2: Degrees of state space increase with respect to nominal state space size
when injecting failures. The scale is logarithmic.

6.5.1 Functional Verification

We separated this into two activities: discrete and real-time/hybrid verification.
During the verification of the discrete part, which is the majority of the model,
we verified 16 properties. Noteworthy here is that the COMPASS toolset does
verification in the absence of any fairness constraints. Occasionally, it would be
useful to express those to avoid starvation of components. Now we had to embed
the constraints in the model instead, which slightly increases its size due to the
added synchronization.

The real-time/hybrid parts of the model are relatively small and were joined
together into a single hybrid model. This alternative model was developed to check
a requirement stating that the redundant heater is only active in degraded opera-
tions. Verifying this requires the bounded model checking backend [Aud+02] and
we experimented with increasing bounds to measure the limit (cf. Table 6.3). With
respect to the increasing bounds, we measured that the time needed grows expo-
nentially and memory-wise the growth is linear. We stopped our measurements at
bound 79, as this exhausted our machine.
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6.5.2 Safety & Dependability

The platform’s most critical event that affects safety and dependability is TLE-1,
i.e. the transition to safe mode. The transition is triggered upon the occurrence
of severe failures. In the design documents, a (static) fault tree of 66 nodes is
provided relating TLE-1 with the failures. Using our toolset, we could produce
the same (static) fault tree from our SLIM model in a fully automated manner. We
also generated a fault tree for the setting of the fail-operational flag. This flag
indicates that the satellite’s payload services might be impaired due to platform
failures. The dynamic variant of fault tree analysis delivered similar results. In
two cases, it delivered them with less computation time. This came to us as a
surprise, given that the dynamic aspect is an additional analysis upon static fault
tree generation. The internal logs of the COMPASS toolset revealed this is due to
its implementation, and likely due to dynamic BDD variable reordering which on
our model is more favourable for dynamic fault tree generation. A FMEA table was
generated for mapping the sensor failures with three system effects: detection of
failures, the setting of the fail-operational flag and TLE-1. The generated table did
not provide additional values on the fault tree, as it directly maps failures to the
user-provided effects. It would be more interesting if the COMPASS toolset could
synthesize a mapping from failures to a chain of effects, showing how the first
effect directly caused by the failure propagates through the system to subsequent
effects and eventually becoming a failure like TLE-1.

6.5.3 Fault Management Effectiveness

For fault detection, we checked which observables were triggered when the trans-
ition to safe mode is made. This could trigger 129 observables. Subsequently,
fault isolation was performed on all 129 observables. No properties are used for
this, since the observables themselves are the only required inputs. Diagnosability
analysis was performed to see whether a double Earth sensor failure is diagnosable
(for the satellite operator) when TLE-1 occurs. Without any result, we had to
stop the analysis after 7 days and consuming nearly 1400 MB at its peak. This is
understandable as, contrary to model checking algorithms which usually compute
a single state space, diagnosability performs a coupled reachability analysis (cf.
Section 4.10).

6.5.4 Performability

Reliability requirements are usually defined as a cumulative distribution function
and state that the foreseen reliability must be at least as good. Its probabilistic
nature fits performability analysis. On our model, we wanted to determine the
reliability of the satellite in the presence of a sensor failure. Performability analysis
however ran out of allocatable memory after nine hours. Investigation revealed
that the transformation of the state space into its underlying Markov chain ran out
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of allocatable memory. The transformation involves the use of a weak bisimulation
minimization algorithm, whose implementation in COMPASS is an adapted version
of Sigref [Wim+06]. During our case study, we observed that that implementation
could only allocate memory up to two GB, hence the out of memory.

Another approach to verifying the reliability requirements is by computing
the probabilities of the TLE-1 fault tree which was generated during safety &
dependability analysis. This is called fault tree evaluation. As shown in Table 6.3,
the computation occurs in a split second.

Note that though both approaches can be used for this requirement, there are
substantial differences. Fault trees are essentially abstract state spaces where the
relations between the top-level-events and the failures are conservatively over-
approximated by AND-, OR- and PAND-gates (Priority AND). With performability
on the other hand, these relations are precisely preserved, which however comes
with increased complexity when the underlying Markov chain needs to be obtained.
This is discussed further in Section 4.12.

6.6 Discussion

In this section, we reflect our objectives as stated in Section 6.2 and discuss the
outcomes of this industrial case study.

6.6.1 To PDR Objectives

For entering the subsequent stage in the development process, the Preliminary
Design Review (PDR) objectives have to be met. During our efforts, we en-
countered several inconsistencies in the design documents. Most of them were
found during modelling, due to the critical interpretation of the design documents.
They were reported and have been corrected.

6.6.2 Reference Model

This SLIM model is the largest and most-comprehensive we developed to date that
is suitable for model checking. Its incorporation of probabilistic aspects through
errors, and real-time/hybrid aspects have made it a reference for benchmarking
new algorithms that underlie the analyses. Additionally, it can be used for kick-
starting subsequent formal modelling activities, so that one does not have to start
modelling from scratch.

6.6.3 Toolset Capability

As reported in an earlier evaluation of much smaller scale [Boz+10a], the hier-
archical and component-oriented nature of the modelling language fits naturally a
development by refinement process. During this case study of much broader scope
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Table 6.3: Peak computation times and memory usage of the analyses.

Analysis Fault Injections Properties Time Mem.
(sec) (MB)

Discrete model checking (none, i.e. nominal behavior only) “health check on valves is
performed” and “no firing
of thrusters triggers recon-
figuration” and “thrusters
not stopping firing triggers
reconfiguration” and “over-
pressure triggers opening
latch valve”

224 122

Discrete model checking Single Earth sensor signal failure i.d. 296 125
Discrete model checking Double Earth sensors signal failure i.d. 677 132
Hybrid model checking (10∗) Single Earth sensor signal failure “No thruster usage during

nominal operation”
23 242

Hybrid model checking (20∗) Single Earth sensor signal failure i.d. 52 360
Hybrid model checking (30∗) Single Earth sensor signal failure i.d. 101 492
Hybrid model checking (40∗) Single Earth sensor signal failure i.d. 204 612
Hybrid model checking (50∗) Single Earth sensor signal failure i.d. 361 713
Hybrid model checking (60∗) Single Earth sensor signal failure i.d. 967 884
Hybrid model checking (70∗) Single Earth sensor signal failure i.d. 2176 1006
Fault tree analysis Double Earth sensors signal failure TLE-1 555 134
Fault tree analysis AOCS equipments failure TLE-1 2898 181
Fault tree analysis Double Earth sensors signal failure “fail-operational flag is set” 769 132
Fault tree analysis Processor module failures “CDU alarms are raised” 483 134

. . .
(continued on next page)
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. . .
(continued from previous page)

Analysis Fault Injections Properties Time Mem.
(sec) (MB)

Fault tree analysis AOCS equipments failure “fail-operational flag is set” 8349 239
Dynamic fault tree analysis Double Earth sensors signal failure “fail-operational flag is set” 630 135
Dynamic fault tree analysis Processor module failures “CDU alarms are raised” 547 136
Dynamic fault tree analysis AOCS equipments failure “fail-operational flag is set” 5581 212
FMEA table generation Double Earth sensor signal failure “failures are detected” and

“fail-operational flag is set”
and TLE-1

1003 134

Fault detection analysis Double Earth sensor signal failure TLE-1 1173 142
Fault isolation analysis Double Earth sensor signal failure n.a.¶ 21920 136
Diagnosability analysis Double Earth sensor failure TLE-1 586093† 1474†

Performability Single Earth sensor signal failure TLE-1 33166‡ 2103‡

Fault tree evaluation Double Earth sensor signal failure “fail-operational flag is set” 1 n.a.§

Dynamic fault tree evaluation Double Earth sensor signal failure “fail-operational flag is set” 1 n.a.§

∗ Bound parameter used in the bounded model checking.
† Ran out of time.
‡ Ran out of memory.
§ Analysis terminated too quickly for measurement.
¶ Fault isolation requires only the model as an input.



6.6 Discussion 113

and size, we highlighted additional points on the offered modelling constructs. We
recognized a need to support flows on continuous variables, used for the hybrid
aspects. This would allow for exposing its continuous evolution to its neighbouring
components. In the same line, it would be useful to develop efficient algorithms for
verifying systems with (decidable fragments of) non-linear equations, allowing for
more fine-grained hybrid behaviour. Additionally, we encountered Zeno behaviour
and time divergence several times (cf. Section 4.4), and found it difficult to manu-
ally pinpoint them in the model. The algorithmic detection of Zeno behaviour is
an active field of research, and once it matures, it is desirable to have it included.

Regarding the COMPASS toolset itself, it is pleasant not to be exposed to the
underlying logic and model checking tools. For most analyses, the performance
and the features are sufficient. Other analyses are subject to improvement. Upon
model checking for example, the ability of expressing fairness constraints for the
absence of starvation is a more elegant way than expressing them in the model
itself. For certain temporal logics such as LTL, it is possible to encode a rich class
of fairness assumptions in the requirements. Regarding FMEA, we found that
FMEA generation is making a reverse mapping of fault tree generation, hence not
complementing the information provided by fault trees. What would be more
useful is to understand the chain of effects (i.e. fault propagation) that start by a
failure. This would give more information on their detection means and possibly
the design of the recovery procedures. Regarding performability analysis, this
analysis ran out of memory after nine hours (cf. Table 6.3). The cause is the weak
bisimulation minimization implementation [Her02] used to transform the state
space to its underlying Markov chain. Improvements to that implementation will
have direct benefits to performability analysis. Diagnosability analysis on the other
hand ran out of time. This is caused by the coupled reachability algorithm that
underlies diagnosability (cf. Section 4.10). Faster model checking algorithms will
improve its performance. Especially ones that exploit the compositional structure
of the SLIM model, like our approach described in Chapter 7.

6.6.4 Modelling Guidelines

We used the preliminary FMECA, the requirements and the design documents for
respectively the error models, properties and the model itself. Note that the inputs
were in a rough state: they change due to review. Additionally, formal modelling
and analysis supports the review process by forcing one to consider underspecific-
ation. Updates due to review can be nicely accommodated by exploiting SLIM’s
features for modelling by refinement. When design information is unclear, as-
sumptions can be modelled which we captured along with the traceability of the
modelled elements. In later phases, the assumptions can be checked or raised
during review meetings as discussion points.

Regarding proper abstraction, it is wise to consider abstraction depending on
the requirement that needs to be verified. For the majority of the cases, discretisa-
tion by enums and booleans are the natural way for abstraction. This is a necessity
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for keeping the growth of the state space under control. Only when real-time
and hybrid aspects need to be verified alternative SLIM component implementa-
tions can be developed that incorporate such behaviour using the same component
interfaces.

Careful attention has to be paid when modelling real-time and hybrid systems.
We encountered Zeno behaviour and time-divergence several times. To avoid them,
one can perform a manual inspection on the model, as explained in Section 4.4.
These two manual checks are tedious, especially given a large model, but are
needed as long as algorithmic detection of them is impractical.

Furthermore, during the case study, we developed a small number of architec-
tural patterns for modelling frequently occurring concepts, like recovery proced-
ures and particular redundant configurations. The patterns are now tailored to
this case study, but could be further developed to become more generic.

6.6.5 Improving Software Development Life-cycle

It is generally understood that formal modelling and analysis provides outputs that
improve the eventual system under development. Formal methods forces engineers
to consider design issues early, and have them resolved long before integration
testing, thus avoiding increased costs. In our case study, we detected several
inconsistencies and reported them to the satellite development team. Although
the benefits are clear, it is yet unclear how formal methods should be leveraged.
There are currently no standardised guidelines on the use of formal methods in
the software development life-cycle. For avionics systems, this situation changes
with the third revision of European-American standard for software considerations
in airborne systems, called DO-178C/ED-12C [IE11]. It incorporates guidelines
and allows for creditation when formal methods are used for the development of
avionics software.

The European space software development life-cycle (cf. Section 2.2) does
not (yet) reflect the use of formal methods. Based on our experience of this case
study, we think it is more pragmatic for the current E-40 standard to add aspects
of formal modelling and analysis. Most importantly, to have a means to keep track
with the evolution of design artefacts and ensure that the formal model reflects the
current design. For this reason, we developed a simple but useful habit of keeping
assumption spreadsheets and traceability tables (cf. Section 6.3). Assumption
spreadsheets allowed us to progress swiftly on modelling, even when the details
are unclear. Traceability tables allowed us to pinpoint, upon design changes, the
affected parts of the model and push the changes to the model accordingly. These
lessons are the outcome of running our case study in parallel with a system in active
development, because otherwise we would have been presented a fully detailed
and mature design in which all issues have been already resolved, and as such, we
would not be forced to keep up with the changes.
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Craig Interpolation-Based
Compositional Reasoning

Curbing the state space explosion is one of the greatest challenges in model check-
ing. For decades, researchers have studied compositional reasoning as the solu-
tion to this, resulting in a plethora of approaches that usually either reduce peak
memory consumption, work only for loosely-coupled programs, or cannot be auto-
mated yet.

In this chapter, we present a proof-theoretic approach that aims to aggressively
abstract sets of interacting components as environments to other components. The
abstracted environment, which is smaller due to its smaller interaction alphabet,
together with the component it interacts with, is obtained through processing the
verification proofs of bounded model checking runs. The abstraction derived from
it however are sound for unbounded verification. We argue that this technique is
particularly effective for continuous reverification of models with large underlying
state spaces.

7.1 Preliminaries

The result in this chapter builds upon existing work in satisfiability theory, symbolic
model checking and interpolation. These topics are addressed in the following
subsections.

7.1.1 Propositional Satisfiability

The propositional satisfiability problem is that given a Boolean formula, its vari-
ables can be assigned in such a way to make the formula evaluate to > (i.e. true).
If this is the case, the formula is satisfiable, otherwise the formula is unsatisfiable.
For example, the formula (x1 ∨ x2 ∨ ¬x3) ∧ (x3) is satisfiable with the valuation
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σ, consisting of σ(x1) =>, σ(x2) => and σ(x3) =>. In such a formula, literals
are variables (e.g. x3) or a negation of the variables (e.g. ¬x3). A clause is a dis-
junction of literals (e.g. (x1 ∨ x2 ∨¬x3)). Traditionally, only the Boolean operators
AND (i.e. ∧) and OR (i.e. ∨) are used, and other Boolean operations like exclusive
OR are expressed using ∧ and ∨.

The worst-case time complexity of the propositional satisfiability problem is NP-
complete, a classic result by Cook [Coo71]. This has not discouraged researchers
to devise algorithms and heuristics to solve propositional satisfiability problems.
Early algorithms did not scale well. As of 2002, yearly competitions emerged (cf.
satcompetition.org, which highly stimulated this field, progressing to modern
SAT-solvers capable of deciding (un)satisfiability of millions of clauses in mere
seconds. The most modern ones even exploit multi-core systems in which bench-
marks have shown a scalable reduction in computing time [WHM09].

Even though the satisfiability problem is about deciding satisfiability, SAT-
solvers typically generate a proof of the outcome. In case a formula is satisfiable,
it can generate a satisfying assignment, which are valuations to the occurring vari-
ables. Depending on the formula, it is possible that there are multiple satisfying
assignments. In case a formula is unsatisfiable, SAT-solvers are capable of gen-
erating unsatisfiable cores as a proof. An unsatisfiable core is an unsatisfiable
subformula of the original Boolean formula. An unsatisfiable core however does
not contain the reasoning steps that show why the subformula is unsatisfiable,
it merely makes the original problem smaller. Another type that does preserve
the reasoning steps of the unsatisfiability proof is the resolution refutation graph,
usually referred to by Π. It is formalised as a directed acyclic graph GΠ = (VΠ, EΠ),
where VΠ is a set of clauses (not necessarily a subset of the original formula). If
a vertex v ∈ VΠ is a root (there are usually multiple), then it is a clause in the
original formula. Otherwise the vertex has exactly two predecessors, v1 and v2
of the form v1 ≡ x ∨ D and v2 ≡ ¬x ∨ D′. The clause v is the simplification of
D ∨ D′ and x is its pivot variable. There is only one leaf which is the empty clause
⊥. An example is shown in Figure 7.1. The resolution graph reasons how clauses,
starting from the root clauses, have pivot variables that can be eliminated, as they
contribute to the inconsistency. Once all variables are eliminated, the empty clause
⊥ is reached, indicating unsatisfiability. Later in this chapter, the resolution graph
is used to derive interpolants.

7.1.2 Symbolic Model Checking

Boolean formulae as described in Section 7.1.1 can be used to perform symbolic
model checking. Intuitively, this approach of model checking does not explicitly
enumerate all states, but traverses the state space by describing sets of states in a
symbolic manner. The main ingredients are the initial condition and the transition
function.

The initial condition, usually denoted as I : s̄ → {>,⊥}, is a Boolean formula
represented as a propositional function (a.k.a. switching function) consisting of

satcompetition.org
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⊥

x23

¬x23 ∨¬x17 ∨¬x32x23 ∨¬x32 ∨¬x13

¬x36 ∨ x35 ∨ x18 x17 ∨¬x36 ∨ x35

x14 ∨ x13 ∨¬x36 ∨¬x18
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¬x14 ¬x15
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x36 ¬x15 ∨¬x36

x23 ∨¬x13 ¬x23 ∨¬x17

x13 ∨¬x36 ∨¬x18

x13 ∨¬x18

x17 ∨ x35x35 ∨ x18 x15 ∨¬x35

¬x14 ∨¬x36

Figure 7.1: Example of a resolution refutation graph. The dotted and dashed nodes are roots occurring in respectively the A
part and the B part of the formula.
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Boolean variables s̄ = s1, . . . , sn. Whenever a particular valuation σ of s̄ holds by I ,
i.e. σ(I) =>, then σ is an initial state. Multiple distinct initial states may hold by
I .

The transition function, usually denoted as T : s̄×s̄′→ {>,⊥}, is a propositional
function with s̄ = s1, . . . , sn and s̄′ = s′1, . . . , s′n. Note that the cardinalities of s̄ and
s̄′ are equal. If for a pair of valuations σ and σ′ the transition functions holds, i.e.
σσ′(T ) =>, then σ′ is a valid successor state to state σ.

The initial condition and the transition function are used to compute reachable
states. For example, the Boolean formula resulting from I ∧ T are all the states
reachable in one step from the initial state. Those states are captured by the primed
variables s̄′. To compute the subsequent successor states, we first need to substitute
the variables s̄′ to s̄, using the substitution operator: (I ∧ T)[s̄′/s̄]. The resulting
formula can be conjuncted with T to determine the two-step reachable states. By
repeatedly performing this operation, and accumulating the reachable states, the
full reachable state space can be computed.

A particular approach to symbolic model checking is by using SAT-solvers. This
is called bounded model checking, since the early approaches [Bie+99] required
the user to provide a bound k ∈ N. The bound is used to unroll the transition
condition such that the resulting formula represents all states reachable within k
steps: I[s̄/r̄0] ∧ T[s̄/r̄0, s̄′/r̄1] ∧ . . . ∧ T[s̄/r̄k−1, s̄′/r̄k]. To ease our notation, the
aforementioned formula will subsequently be referred to as:

I0 ∧ T1 ∧ . . .∧ Tk (7.1)

The bound is necessary for tractability of the SAT-solver, otherwise the formula
would unroll beyond its capabilities. In the above formula, each r̄i , with 0≤ i ≤ k,
captures the states reachable in i steps. To verify an invariant φ, the formula can be
conjuncted with

∨k
i=0¬φ[s̄/r̄i], the invariant negated. To ease our notation, each

¬φ[s̄/r̄i] shall be referred to as ¬φi . If the SAT-solver finds the formula satisfiable,
the property does not hold within k steps, i.e. M 6|=k φ. The satisfying assignment
is a counterexample. If the SAT-solver proves the formula is unsatisfiable, then it
only means the property holds up to depth k, i.e., M |=k φ, and an outcome w.r.t.
the full state space remains inconclusive.

7.1.3 Interpolation

The cornerstone of our compositional reasoning is a classical result by William
Craig, his interpolation theorem for first-order logic [Cra57]:

Theorem 7.1.1 (Craig’s Interpolation Theorem). Let A and B be formulae over first-
order logic. If A =⇒ B holds, then there exists an interpolant C expressed using the
common variables of A and B such that A =⇒ C and C =⇒ B holds.

Proof. We describe here the proof approach by [Bus97]. It is a proof for the pro-
positional case, which is sufficient for our purposes. Let x̄ be the variables in A
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which are uncommon with B, ȳ be the common variables of A and B and z̄ be
the variables of B uncommon with A. Let | ȳ| be k. Let σ1 . . .σm be all satisfiable
assignments to ȳ such that A holds by further assignment of values to x̄ . We can
construct the interpolant C from σ1 . . .σm by an exponential construction:

C =
m
∨

i=1

(y (i)1 ∧ . . .∧ y (i)k )

where

y (i)j =
�

y j if σi(y j) =>
¬y j if σi(y j) =⊥

This construction shows that A =⇒ C holds. On the other hand, a satisfying
assignment to ȳ can be extended to a satisfying assignment to ȳ , x̄ that satisfies A.
Since A =⇒ B, every extension of this satisfying assignment to ȳ , x̄ , z̄ must satisfy
B. Therefore C =⇒ B.

The beauty of Craig’s interpolation theorem is that C is expressed using a
subset of variables occurring in A, showing that the validity of A∧ B depends only
on the variables common between A and B. We shall later on use this property to
formulate our component-oriented interpolation theorem.

SAT-solvers take formulae in conjuncted normal form as input, and the interpol-
ation theorem can be reformulated in such a way that it applies to conjunction of
clauses. First observe that A =⇒ B is equivalent to ¬(A∧¬B). This means that a
tautology of A =⇒ B is equal to a contradiction of A∧¬B. By Craig’s interpolation
theorem it follows that if A∧¬B is unsatisfiable, there exists an interpolant C such
that A =⇒ C holds and C ∧¬B is unsatisfiable. In this shape, the unsatisfiability
of a formula indicates the existence of an interpolant.

The interpolation theorem only postulates the existence of an interpolant, and
its proof shows how to construct one that is exponentially sized in the number
of common variables. The proof assumes that all the satisfying assignments to A
are known. We will use another approach by exploiting the ability of some SAT-
solvers to generate resolution refutation proofs, from which interpolants can be
derived [McM05]. This is demonstrated in the following definition:

Definition 7.1.2 (Interpolant Construction from Resolution Refutation Graph). Let
Π be the resolution refutation for A( x̄ , ȳ)∧¬B( ȳ , z̄) with the graph GΠ = (VΠ, EΠ)
associated with it. For each vertex v ∈ VΠ, let v1 and v2 be its predecessors and let
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x̄A ȳ Bȳ

Figure 7.2: Relation of sets of variables occurring in A( x̄ , ȳ)∧¬B( ȳ , z̄).

Cv be a Boolean formula such that

⊥ ⇐⇒ v ∈ A and v is root

> ⇐⇒ v ∈ B and v is root

(¬yi ∧ Cv1
)∨ (yi ∧ Cv2

) ⇐⇒ yi ∈ ȳ and yi is the pivot variable of v

and yi ∈ v1 and ¬yi ∈ v2

and v is non-root

Cv1
∨ Cv2

⇐⇒ x i ∈ x̄ and x i is the pivot variable of v

and v is non-root

Cv1
∧ Cv2

⇐⇒ zi ∈ z̄ and zi is the pivot variable of v

and v is non-root

This definition is complete with respect to the variables occurring in A and
B. This is easily shown by the Venn diagram in Figure 7.2. If Definition 7.1.2 is
applied from the leaf ⊥, one gets an interpolant for A, which is formulated by the
following theorem:

Theorem 7.1.3 (Correctness of Interpolant Construction from Resolution Refuta-
tion Graph). Let A∧ ¬B be unsatisfiable with resolution refutation Π as the proof.
Then C⊥ is an interpolant for A∧¬B.

Proof. There are several versions to proof this theorem. We prefer the approach
and notation described in [Hel07].

Example 7.1.4 (Interpolation from Resolution Refutation Graph). Consider Fig-
ure 7.1, which is a resolution refutation graph for formula A∧¬B. Notice that the
dotted vertices are part of A and the dashed vertices are part of ¬B. By applying
Definition 7.1.2, one obtains the interpolant ¬x13∨¬x17. Note that x13, x14, x15, x17
are shared between A and B. The variables x23, x32 occur strictly in A. The variables
x18, x35, x36 occur strictly in B.
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7.2 Component-Oriented Interpolation

In traditional model checking approaches of concurrent systems, the concurrent
processes are composed using a parallel composition operator. The result is a
single global transition relation that represents the concurrent system. In our
approach, we leverage the existing composition of processes to perform a com-
positional reasoning approach. For multi-threaded programs, the composition is
typically asynchronous, whereas for hardware circuits, the composition is typically
synchronous. In the upcoming, we will describe our approach on the synchronous
case only. It can however be extended to the asynchronous case by casting the
asynchronous model into a synchronous one.

A synchronous composition of n processes M1, . . . , Mn, with their associated
transition relations T 1, . . . , T n, is T =

∧n
i=1 T i . The associated initial conditions

are I = I1 ∧ . . .∧ In. When this is applied to the bounded model checking formula,
see equation (7.1), the result is the following:

n
∧

i=1

I i ∧
n
∧

i=1

T i
1 ∧ . . .∧

n
∧

i=1

T i
k ∧ (¬φ0 ∨ . . .∨¬φk)

Let us now isolate a particular process Mp, such that it becomes more apparent
how A and ¬B are to be determined:

I p ∧ T p
1 ∧ . . .∧ T p

k ∧ (¬φ0 ∨ . . .∨¬φk)
︸ ︷︷ ︸

¬B

∧ I 6=p ∧ T 6=p
1 ∧ . . .∧ T 6=p

k
︸ ︷︷ ︸

A

(7.2)

In the above, T 6=p
i is defined as

∧

q∈1...n\p T q
i . From Theorem 7.1.1, it follows that

whenever φ holds within bound k, there exists an interpolant C , such that it is
implied by A. Intuitively, the interpolant can be perceived as the transition relation
representing the k-bounded environment of process p. The interpolant is however
significantly smaller than the original formula representing the environment, since
it is only defined over the variables used for interacting with process p. This insight
is the basis for deriving a transition function Ep,M ,φ with variables only over those
in T p, yet T 6=p =⇒ Ep,M ,φ .

To this end, let us first investigate how variables are shared in the component-
oriented interpolation setting, as it is slightly different from the standard Craig
interpolation setting in Figure 7.2. In the latter, there are three sets of variables. In
the component-oriented setting, there are seven sets. Let us isolate environment
transition step i, that is T 6=p

i (ā, b̄, c̄, d̄). The remainder environment transition

steps are T 6=p
6=i (ē, d̄, c̄, f̄ ) and the variables occurring in the component and property

are B( ḡ, b̄, c̄, f̄ ). This is showed as a Venn diagram in Figure 7.3.
We can now define a component-oriented interpolation scheme for T 6=p

i :

Definition 7.2.1 (Component-Oriented Interpolant Construction from Resolution
Refutation Graph). Let Π be the resolution refutation for Equation (7.2) with the
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āT 6=p
i

ē

T 6=p
6=i

ḡ B

d̄

b̄

f̄
c̄

Figure 7.3: Relation of sets of variables occurring in the component-oriented set-
ting.

graph GΠ = (VΠ, EΠ) associated with it. Furthermore, let us partition the variables
occurring in Equation (7.2) to the partitions shown in Figure 7.3. For each vertex
v ∈ VΠ, let v1 and v2 be its predecessors and let C i

v be a Boolean formula such that

⊥ ⇐⇒ v ∈ T 6=p
i and v is root

> ⇐⇒ v ∈ T 6=p
6=i and v is root

> ⇐⇒ v ∈ I 6=p and v is root

> ⇐⇒ v ∈ B and v is root

(¬x ∧ C i
v1
)∨ (x ∧ C i

v2
) ⇐⇒ x ∈ d̄ ∪ c̄ and x is the pivot variable of v

and x ∈ v1 and ¬x ∈ v2 and v is non-root

C i
v1
∨ C i

v2
⇐⇒ x ∈ ā ∪ b̄ and x is the pivot variable of v

and v is non-root

C i
v1
∧ C i

v2
⇐⇒ x ∈ ḡ ∪ f̄ ∪ ē and x is the pivot variable of v

and v is non-root

If Definition 7.2.1 is applied from the leaf ⊥, one gets a component-oriented
interpolant for step i of the environment transition function, i.e. T 6=p

i . The result-
ing is weak enough to preserve the over-approximation from Craig interpolation,
i.e. T 6=p

i =⇒ C i
⊥, but not necessarily strong enough to strictly preserve the unsat-

isfiability of the formula from which the resolution refutation graph is derived, i.e.
Equation (7.2). This is shown in the proof of the following theorem:
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Theorem 7.2.2 (Over-Approximation by the Component-Oriented Interpolant).
Let σ be a valuation such that σ(v) = ⊥ for any v ∈ V in Definition 7.2.1. For any
i ∈ 1 . . . k, the following holds:

σ(C i
v) =⊥ =⇒ σ(a) =⊥∧ a ∈ T 6=p

i (7.3)

furthermore, it also holds that

σ(C i
v) => =⇒ σ(a) =⊥∧ a ∈ T 6=p

6=i ∪ I 6=p ∪ B (7.4)

Proof. By induction similar in style to [Hel07], but modified for the component-
oriented interpolation setting.

Consider the base case for Equation (7.3). If v ∈ T 6=p
i , then C i

v = ⊥ by Defin-
ition 7.2.1 and therefore σ(C i

v) = ⊥. Also the hypothesis σ(v) = ⊥ holds by
definition. The same argument holds for proving the base case for Equation (7.4).

For the inductive step, we distinguish three cases:

1. Case where x is the pivot variable of vertex v and x ∈ d̄ ∪ c̄. Recall from
Definition 7.2.1 that in this case, C i

v = (¬x ∧ C i
v1
)∨ (x ∧ C i

v2
). Furthermore,

recall from the definition of the resolution refutation graph in Section 7.1.1
that v = D ∨ D′ and that v1 = x ∨ D and v2 = ¬x ∨ D′. Given that σ(v) =⊥,
it follows that σ(D) = σ(D′) =⊥.

Thus if σ(C i
v) =⊥, there are two subcases, namely:

• Case σ(x) = >. Then σ(C i
v2
) = ⊥ and σ(v2) = ⊥. By induction we

conclude that σ(a) =⊥ for some a ∈ T 6=p
i .

• Case σ(x) = ⊥. Then σ(C i
v1
) = ⊥ and σ(v1) = ⊥. By induction we

conclude that σ(a) =⊥ for some a ∈ T 6=p
i .

If σ(C i
v) =>, then there are the following two subcases:

• Case σ(x) = >. Then σ(C i
v2
) = > and σ(v2) = ⊥. By induction we

conclude that σ(a) =⊥ for some a ∈ T 6=p
6=i ∪ I 6=p ∪ B.

• Case σ(x) = ⊥. Then σ(C i
v1
) = > and σ(v1) = ⊥. By induction we

conclude that σ(a) =⊥ for some a ∈ T 6=p
6=i ∪ I 6=p ∪ B.

2. Case where x is the pivot variable of vertex v and x ∈ ā ∪ b̄. Observe that
C i

v = C i
v1
∨ C i

v2
and that the premises for v, v1, v2, σ(D) and σ(D′) hold

likewise as for case 1.

Given this, if σ(C i
v) =⊥ then σ(C i

v1
) =⊥ and σ(C i

v2
) =⊥. Also here we can

then distinguish two subcases:

• Case σ(x) => then σ(v2) =⊥. By induction we conclude that σ(a) =
⊥ for some a ∈ Ti .
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• Case σ(x) =⊥ then σ(v1) =⊥. By induction we conclude that σ(a) =
⊥ for some a ∈ Ti .

It becomes more involved for the case that σ(C i
v) = >. We then know

that either σ(C i
v1
) = > or that σ(C i

v2
) = > and that either σ(v1) = ⊥ or

σ(v2) =⊥. This leads to six possible subcases:

Subcase σ(v1) σ(v2) σ(C i
v1
) σ(C i

v2
)

(2.1) > ⊥ > >
(2.2) ⊥ > > >

(2.3) > ⊥ ⊥ >
(2.4) ⊥ > ⊥ >

(2.5) > ⊥ > ⊥
(2.6) ⊥ > > ⊥

Subcases (2.1), (2.2), (2.3), (2.6) trivially hold, as either σ(v1) = ⊥ and
σ(C i

v1
) => or σ(v2) =⊥ and σ(C i

v2
) => hold. In either case, we conclude

that σ(a) =⊥ for some a ∈ T 6=p
6=i ∪ I 6=p ∪ B.

For subcases (2.4) and (2.5), observe that the pivot variable x does not occur
in C i

v1
, C i

v2
, T 6=p
6=i nor in B. See Figure 7.3. This allows us to define a variation

on the valuation σ which we denote as σ′. It holds the same valuations for
any variable other than x , and for x it is defined as follows:

σ′(x) =
�

⊥ if σ(x) =>
> if σ(x) =⊥

By using σ′ instead of σ for case (2.4), we get σ′(v2) =⊥ and σ′(C i
v2
) =>.

By induction we conclude that σ′(a) =⊥ for some a ∈ T 6=p
6=i ∪ I 6=p ∪ B. Note

thatσ′(a) = σ(a) since x does not occur in T 6=p
6=i ∪I 6=p∪B. The same reasoning

can be applied for case (2.5).

3. Case where x is the pivot variable of vertex v and x ∈ ḡ ∪ f̄ ∪ ē. This is the
dual case to case 2 and is proven in a similar manner.

Recall that C i
v only derives a component-oriented interpolant for transition step

i. By substitution of the occurring variables to current and successor-state variables,
it could be already used as an abstraction for T 6=p

i . It can be easily strengthend by
accounting for the remaining steps in the bounded model checking formula. In
general, the following corollary from Theorem 7.2.2 is used:
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Corollary 7.2.3 (Component-Oriented Interpolated Environment Transition Con-
dition). Let φ be the property of interest. Let M = (I , T) be a composition of n
processes such that I =

∧n
i=1 I i and T =

∧n
i=1 T i . Let us assume that φ holds up

to a given bound k, i.e. M |=k φ. Let process p ∈ 1 . . . n be the process of interest.
The component-oriented interpolated transition condition, defined as Ep,M ,φ , can be
derived from the interpolants C1

⊥, . . . , C k
⊥ resulting from Theorem 7.2.2:

Ep,M ,φ =
k
∧

i=1

C i
⊥(r̄i−1, r̄i)[r̄i−1/s̄, r̄i/s̄

′]

It then follows that
T 6=p =⇒ Ep,M ,φ

When additional abstractions of T 6=p
i are constructed using for example differ-

ent techniques or by increasing k, these abstractions can be combined to obtain a
stronger abstraction:

Proposition 7.2.4 (Conjuncting Abstractions of the Environment Transition Con-
dition). Given the environment transition condition T 6=p and any two abstractions of
it Y and Z such that T 6=p =⇒ Y and T 6=p =⇒ Z, then the following holds:

T 6=p =⇒ (Y ∧ Z)

7.3 Applications

The component-oriented interpolation approach, as described in Section 7.2, en-
ables several practical applications. We will describe three of them here. In the
subsequent section, Section 7.4, we shall look at one of the applications, namely
model verification, from an experimental perspective.

A straightforward application is manual inspection. With models as large and
complex as the one in Chapter 6, manual inspection is more cumbersome to per-
form than employing model checking algorithms. Our component-oriented inter-
polation method can however overcome this. Assume that one is intimate with a
particular component, or a set of components, but not with the remainder of the
model. That remainder can be significantly abstracted by our component-oriented
interpolation method to a remainder model that is expressed in the variables of
the component one is familiar with. This makes such a remainder model smaller in
size and thus more amenable for manual inspection. Abstractions can be combined
by generating environments using various properties that (k-)boundedly hold on
the overall model. Proposition 7.2.4 allows us to conjunct these remainder models
together in a stronger environment.

The component-oriented interpolated transition condition can also be utilised
for automated verification of properties. A naive approach would be to do bounded
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model checking up to a tractable depth k such that one obtains a resolution re-
futation graph. Then one picks a component p and use the component-oriented
interpolation method to abstract the remainder. Heuristically, it is wise to include
at least the components that are directly referred by the atomic propositions in the
property of interest, since these directly affect the property of interest. The abstrac-
ted environment transition condition and the transition condition of p can then
be subjected to unbounded model checking techniques. This abstracted model is
smaller than the original model. The resulting abstracted model might however
be too weak. If a counterexample is found during unbounded model checking,
one has to distinguish whether it is a false-negative due to over-approximation, or
whether it is a counterexample that also occurs in the original model. Techniques
from CEGAR (counterexample guided abstraction refinement) [DKW08] can be ap-
plied to concretise the counterexample. Or the depth k can be increased, resulting
in a larger and more informative resolution refutation graph from which a more
precise component-oriented interpolant can be generated. Furthermore, CEGAR
refinement techniques can be applied in conjunction as well.

We believe that the power of our component-oriented interpolation technique
is most applicable during the construction of the model. In traditional model
checking approaches, refinements or changes of the model need to be fully model
checked again. Our technique can speed that up. Assume we want to refine or
modify a component and leave, for the moment, its environment as it is. Also
assume that the interface of the component does not change. We can use the resol-
ution refutation graphs from the properties that hold on that model to construct a
component-oriented interpolated transition condition of the environment. When
the component that was intended to be refined or modified is changed, we can
use our component-oriented interpolated transition condition for reverification of
the properties instead of using the full blown model. The premise of using our
component-oriented interpolated transition condition is that its faster, and can be
reused provided the interface and the environment does not change. It supports
a continuous (re)verification methodology during modelling and providing earlier
feedback on the model under construction.

7.4 Experimental Evaluation

In this section we investigate the effectiveness of the abstractions of the component-
oriented interpolation method in terms of abstraction convergence, computation
time and memory consumption using two industrial-sized cases. The first one is
exactly the same case from Chapter 6. The second case is a follow-up model of the
same mission, but heavily refined with details from the critical design phase. The
latter is thus more detailed, larger and by that extend more complex. The report
on the latter is at the time of writing yet unpublished. The experimental setup
takes on verification as the application for our method. The data obtained from
this can be used to infer the potential for other applications, like manual inspection
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and continuous reverification.

7.4.1 Case Configurations

In our evaluation, we considered several configurations from the preliminary
design review and the critical design review satellite architecture model. From
here on, we shall refer to the former as the PDR model and the latter as the
CDR model. The final configurations selected for our experimental evaluation are
known to require an interesting k for proving or disproving the property, as there
were also configurations whose property were trivial to check. These final case
study configurations are outlined in Table 7.1.

Model Fault Injections Property

PDR-1 Earth sensor failure fail-operational flag is set
PDR-2 Propulsion failure AOCS status flags are consistent

CDR-3 Various platform failures not in safe mode
CDR-4 (none, i.e. nominal behaviour) solar voltage level is consistent
CDR-5 (none, i.e. nominal behaviour) not in safe mode

Table 7.1: Overview of experiment configurations in terms of the used model, the
applied fault injections and the verification property. The first two configurations
are from the PDR model, whereas the remainder three are from the CDR model.

7.4.2 Implementation

We measured the computation times and peak memory consumption of our tech-
nique against two other techniques. They were implemented in NuSMV 2.5.4 using
MiniSAT 1.14p with a proof-logging extension as the SAT-solver.

We intended to use NuSMV’s BDD-based verification implementation as the
baseline. We however quickly found out that the BDDs were not effective on both
the PDR and CDR configurations. On the PDR configurations, its performance was
a magnitude (order) slower than the other techniques. On CDR configurations, the
time needed to build the BDD of the transition function took more time than the
overall computation time of the other techniques. We therefore omit the results
from it.

Instead, we use McMillan’s interpolation-based unbounded model checking
technique for invariants [McM05] as the baseline. Its base principle is to interpol-
ate the first transition step A= R∧ T (x0, x1) with B = T (x1, x2)∧ . . . T (xk−1, xk)∧
¬φ where φ is the invariant and initially R= I0. The interpolant C , with A =⇒ C ,
is defined over variables in x1 and is thus a weakened characterization of the
successor states. This process is repeated with taking R ← R ∨ C as the initial
states until the full state space has been explored. A sketch of the algorithm is
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shown in Algorithm 1. We implemented it in NuSMV as there was not pre-existing
implementation for it available. The interpolation scheme we implemented is by
McMillan as well [McM03] and it has been studied thoroughly for use in this
setting [DSi+10; RSS12].

Algorithm 1 McMillan’s Interpolation-based Invariant Checking.

1: k← 1
2: while I0 ∧ T1 ∧ · · · ∧ Tk ∧¬φ is unsatisfiable do
3: R← I0;
4: while R∧ T1 ∧ · · · ∧ Tk ∧¬φ is unsatisfiable do
5: C ← interpolant of R∧ T1
6: if C ∧¬R is satisfiable then R← R∨ C
7: else[no new states explored] return φ holds
8: end if
9: end while

10: k← k+ 1
11: end while
12: return counterexample

The component-oriented interpolation technique was put into a verification
scheme. The algorithm, shown in Algorithm 2 bears similarity with McMillan’s
Interpolation-Based Invariant Checking scheme in Algorithm 1. Intuitively, it ob-
tains a component-oriented interpolated environment, which is then used in an
inner reachability analysis until a fixpoint is found, in which case the property
holds. Otherwise, the bound is increased in the hope for a stronger component-
oriented interpolated environment. Even though any reachability algorithm could
be used, we employed McMillan’s interpolant-based invariant checking algorithm
here. The primary reason for this design decision is that we stay in a SAT-based
context and the data-structures associated with it. If any other context would be
used, like for example BDDs, we would have to convert Ep,M ,φ , I p and T p to the
data-structures associated with them, resulting in additional overhead.

7.4.3 Experimental Data

The experimental data was obtained from a machine with a 2.33 GHz CPU and
32 GB RAM. A summary of the data is presented in Table 7.2. We kept track of
the depth needed to determine whether the property holds or whether there exists
a counterexample. This bound is the column k in Table 7.2. A smaller k would
indicate a faster convergence of the abstraction.

The results indicate that the complexity of the CDR model is higher than the
PDR model. This is not surprising since the CDR model is a refinement of the PDR
model by having more behavioural detail. The results furthermore indicate that
the verification by the component-oriented interpolation method is competitive.
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Algorithm 2 Component-Oriented Interpolation-based Invariant Checking.

1: k← 1
2: while ¬φ ∧ I p

0 ∧ T p
1 ∧ · · · ∧ T p

k ∧ I 6=p
0 ∧ T 6=p

1 ∧ · · · ∧ T 6=p
k is unsatisfiable do

3: Ep,M ,φ ← component-oriented interpolant of I 6=p
0 ∧ T 6=p

1 ∧ · · · ∧ T 6=p
k

4: R← I p

5: while R∧ T p
1 ∧ Ep,M ,φ

1 ∧ · · · ∧ T p
k ∧ Ep,M ,φ

k ¬φ is unsatisfiable do

6: C ← interpolant of R∧ T p
1 ∧ Ep,M ,φ

1
7: if C ∧¬R is satisfiable then R← R∨ C
8: else[no new states explored] return φ holds
9: end if

10: end while
11: k← k+ 1
12: end while
13: return counterexample

Case Technique Outcome k Time (sec) Mem (Mb)

PDR-1
MCM counterexample 3 2.42 95.9
COMP counterexample 3 3.52 111.9

PDR-2
MCM counterexample 2 1.77 92.0
COMP counterexample 2 2.28 100.4

CDR-3
MCM counterexample 11 486.06 651.0
COMP counterexample 11 338.56 865.5

CDR-4
MCM holds 4 7.10 125.7
COMP holds 3 7.00 138.0

CDR-5
MCM holds 7 69.20 171.5
COMP holds 3 8.10 137.0

Table 7.2: Summary of verification outcome, needed depth k, verification time
and peak memory consumption for McMillan’s interpolation-based invariant check-
ing (MCM) and the component-oriented interpolation-based invariant checking
(COMP).
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This is in particular visible for CDR-3 and CDR-5, where the computation time
is better. The needed depth k indicates that the quality of the abstraction is also
competitive. This is visible when the property holds, namely cases CDR-4 and
CDR-5, where a smaller k is required. Note that these measures cannot be trivially
generalised. The timings depend heavily on the used SAT-solver and in particular
the heuristics it employs. A change in the clause orderings could make a difference,
or simply running the same case on a different system could lead to differences.
These factors are inherent to the nature of current-day SAT-solvers. Hence, the
numbers should be interpreted as indications, rather than hard conclusions.

Even though the experimental data indicate that the quality of the abstraction
by the component-oriented interpolation scheme is competitive, we suspect that
the way it is used in this experimental evaluation suffers from double abstrac-
tion. This comes from the fact that Ep,M ,φ is an abstraction, which, according
to Algorithm 2, is used for an inner unboundend reachability check. The latter
also uses abstraction, namely by abstracting reached successor states. This might
cause more false-negative counterexamples than necessary. Each abstract counter-
example turns the while condition in line 5 of Algorithm 2 to false, leading to an
increase of the bound k in line 9. An exact and unbounded inner reachability check
would be preferable. We are however not aware of any that employ SAT-based
setting. BDD representations on the other hand are possible. We experimented
with a quick implementation, but early tests indicated that the benefit of the exact-
ness of BDDs were quickly diminished by the time needed to construct the initial
condition, the component and its environments as BDDs. Hence, we leave any
further optimisation in this area as future work.

As elaborated in Section 7.3, there are other uses, like manual inspection
or reverification, where the algorithm looks slightly different than that for plain
verification, as described in Algorithm 2. For manual inspection, it is important that
bounded verification (line 2 of Algorithm 2) and the construction of the component-
oriented interpolated environment condition (line 3 of Algorithm 2) are fast. For
reverification on the other hand, it it is more important that the inner unbounded
verification is performant (lines 5 to 8). To estimate these factors, we kept track
of the timed used on bounded verification, component-oriented interpolation and
inner unbounded verification. The result is shown in Table 7.3.

The table shows that component-oriented interpolation takes relatively little
time. This is expected. The worst-case time-complexity of constructing is linear to
the size of the resolution refutation graph and the bound k. Bounded verification
and inner unbounded verification, in our experiment, are based on SAT-solving,
which is known to be NP-complete.

In case the property holds, cases CDR-4 and CDR-5, the inner unbounded
reverification takes a large chunk of the computation time. The gain is however
when reverification is performed often, as the time for bounded verification and
component-oriented interpolation is avoided. The benefit would be even greater if
the needed depth is larger, as one then avoids the costly bounded verification.
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Case Depth BV (msec) COI (msec) IUV (msec)

PDR-1
1 112 36 256
2 284 76 512
3 588 - -

PDR-2
1 152 36 272
2 436 - -

CDR-3

1 264 68 412
2 568 152 960
3 1108 236 1596
4 1876 332 2612
5 3633 468 5424
6 5116 620 3905
7 12592 989 5048
8 14309 1348 6544
9 66244 5597 16237

10 94174 6900 29014
11 38127 - -

CDR-4
1 168 52 340
2 360 96 652
3 564 152 2744

CDR-5
1 168 40 260
2 364 92 632
3 588 148 3964

Table 7.3: Decomposition of the verification times of Table 7.2 into the three most
time consuming parts per depth, namely bounded verification (BV), component-
oriented interpolation (COI) and inner unbounded verification (IUV).
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7.5 Discussion

The verification of properties has been an important driver to the exploitation
of a model’s compositionality for tackling the state space explosion. Approaches
have been devised that exploit component interactions through global variables,
whereas others have tackled the notion of shared variable interactions. Also ex-
pressiveness regarding invariants, safety and liveness properties have been studied.
In this section, we shall discuss the closely related works.

Closely related, and the work that inspired us initially, is that by [CN09]. Their
approach is based on the computation of the split invariant, which is a conjunction
of process invariants. The safety property of interest is then checked against the
split invariant. It is an over-approximation, as it accounts for interference by
other processes using a Cartesian product of possible local states. Due to the over-
approximation, counterexamples could be false negatives. Refinement occurs by
analysing the counterexample and by adding auxiliary global variables that result
to a finer over-approximation. The approach works well for systems that have
a low ratio of global-local variables. Global variables are those shared with all
processes occurring in the model. In our case, that would result to having all data
ports becoming global variables, even though they are not visible to all components.
This would counterfeit the benefits of the approach, making it force to see it as a
global model checking problem. The same authors extended this work to liveness
properties in [CN08]. The constraint is that the atomic propositions in the liveness
property is only allowed over global variables. The split invariant computation is
modified to synthesise environment processes for each processes. Our notion of
environment (cf. Definition 7.2.1) was inspired by this approach. The environment
process accounts for the possible interference by other threads. As processes can
only interfere through global variables, the environment process operates only
over those. This in contrast to our approach, where processes interfere through
shared variables. In both their and our approach, the environment process is an
over-approximation. We attempt to refine it by increasing the bound k, whereas
the approach by [CN08] adds auxiliary variables. In [Coh+11], it is reported
that the method works well on small benchmarks, and they also show that their
approaches are effectively paralellisable over multi-core systems.

Another branch of compositional verification that bears resemblance to the
works of [CN09] is called “thread-modular” and initiated from [FQ03]. In this
work, it is identified that for loosely-coupled concurrent processes with global/-
local variables, environment assumptions can be inferred that account for the
interference by other threads. These assumptions are similar to the environment
processes of [CN08]. Their method is incomplete as well, since the environment as-
sumptions over-approximate, and no refinement procedure is described. Later on,
in [MPR06], those authors show that Cartesian abstract interpretation and thread-
modular verification are conceptually the same, but were developed in different
communities and differ in the details. In a more recent work [GPR11b], it is shown
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that the Owicki-Gries paradigm, that is the underpinning of [CN09], is also concep-
tually the same as thread-modular verification, and by extension also to Cartesian
abstract interpretation. They are share the principle that a state space per process
is explored, and hence our work can also be classified to this branch. The differ-
ence is how they account for interference by other processes. In the Owicki-Gries
approaches by [CN08; CN09], process interference is an over-approximation and
is refined through counterexample analysis and the addition of auxiliary variables
that coarsen the interference. For the thread-modular approach, an refinement
approach using so-called exception sets is described in [MPR10]. In [GPR11a], a
refinement approach is described by setting up a set of Horn clauses, solve it, and
extract refined transition predicates from it. All these lines of work only consider
the notion of global variables for communication and cannot cope with a finer
notion of process interaction, like through shared variables. Our approach fits
both.

Another line of research that takes a compositional perspective is that of
assume-guarantee reasoning, or also known as rely-guarantee reasoning. They star-
ted out as a technique for proving properties manually, but have been automatised
in recent years. There is an enormous body of work in this line. We will restrain
ourselves to the most related approaches. Akin to [CN08], the principle idea is
to generate an environment for each process, which describes assumed behaviour
from its environment (that is, the remainder processes). In return, the process
provides guarantees, which can function as an assumption for other processes.
The simplest version of assume-guarantee reasoning is the asymmetric AG-rule.
According to this rule, a weakest assumption is generated based on the property
and one of the components. This assumption is then used as the guarantee for the
remainder components. In [GPB02], a technique based on automata determinisa-
tion is described to generate weakest assumptions. In subsequent work [CGP03],
assumptions are learned using an automaton learning algorithm, like L*. In many
cases, components mutually influence each other, rendering a proper application
of the asymmetric AG-rule infeasible. A solution was proposed, called symmetric
AG-rules [BGG03]. It is a slight adaptation of the asymmetric rule that accounts
for the idea that all components can have assumptions, provided that the com-
position of assumptions is part of the original property. The work by [Cof+12]
follows this approach for component architectures, including AADL (and alike). In
literature, typically models with global/local variables were tackled. An exception
to this is the work described in [Lom+10]. It assumes that the global property
to be verified is a conjunction of local properties. The work provides a bounded
assume-guarantee reasoning rule that accounts for effects by transitivity of the
component’s topology. The drawback of this work is the assumption: many require-
ments are simply not the conjunction of of local requirements. The aforementioned
approaches are suitable for breaking up the state space, and reason over it com-
positionally, avoiding the state space explosion memory-wise. It however does not
have the benefit of reasoning over parts of the state space in parallel, since the
AG-rules have to applied in a particular component order.
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The works discussed so far relate themselves to our work by tackling the
problem of composition/decomposition of verification. The use of interpolation
to do this is novel. Interpolation itself however has been used before to non-
compositional model checking. In [McM05], Craig’s interpolation theorem is used
to abstract the reachable states with respect to a safety property. It does this by ab-
stracting the one-step reachable states, such that it is a sound over-approximation
with respect to the property. It is however not an over-approximation in gen-
eral. The one-step reachable states over-approximation is computed based on a
k-bounded bounded model checking formula. It is complete, and known to termin-
ate as long as a sufficient k is provided. An interpolation based technique for model
checking LTL is described in [McM03]. It encodes the automata-based approach
towards LTL model checking and uses interpolation to over-approximate the sets
of currently explored states. In [JM05], Craig’s interpolation theorem is applied in
a different way, namely for abstracting the transition relation itself. They showed
it works well in conjunction with predicate abstraction. We built upon these works
by applying interpolation to exploit a composition of communicating processes.



8

Krylov-Based Transient Analysis of
Continuous Time Markov Chains

The predominant technique for computing the transient distribution of a Continu-
ous Time Markov Chain (CTMC) exploits uniformisation, which is known to be
stable and efficient for non-stiff to mildly-stiff CTMCs. On stiff CTMCs however,
uniformisation suffers from severe performance degradation. In this chapter we
reintroduce a Krylov-based method for computing the transient of a CTMC. It is
briefly mentioned in Moler and Van Loan’s discourse [ML03] on 19 methods for
the matrix exponential as a novel 20th method and in De Souza e Silva and Gail’s
survey [dSeSG99] as a possible method for computing the transient of CTMC. Des-
pite these references and their success for many matrix-related computations in
different fields of science and engineering, Krylov-based methods received scant
attention in the field of probabilistic analysis. We believe this is due to three reas-
ons, namely (i) to our knowledge, experiments with a Krylov-based method have
been only conducted on small academic examples [SSS96] or without regard to
stiffness versus non-stiffness (ii) due to the lack of the former, nobody has identi-
fied the class of CTMCs for which Krylov-based methods excel and (iii) the good
applicability of Krylov-based methods to the transient have, to our knowledge, not
been explained theoretically. In this chapter, we tackle these reasons. First, we
show how to apply a Krylov-based method for computing the transient distribu-
tion of CTMCs to model check time-bounded reachability properties expressed in
Continuous Stochastic Logic (CSL). Then using five case studies from literature,
we extensively compared the implemented Krylov-based method to the existing
uniformisation-based method. From the results, we identified that computing the
transient distribution is (much) faster with Krylov-subspace methods for stiff CT-
MCs. This observation is explained by the good approximation properties of the
Krylov-based matrix exponential using Schwerdtfeger’s formula [Rin55].
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8.1 Stiffness

Stiff CTMCs are found in many domains, among which systems biology, where
the reaction rates of molecules may vary greatly, and mission critical systems en-
gineering, where failures occur frequently (like sensor glitches) or sporadically
(like complete sensor failure). The transient distribution of CTMCs —what is the
probability to be in a state at time t?— is a prominent measure of interest, and
is fundamental to a range of measures of interest such as time-bounded reachab-
ility properties [Bai+03]. Its computation is a well-studied topic and a survey of
applicable techniques is discussed by De Souza e Silva and Gail [dSeSG99]. One
wide-spread method is Jensen’s uniformisation [Jen53] which is known for its
good numerical stability and is implemented as the default method for transient
analysis in various —if not all— Markov analysis tools. Its performance degrades
however on stiff models, which, given its many definitions in literature, we simply
refer to as the degree of difference between the smallest and largest rates in the
CTMC. Other methods like Runge-Kutta solvers require small discretisation values
on stiff models, thereby suffering from similar performance problems. On top of
these problems, potential numerical instability, not uncommon with stiff models,
needs to be dealt with as well.

8.2 Model Checking Markov Chains

This section introduces the basic concepts of model checking CTMCs using Con-
tinuous Stochastic Logic (CSL). It is only used as a stepping stone towards the
remainder part of this chapter. We refer to [Bai+03] for an elaborate treatment on
this topic.

A labelled CTMC is a tuple (S,Q, L) where S is a finite set of states, L : S→ 2AP

is a labelling function and Q : S × S → R is a generator matrix. Each diagonal
element qs,s ∈ Q is defined as qs,s = −

∑

s′∈S,s 6=s′ qs,s′ , and all remaining elements
qs,s′ have a rate ≥ 0. Intuitively, a transition from s to s′ (with s 6= s′) is triggered
within t time units by probability 1− e−qs,s′ t . In other words, the occurrence of a
transition is exponentially distributed. The rate of staying in a state s is described
by the diagonal elements, namely |qs,s|.

The transient distribution, which is further referred to in this dissertation as
the transient, of a CTMC, denoted by π(t), is the vector of probabilities being
in states s ∈ S at a time t given an initial distribution π(0). It is characterized
by Kolmogorov’s forward differential equation d

d t
π(t) = Q ·π(t), whose solution,

given an initial distribution π(0), is the following:

π(t) = eQt ·π(0) (8.1)

There are numerous numerical techniques to compute π(t), of which Jensen’s
uniformisation algorithm [Jen53] is widely used.
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Uniformisation considers a uniformisation rate Λ ≥ max i∈S |qi,i | so that the
generator matrix can be rewritten as Q = Λ · (P− I). The matrix P is a stochastic
matrix of the uniformised CTMC, and I is the identity matrix. When this rewritten
Q is substituted in Equation (8.1), we get π(t) = eΛ(P−I)t · π(0). This equation
can be rewritten and the matrix exponential can be expanded according to the
Taylor-MacLaurin series, after which one gets:

π(t) = (
∞
∑

n=0

e−Λt (Λt)n

n!
Pn) ·π(0) (8.2)

The part
∑∞

n=0 e−Λt (Λt)n

n!
is the Poisson density function and it converges to 1. A

numerically stable technique for computing it is by Fox-Glynn’s method [FG88].
When an error bound ε > 0 is given, the sum of Equation (8.2) can be truncated.
The error bound ε can be used to determine the left- and right series truncation
points Lε and Rε, such that

∑Rε
Lε

e−Λt (Λt)n

n!
≥ 1− ε. The left and right truncation

points tend to be in the order of O(Λt). Large Λ’s are common for stiff CTMCs and if
this is also combined with a large t, the number of terms needed by uniformisation
to compute the transient is large.

The transient is fundamental to analyse labelled CTMCs with properties ex-
pressed in CSL, which describes a measure of interest in terms of satisfiable states
and paths. It is also at the heart of more recent verification techniques that check
a CTMC against a timed automaton specification [Che+09]. For the scope of this
chapter, the interesting CSL properties are of the form P./p(♦[t1,t2]Ψ). Intuitively,
it means that the set of paths that eventually reach a state satisfying Ψ has a prob-
ability measure meeting ./ p (where ./ ∈ {<,>,≤,≥,=}) within the real-valued
time bounds t1 to t2. Ψ is a CSL formula (in all our examples a boolean expres-
sion) over the set of atomic propositions AP used in the labelled CTMC. To evaluate
these kind of CSL properties, one computes the transient on a modified labelled
CTMC(s) and compares the transient probabilities with the bound ./ p.

8.3 Krylov Subspace Methods

In the remainder of this chapter, we use A= Q· t and v = π(0), to keep the notation
similar to the literature of Krylov-subspace methods [Saa92] while maintaining a
connection to the matrix exponential in Equation (8.1).

The principal idea of Krylov subspace methods is to approximate the original
sparse matrix A by a matrix Hm of much smaller dimension m. This works be-
cause Hm preserves an important property of A: its extreme eigenvalues. We will
show using Schwerdtfeger’s formula [HJ86] that due to the extreme eigenvalue
preservation, eAv can be effectively approximated by operations on Hm.
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8.3.1 Mathematical Formulation

A naive approach for computing eAv is by using the Taylor-MacLaurin series expan-
sion:

eAv =
∞
∑

i=0

Ai

i!
v = I v+ Av+

1

2
A2v+ . . .

The matrix powers make it evident that this approach is highly numerically un-
stable. Fortunately, numerous stable techniques have been developed by the nu-
merical linear algebra community. A powerful technique central in this chapter,
Krylov-based methods, exploits the sparseness of the matrix. This property typic-
ally holds for infinitesimal generators. Several researchers [HL97; Saa92] have
developed and studied Krylov-based methods to the matrix exponential, where the
principal idea is to approximate eAv by an element in the m-order Krylov subspace,
defined as

Km(A, v) = span{v, Av, A2v, . . . , Am−1v}

where span denotes the usual linear span of a set of vectors. The precision of
the approximation is controlled by the natural m. A lower m leads to a coarser
approximation while a higher m increases precision at the expense of increased
memory and computation time.

Algorithm 3 Arnoldi iteration.

1: v1← v/||v||2
2: for j = 1,2, . . . , m do
3: w← Av j
4: for i = 1,2, . . . , j do
5: hi, j ← (w, vi)
6: w← w− hi, j vi
7: end for
8: h j+1, j ← ||w||2
9: v j+1← w/h j+1, j

10: end for

The approximation to eAv starts with the Arnoldi iteration, which is shown in
Algorithm 3. In this figure, the dot product of two vectors w and vi is denoted as
(w, vi) and the Euclidean norm of a vector w is denoted as ||w||2. The iteration
produces a sequence of orthonormal Arnoldi vectors v1 through vm, which as a
matrix Vm forms the orthonormal basis of the Krylov subspace Km. It also produces
the matrix Hm from the coefficients hi, j . That matrix is the linear projection of A
onto subspace Km and is of upper Hessenberg form, i.e. Hm is nearly triangular
due to the non-zero entries in first subdiagonal. Thus what the Arnoldi iteration
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does is a Hessenberg decomposition of A, resulting in the following relation:

A≈ VmHmV T
m

From this decomposition, the computation of eAv can be derived by operations on
the smaller Hm. In this derivation, we use en, which is the nth vector of I :

eA ≈ eVmHmV T
m (by application of exponential)

eA ≈ I + VmHmV T
m +

1

2
(VmHmV T

m )
2 + . . . (by series expansion)

eA ≈ Vm(I +Hm +
1

2
H2

m + . . .)V T
m (by I = V T

m Vm = VmV T
m )

eA ≈ VmeHm V T
m (by series de-expansion)

eAVm ≈ VmeHm (by multiplication with Vm)

eAv1 ≈ VmeHm e1 (by v1 = Vme1)

eAv ≈ VmeHm e1||v||2 (by v1 = v/||v||2)

The last equation means that one can approximate the exponential over matrix A by
computing the exponential over the much smaller Hm using stable dense methods
(like Padé approximation) and project the result back to the original space using
matrix Vm.

There are several advantages to this approach. First, the method can be per-
formed iteratively. If the precision does not suffice for a particular subspace di-
mension m, this can be increased and the Arnoldi iteration can resume with the
existing matrices Vm and Hm and iteratively extend them until a satisfactory preci-
sion has been reached. The second advantage is the numerical robustness. During
the Arnoldi iteration, only multiplication, addition, division and subtraction is
performed on normalized vectors. The exponential over Hm is stable when Padé
approximation is combined with scaling and squaring, as was established for ex-
ample by Ward [War77].

8.3.2 Complexity Analysis

The time-complexity of the Krylov-based method is dominated by the complexity
of Arnoldi iteration. Arnoldi iteration has a time-complexity of O(m · n2 +m2 · n),
where m is the Krylov subspace dimension and n is the dimension of the matrix
A. Line 1 of Algorithm 3 takes O(n). Line 3 of Algorithm 3 is a matrix-vector
multiplication, which is has a quadratic time-complexity. The for-loop between
lines 4 to 6 is traversed at most m times, where line 5 and 6 are O(n). Thus the
inner-for loop takes O(m · n). Lines 8 and 9 take O(n). Putting all these together,
the result is a complexity of n+ m · (n2 + m · n+ 2 · n), whose asymptotic time
complexity is O(m · n2 +m2 · n).
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Note that Arnoldi iteration only computes the decomposition A ≈ VmHmV T
m .

For computing VmeHm e1||v||2, a matrix exponential needs to be computed over
Hm. In our experiments, we used Padé approximation combined with scaling and
squaring. It costs 2 · (p + γ + 1

3
) · m3 operations, where p is the degree of the

Padé approximation, γ is the squaring & scaling factor [War77]. A larger p gives
better precision, and typically a value > 6 is recommended [Sid98]. We used
16 in our experiments (cf. Section 8.4). The value γ determines the degree of
scaling & squaring which is used to control numerical stability. It is suggested
by [War77] to choose a γ such that 2γ−1 ≤ ||Hm||1 ≤ 2γ, where ||Hm||1 is the
1-norm (maximum absolute column sum) of Hm. The resulting time complexity
for Padé approximation is O(γ ·m3).

8.3.3 Schwerdtfeger’s Formula

The approximation of eAv by VmeHm e1||v||2 works particularly well, despite Hm
being of much lower dimension than A. Attempts to explain this behaviour have
led to advances in determining stricter error bounds [HL97; Saa92]. Instead of
taking that direction, we shall explain it by an analysis in terms of eigenvalues of
A and Hm.

A great deal of study has been conducted in relation of the eigenvalues of Hm
to those of A. It is now well-accepted that Hm’s eigenvalues, referred to as Ritz
values, strongly correspond to the extreme eigenvalues of A [TBI97]. Those are
the eigenvalues near the edge of A’s spectrum. We will show that those are the
eigenvalues of interest for the matrix exponential.

Any analytical function over a matrix A, like the exponential, can also be de-
scribed in terms of the eigenvalues of A. Several theorems for this exist and
Rinehart has shown that they are derivable to each other [Rin55]. Here we choose
Schwerdtfeger’s formula because its notation fits well in this context. When it is
applied to the exponential, the following formula holds

eA =
t
∑

j=1

A j

s j−1
∑

k=0

eµ j

k!
(A−µ j I)

k (8.3)

where µ1, . . . ,µt are the distinct eigenvalues of A and s1, . . . , st are the correspond-
ing multiplicities. The term A j is the Frobenius covariant [HJ86] associated with
eigenvalue µ j . It is computed using the corresponding left eigenvectors x1, . . . , xsi

and right eigenvectors y1, . . . , ysi
via summation: A j =

∑si
k=1 xk yk.

The term eµ j in Equation (8.3) exponentially converges to zero for small µ j .
This novel insight explains the good approximation of the Krylov-based matrix ex-
ponential: only the largest eigenvalues, preserved by Hm, are dominant for the matrix
exponential. This observation coincides with a result by Garren and Smith [GS00],
who concluded that the second largest eigenvalue (the largest eigenvalue is al-
ways one) is a good estimator for the convergence to the steady state. Equation
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(8.3) backs this result, indicating that the second largest eigenvalue is the most
dominant for the transient behaviour, thus also for the steady state.

8.3.4 Error Estimates

Krylov-based methods are approximations and those come with a certain loss
of information. The study of the error induced by Krylov-based methods is an
extensively fast-moving field. Yet the current a-priori error bounds are known
to be overly conservative [HL97; Saa92] for linear applications of Krylov-based
methods, let alone for Krylov-based matrix exponentials. For this reason, Saad
studied a-posteriori error estimates [Saa92]. They are based on truncation of the
real error eAv − VmeHm e1||v||2, which is the following:

hm+1,m

∞
∑

k=1

eT
mφk(Hm)e1Ak−1vm+1 (8.4)

The function φi is defined by the recurrence relation

φ0(z) = ez

φi+1(0) = 1

φi+1(z) =
φi(z)−φi(0)

z

Note that φi+1(0) = 1 is defined by continuity, making the function φ well defined
and analytic for all z. Based on the series of Equation (8.4), Saad proposes several
error estimates because sharp error bounds are too conservative. All estimates are
under-approximations of the real error because they are based on norms of the
series’s first terms.

An exception to this is Saad’s second estimate, which is described as a rough
estimate. It is defined as the first term of the series in Equation (8.4) with φ1(Hm)
replaced by eHm , because the latter is cheaper to compute (and already computed).
The resulting error estimate is the following:

hm+1,m

�

�eT
meHm ||v||2e1vm+1

�

� (8.5)

Saad provides little argumentation why it is safe to approximate φ1(Hm) by eHm .
The latter is actually always bigger than the former, which we shall prove as follows.
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The first recursion of φi(z) can be rewritten as the following series:

φ1(z) =
ez−1

z

=
1

z

∞
∑

k=1

zk

k!

=
∞
∑

k=1

zk−1

k!

=
∞
∑

k=0

zk

(k+1)!

It is not difficult to see that the right-most equation is always smaller than the
Taylor-MacLaurin series of ez . The experimental data from Saad’s study suggest
that Equation (8.5) is a bounded over-approximation of the real error, but this
result is left unproven. Nevertheless, the study shows it is empirically a good
estimate and for this reason it was used as the error estimate in our experimental
evaluation.

8.4 Experiments

To compare the Krylov-based computation of the CTMC transient distribution
against the uniformisation-based method, we implemented the former in the
Markov Reward Model Checker (MRMC) [Kat+11]. Uniformisation is set as the
default numerical engine of MRMC. We made a selection of case studies from the
literature describing models from system biology, queuing networks and commu-
nication protocols and ran MRMC for different configurations of each case study
for comparison.

8.4.1 Implementation

The Krylov-based method was implemented as an extension to MRMC by intercept-
ing the invocations to uniformisation. It reuses the already implemented Harwell-
Boeing sparse matrix data structure [DGL92] to store the infinitesimal generator
matrix. The Krylov project matrix Vm and the Hessenberg matrix Hm are dense
and were stored using the existing matrix data structures from the GNU Scientific
Library (GNU GSL).

As there is no effective method (yet) to decide the perfect subspace size m given
a particular error ε, the Krylov-based method was implemented as an iterative
algorithm by repeatedly incrementing m until the desired error level is reached
(see Section 8.3).
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8.4.2 Experimental Setup

All experiments were run on a cluster of twelve identical nodes. Each node is
equipped with a 2.33 GHz processor and 16GB RAM. The loaded operating system
is 64-bits OpenSuSE 10.3. The cluster is only used for distributing the isolated
runs over the nodes to speed up the overall experiment. For all case studies, three
different configurations were run and an error level of 10−6 was used:

UNI These are runs with MRMC’s default numerical engine, uniformisation,
enabled and steady-state detection [Kat+11] disabled.

UNI-S These runs are similar to the previous, but with steady-state detection
enabled.

KRY These are runs with the iterative Krylov-based transient implementa-
tion as described in the previous section.

8.4.3 Case Studies

A careful selection of case studies from literature was made to comprise different
modelling domains, different model sizes and different degrees of stiffness.

CSPS A cylic server polling system that consists of N = 5 stations. The
model was originally described by Ibe and Trivedi [IT90]. The meas-
ure of interest is the probability that given an upper timebound, the
second station will eventually start serving. This expressed in CSL as
P=?(♦[0,t]full).

TQN A tandem queueing network with capacity c = 20 described by Her-
mans et al. [HMS99]. The measure of interest is the probability that
the first queue sc will become full within t time units. This is expressed
in CSL as P=?(♦[0,t]sc = 20).

PTP A simple peer-to-peer file sharing protocol described by Kwiatkowska
et al. [KNP06]. The swarm consists of one client that already has all
K = 5 blocks of the file and N = 2 other clients that have obtained
no blocks so far. The measure of interest is whether all N clients
have obtained all K blocks by time t. This is expressed in CSL as
P=?(♦[0,t]done).

ER An enzymatic reaction model by Busch et al. [BSW06]. It describes
the enzyme-catalysed conversion of a molecular substrate species. The
measure of interest is the probability that four units of the product
molecule species Pr are eventually produced within t time units. This
expressed in CSL as P=?(♦[0,t]Pr = 4).
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WGC A wireless group communication protocol analysed by Massink et
al. [MLK04]. It is a variant of a subset of the IEEE 802.11 standard
describing a subnet consisting of N = 4 wireless stations and an access
point. The number of consecutive losses of a message transmitted
through the network is described by the omission degree. The higher
the omission degree, the bigger the state space. In our runs, we took
OD = 32, becoming the largest model in the selection. The measure
of interest is the probability that a message sent out by the access
point is not received by any station within a given timeframe t. This
is expressed in CSL as P=?(♦[0,t]fail).

From the above case studies, the first three models are part of PRISM’s repository of
case studies. The WGC and ER models are not part of the official PRISM repository,
but are expressed in PRISM and afterwards automatically converted to MRMC’s
file format using PRISM’s built-in converter. An overview of the models metrics
can be found in Table 8.3. The stiffness is defined as the ratio of the largest rate to
the smallest rate in the CTMC.

Table 8.3: Model properties of the case studies.

Model States Transitions Stiffness

CSPS 3072 14848 1600
TQN 861 2859 400
PTP 1024 5121 0.5
ER 4011 11431 4000000
WGC 1329669 9624713 6164

8.4.4 Results

The results of the runs for all three configurations are described in Table 8.4 and
Table 8.5. The timebound column describes the different upper timebounds used in
the CSL property. The #terms column describes the number of terms in the series
needed for uniformisation to meet the error level 10−6. The column m describes
the Krylov subspace dimension needed to meet the error level 10−6. The memory
column is the peak memory consumption measured using Linux’s processes inter-
face. The time column is the running time for a particular configuration. The
probability column shows the computed probabilities by both algorithms. For all
three configurations, the computed probabilities were exactly the same (and within
the error level of 10−6).
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Table 8.4: Verification times and memory consumption of the non-stiff models.

Model
Time- Terms m Memory (KB) Time (ms)

Probability
bound UNI UNI-S KRY UNI UNI-S KRY UNI UNI-S KRY

CSPS

10 545 653 109 2944 2992 7256 190 360 2677 0.6524983
20 769 922 132 2944 2992 9072 340 680 5633 0.8982785
30 941 1129 147 2940 2992 10104 490 980 9158 0.9708183
40 1086 1303 155 2944 2992 10656 640 1280 11249 0.9916387
50 1214 1456 157 2940 2988 10928 780 1580 11933 0.9976044
60 1330 1595 162 2944 2992 11352 940 1860 14133 0.9993137
70 1436 1722 162 2940 2992 11348 1070 2170 13992 0.9998034
80 1535 1841 162 2944 2988 11352 1230 2470 13811 0.9999437
90 1627 1952 162 2944 2992 11352 1380 2760 13651 0.9999839

100 1715 2058 162 2940 2992 11352 1530 3060 14038 0.9999954

TQN

0.02 144 173 12 92 96 92 0 0 5 0
0.07 149 178 21 96 92 96 0 0 16 1.7e-06
0.12 153 182 26 92 96 96 0 0 25 0.0019782
0.17 157 186 29 96 92 96 0 0 32 0.0550075
0.22 161 190 31 96 92 92 0 0 39 0.2875958
0.27 166 195 32 92 96 92 0 0 41 0.6267612
0.32 170 199 34 96 92 96 0 0 51 0.8643245
0.37 173 203 35 96 92 92 0 0 52 0.9638449
0.42 175 208 35 96 96 92 10 0 52 0.992505
0.47 177 212 39 96 96 96 0 0 67 0.9987298

(continued on next page)
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(continued from previous page)

Model
Time- Terms m Memory (KB) Time (ms)

Probability
bound UNI UNI-S KRY UNI UNI-S KRY UNI UNI-S KRY

PTP

1 163 192 20 96 96 92 10 10 18 0.3892596
2 177 212 23 96 96 92 10 20 23 0.9055015
3 184 220 25 96 96 96 10 20 28 0.987485
4 190 228 25 92 96 92 10 20 28 0.9983193
5 195 234 26 92 96 96 20 20 31 0.9997729
6 200 240 26 92 96 96 10 20 30 0.9999693
7 204 245 26 96 96 96 20 20 31 0.9999958
8 208 250 26 96 92 92 20 20 32 0.9999994
9 212 254 27 96 96 96 20 20 33 0.9999999

10 216 259 28 96 96 92 20 20 36 1



8.4 Experiments 147

Non-Stiff Models

Considering the stiffness ratios in Table 8.3, we classified the models PTP, TQN and
CSPS as non-stiff. These models have been well-studied using uniformisation-based
Markov analysis tools. The results of these case studies are outlined in Table 8.4. It
shows that the Krylov algorithm is generally slower than the uniformisation-based
algorithm for non-stiff models. This observation highlights a class of models for
which uniformization is known to work well: non-stiff to mildly-stiff sparse models.
The uniformisation rates needed for these models are small and thus the number
of terms needed by uniformisation is small. Note that the increase of the upper
time bound directly correlates with the increase in number of terms. Also, the
number of terms of UNI-S is bigger than that of UNI. This is due to the steady state
detection, which requires tighter left and right truncation points for determining
the steady state correctly [KZ06].

Besides uniformisation’s well explainable performance characteristics for non-
stiff to mildly stiff models, the Krylov-based method has a higher constant cost
due to the Arnoldi iteration which computes a dense projection and Hessenberg
matrix. Furthermore, despite the small size of the non-stiff models, a relatively
large —though absolutely measured small— subspace dimension is needed to meet
the desired error level.

Stiff Models

The models ER and WGC are considered to be stiff. The results for these case
studies are outlined in Table 8.5. Note that the probabilities for the WGC case
study are all zero. This is expected since we chose a high omission degree (32) in
order to increase the state space size. High omission degrees significantly reduce
the probability that the message is not received (cf. [Zap08]).

The results show that for these models, the Krylov-based method is an order
of magnitude faster than uniformisation. This can be seen in Figures 8.1 and 8.2
which plot verification times (in ms) against the time bound of the CSL property.
When uniformisation is performed with steady-state detection, Krylov’s perform-
ance gain over uniformisation even increases. The figures show that the running
times of uniformisation (with and without steady-state detection) are obviously
linear. The running times for the Krylov runs appear to be constant. A linear
regression however showed that the slope of Krylov’s running times are also linear,
though with a very slow slope, whereas the slopes of uniformisation are signific-
antly higher.

These performance characteristics are explainable akin to the non-stiff mod-
els. Uniformization is sensitive to the uniformization rate and the upper time
bound. The high stiffness is the direct cause for the former and causes uniform-
ization to compute a significant amount of terms in order to satisfy the desired
error level. Larger upper time bounds additionally increase that amount of terms.
The Krylov-based method does not suffer much from the stiffness, as the infin-
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Table 8.5: Verification times and memory consumption of the stiff models.

Model
Time- Terms m Memory (KB) Time (ms)

Probability
bound UNI UNI-S KRY UNI UNI-S KRY UNI UNI-S KRY

ER

100 7638 9166 51 3108 3184 5653 490 930 372 0.1408622
200 10801 12960 54 3136 3212 6600 950 1840 442 0.5621672
300 13227 15872 55 3152 3236 6468 1400 2740 470 0.8457958
400 15273 18326 55 3172 3128 6664 1880 3640 454 0.9563306
500 17075 20489 56 3056 3152 5652 2340 4550 455 0.9892358
600 18704 22444 56 3068 3160 6600 2770 5420 484 0.9975874
700 20203 24243 56 3084 3180 6464 3260 6340 488 0.9994953
800 21597 25916 56 3096 3192 6464 3720 7220 492 0.9998998
900 22907 27488 59 3100 3204 6600 4170 8150 556 0.9999809

1000 24146 28975 60 3112 3126 7164 4640 9030 581 0.9999965

WGC

10000 578 693 33 392884 412644 1027892 171490 342550 109549 0
20000 816 979 34 392884 417136 1048668 325930 650460 116335 0
30000 999 1197 35 392888 417124 1069448 477890 953350 123042 0
40000 1153 1382 35 392884 417128 1090224 628630 1253070 123357 0
50000 1288 1545 36 392888 417128 1090220 778280 1551270 130295 0
60000 1411 1692 36 392888 417132 1090220 927990 1848150 130355 0
70000 1523 1827 36 392888 417128 1090220 1076650 2144230 130271 0
80000 1629 1953 36 392888 417128 1111000 1225090 2439050 134827 0
90000 1727 2071 36 392888 417124 1111000 1372840 2734100 130291 0

100000 1820 2184 37 392884 412648 1110996 1519720 3026840 145825 0
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itesimal generator matrix can be approximated accurately by a small Hessenberg
matrix, and thus the Krylov technique terminates quickly. This compensates for
the relatively high costs of the Arnoldi iteration.

Peak Memory Consumption

Both the memory columns in Table 8.5 and Table 8.4 indicate that uniformisation
has a clear advantage over the Krylov-based method when it comes to peak memory
consumption. This can be explained to the storage of the dense projection matrix
which is of size m× dim(A). Krylov’s memory consumption increases for larger
time bounds, although the increase is slow.

8.5 Discussion

We showed using Schwerdtfeger’s formula how the Krylov-based method is well
suited for computing the transient distribution and present it as a performant
alternative to uniformisation. The experimental results on a selection of five case
studies from literature revealed that the Krylov-based implementation is an order
of magnitude faster than uniformisation on stiff models. This comes at the cost of
increased memory consumption. If running time is the bottleneck, and if the model
is stiff, our observations indicate that for time-bounded reachability properties a
Krylov-based method is preferable over the commonly used uniformisation.

Several other works have tackled stiffness from different perspectives. In
[MS94], an alternative method called adaptive uniformisation is presented. It
essentially reduces the state space of a CTMC by slicing away “in-active” states
and keeping the active states. The latter is defined as the states that are reachable
within a predefined number, n say, of steps in the uniformised matrix. The useful-
ness of the method depends on the chosen n and the model itself. This is in contrast
to the Krylov-based approach, which does not need additional input parameters.
The advantage of adaptive uniformisation, however, is that an a priori error es-
timate can be given, as for standard uniformisation. Adaptive uniformisation has
recently been combined with abstraction techniques [HMW09]. Another work is
called “Uniformisation Power” [AM93]. It is an optimization over Jensen’s uniform-
isation to increase the numerical stability and performance. It essentially performs
scaling and squaring by subdividing the time interval to t ′ = t

2n and modifying

equation 8.2 to calculate π(t) as π(t) = Πn, with Π = (
∑∞

k=0 e−Λt ′ (Λt ′)k

k!
Pk) ·π(0).

The advantage is that it requires much smaller steps for large Λ than standard
uniformisation. The drawback is that matrix Π is dense, and thus the amount of
memory required is excessive. Also related, but not in the uniformisation-paradigm
is the work by Carrasco [Car03]. Their technique, called regenerative randomiza-
tion with Laplace transform inversion operates over Markov reward models. The
truncated transformed model obtained in this regenerative method is solved using
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Figure 8.1: Verification times of P=?(♦[0,t]Pr = 4) with increasing timebounds t
on the ER model.
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the WGC model.
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a Laplace transform inversion algorithm instead. The main difficulty in this tech-
nique is to find appropriate regeneration points. This is doable for certain classes
of models, such as failure-repair models, but in general is a non-trivial issue. For
stiff models with absorbing states (as for time-bounded reachability properties),
this technique outperforms standard uniformisation when the model is not very
large. We also explored the use of ODE solvers to deal with stiffness. Numerous
techniques and optimizations have been developed to handle stiff ODEs, which
is a well-known phenomenon in various scientific disciplines. The available ODE
solver libraries are generally extensively tested and understood. The drawback
is that ODE solvers are typically developed for a general class of problems and
thus not optimized for the Markovian case. Nevertheless, we briefly experimented
with Intel’s ODE solver package by interfacing it with MRMC. Unfortunately the
package did not expose sufficient information about the induced error, rendering
its application for the transient unsatisfied.

Closer to our own work is that by Sidje [Sid98]. He wrote a toolkit called
Expokit which computes matrix exponentials using a variety of methods, including
one using Krylov subspaces. It also comes with an optimized version for computing
the transient of Markov chains. The error bounds used are based on the assumption
that the elements of the transient vector sums up to 1. This however does not
hold for CSL model checking because the initial vectors are interpreted differently,
causing the elements not necessarily sum up to one. The toolkit also comes with a
time-stepping scheme of the matrix exponential which subdivides the time bound
and computes the transient in steps. Our implementation in MRMC is inspired by
Expokit’s MatLab code.

The field of Krylov-based subspaces is relatively young, and though its applic-
ations are spreading fast, there are several gaps open for further study. An open
question is the relation of stiffness and the eigenvalues spectrum of a CTMC. Our
debugging observations hint to a correlation between the stiffness and the way
eigenvalues are spread in their spectrum. For the non-stiff models in the selec-
ted case studies, the eigenvalues are homogeneously spread across the spectrum.
There is however no theoretical evidence to claim that this generally holds. There
is a report however that a high clustering of eigenvalues is beneficial for the Krylov-
based method [Wei94] and this would back our experimental data. Further study
is required to fully understand this. An interesting direction of future work is
improving the error bounds. Initially we experimented with several a priori error
bounds developed by Hochbruck et al. [HL97], but found these error bounds too
conservative when compared to Saad’s a posteriori error estimates. Hochbruck et
al.’s bounds are also expensive to compute because they are based on the numer-
ical range of the input matrix. It is however an open question whether Saad’s a
posteriori error estimate (see Equation 8.5) is a bounded over-approximation of
the real error (see Equation 8.4). The study of improved a priori error bounds
for Krylov-based matrix exponentials is however an active field. Advancements
from there are directly applicable to the computation of the transient. It would be
desirable to have a cheap, yet reliable bound, enabling us to automatically determ-
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ine the required subspace dimension in advance. In the mean time, a posteriori
error estimates are the best choice for practical applications. Then another point
for future study is the trend towards parallelised architectures. The Krylov-based
method is highly amenable to such architectures because it is mostly based on
matrix-vector multiplications. Data-parallelism in graphics cards can be exploited
to achieve a significant performance gain. This gain would be especially visible
for large models. For DTMCs, such architectures have already been exploited with
positive results [BES09].
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Conclusion

Little more than four years ago, Joost-Pieter recruited me to govern the technical
realisation of COMPASS. Back then, just before I started, I told him that innovation-
projects of such nature typically fail, but that I shall try defying statistics. I did not
comprehend the full scope of the COMPASS project back then. In retrospect, it is
slightly ironic that COMPASS is now employed to investigate causes and effects
of failures, be it that of spacecraft. This is especially demonstrated by our case
study in Chapter 6. Requests from our American acquaintances to export our work
outside the member states of the European Space Agency also mark the need for
technologies like COMPASS.

Within the esa5458 archive of COMPASS, one can trace all information of the
project back to the agency’s original statement of work. It contains all discus-
sions, technical specifications, analyses, reports, presentations, publications and
the source code itself. These are however not public. For our scientific peers,
there is this dissertation. A significant part of it, Chapters 3 to 5, describes the
scientific aspects of COMPASS in an integral and coherent manner. And the novel
approaches we developed for COMPASS are compared to existing works.

During the COMPASS project, I found myself mostly on the academic side.
Within the project we formed a close cooperation with industry (Thales Alenia
Space) and government (ESA). By this, I got an unique insight on the space practice
of developing embedded systems and its software. Its demanding requirements
bring along a dimension of rigour and completeness that would only hesitantly be
pushed for during the development of terrestrial systems. The challenges faced
within space systems engineering calls for the benefits of formal methods. When,
after COMPASS, I was offered the opportunity to continue researching such systems,
partly within ESA and partly at the RWTH, I took it without hesitation.

Accumulatively, I have nearly spent a full year at ESA’s European Space Re-
search and Technology Centre. The unofficial time spent is even a tad longer.
Through discussions with ESA specialists of various engineering disciplines, and an
in-house training on space systems engineering and its verification and validation
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aspects, I developed a deeper insight in to the processes and aspects that play a role
during the technical realisation of a space mission. Chapter 2 reflects on this, be it
in a summarised and tailored way. I furthermore studied technical documents from
several missions in development. Having such information within my reach shaped
much of my view of how real industrial-scale systems are designed and work. From
one of those missions, we crafted the case study whose result is Chapter 6. It is,
to our knowledge, the largest case study of a system-level model that has been
analysed using formal methods. The study made clear what the current state of
formal methods can do, and on which points improvements are desired.

Before we ran the case study, we were already aware of the potential issue of
the state space explosion. The case study confirmed it. It is especially an issue
with diagnosability analysis. I investigated it for more than a year. There is a
plethora of techniques that tackle it, but they are typically only applicable under
peculiar conditions, and as such are no generic solutions. After many attempts,
and setbacks, I developed a theoretical solution based on interpolation. It is not
only applicable to SLIM, but to many other component-oriented languages that
have an encoding as a bounded model checking formula. This solution is described
in Chapter 7.

Chapter 8 is a result that was initially triggered by an observation of our as-
signed ESA technical officer, who remarked that failure rates of (space) compon-
ents could have large disparities. This is stiffness. We noticed severe performance
degradation on stiff models when we used uniformisation to compute the transient
probabilities. During and after the COMPASS project, we experimented with altern-
ative approaches. Out of the box ordinary differential equation solvers were are
first attempt, but did not work out as the good solvers do not provide much insight
on controlling stiffness against numerical instability. A colleague and my office
mate, Alexandru, suggested a book chapter as an inspirational read. The chapter
refers to Krylov subspace methods as one of the latest and exciting advances in lin-
ear algebra. A subsequent gathering with scientists specialised in Krylov subspace
methods at the Technical University of Delft made it clear to me that they can be
used to compute the transient. Our implementation and experiments delivered
on the promise, showing that the Krylov subspace method performs better on stiff
models than uniformisation.

For the past five years, I investigated both state of the art formal methods and
space system software engineering. Their combination is a synergy from which
matters for near-future improvement became better identifiable.

First of all, we need a broad encompassing formal semantics and model com-
posability constructs that cover interrelations of domains that are typically separ-
ated. In COMPASS we married the design of system software with that of safety
& dependability by providing the notion of Markovian transitions in the formal
semantics and the employment of model extension for merging artefacts from the
safety & dependability domain with the system software domain. I argue that more
engineering domains, like security and cost engineering, need to be included. It
requires a deep understanding of interrelations between them. The benefit is that
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more engineering analyses can be derived from the same system model, thereby
strengthening the justification of formal system-level modelling.

Secondly, we need model analyses that generate intelligible artefacts that
provide a profound understanding of the causality of events. Especially in the
domain of fault management engineering, a clear comprehension of failure events
and their propagations is crucial for an effective fault management design. Fault
trees are currently the artefact of choice. At the moment, COMPASS generates the
causality relation between a top-level event and sets of error events. The causally
dependent nominal events in between are not synthesized. As there are many, this
requires a proper notion of granularity for a sensible presentation to the user. The
benefit is an improved comprehension of the causality of non-nominal events and
nominal events, and not just either of them in isolation.

We furthermore need techniques that make formal analyses more tractable for
industrial practice. I consider our work on component-oriented interpolation as
a first step. It aggressively abstracts the state space while preserving good con-
vergence properties, as our experiments indicate to us. I think the technique can
be further extended to support a broader class of properties, like safety and even
liveness properties. It needs to be investigated whether the approach is also amen-
able for the SAT-encoding of timed reachability in a network of timed automata.
Besides increasing the range of supported logics and models, it also requires fur-
ther investigation how to exploit compositional reasoning for analyses that depend
on reachability of the state space, like fault tree generation and diagnosability.
It is only then when theoretical improvements become more visible to industrial
practice.

Last but not least, we need to run, perhaps continually, case studies of industrial
relevance with state of the art tools. Preferable concurrently with the ongoing
engineering process itself. The experience gained is of tremendous value enabling
a clear technology strategy through the wide-range of developments in formal
methods. By placing priority and focus on the pressing methods, they receive the
attention needed to mature rapidly to a technology readiness level that is desired
to tackle engineering issues in industrial practice.
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Sensor-Filter Model

The sensor-filter model is a data acquisition model originally developed by Thomas
Noll and modified by the author of this dissertation. It is used as a running
example for demonstrating COMPASS analyses. It consists of a redundant sensor
bank, whose signal is filtered by a redundant filter bank. Both the sensor and the
filter may fail, in which case a switch is made from one to the other. This logic
is captured by a fault detection, isolation and recovery monitor. Example fault
injections for this model can be found in Section 4.1.3. Example properties can be
found in Section 4.2.3.

A.1 Nominal Model

The nominal model consists of the overall system, i.e. the acquisition systems (see
Listing A.1), the sensor bank, the filter bank and the monitor. They are represented
as components in the following subsections.

A.1.1 Acquisition System

The acquisition system is the root component. It should raise an alarm when both
sensors have failed or when both filters have failed. Otherwise the obtained data,
represented by the outgoing data port value is valid.

Listing A.1: Overall system represented as the acquisition component.

1 system Acquisition
2 features
3 value: out data port int default 4;
4 alarmS: out data port bool default false observable;
5 alarmF: out data port bool default false observable;
6 end Acquisition;
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8 system implementation Acquisition.Impl
9 subcomponents

10 sensors: system Sensors accesses mybus;
11 filters: system Filters accesses mybus;
12 monitor: system Monitor accesses mybus;
13 mybus: bus MyBus;
14 connections
15 data port sensors.output -> filters.input;
16 data port filters.output -> value;
17 data port sensors.output -> monitor.valueS;
18 data port filters.output -> monitor.valueF;
19 data port monitor.alarmS -> alarmS;
20 data port monitor.alarmF -> alarmF;
21 event port monitor.switchS -> sensors.switch;
22 event port monitor.switchF -> filters.switch;
23 end Acquisition.Impl;

A bus component is used to relay information from one subcomponent to
another within the acquisition component. This component performs no operation
over the relayed data, and hence is empty. Its SLIM representation in shown in
Listing A.2.

Listing A.2: An empty bus component.

1 bus MyBus
2 end MyBus;
3 bus implementation MyBus.Impl
4 end MyBus.Impl;

A.1.2 Sensors

The sensor bank is represented by the component Sensors.Impl. It consists of
two sensors of type Sensor (cf. Listing A.4). Either sensor is active in the modes
Primary or Backup. A switch is made from the primary one to the secondary one
upon an incoming switch event.

Listing A.3: The sensor bank.

1 system Sensors
2 features
3 output: out data port int default 1;
4 switch: in event port;
5 end Sensors;

7 system implementation Sensors.Impl
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8 subcomponents
9 sensor1: device Sensor in modes (Primary);

10 sensor2: device Sensor in modes (Backup);
11 connections
12 data port sensor1.output -> output in modes (Primary);
13 data port sensor2.output -> output in modes (Backup);
14 modes
15 Primary: activation mode;
16 Backup: mode;
17 transitions
18 Primary -[switch]-> Backup;
19 end Sensors.Impl;

A single sensor simply increases its output by 1 as long as the output is smal-
ler than 5. It does not represent a real sensor, but this behaviour suffices for
demonstration purposes.

Listing A.4: A single sensor.

1 device Sensor
2 features
3 output: out data port int default 1;
4 end Sensor;

6 device implementation Sensor.Impl
7 modes
8 Cycle: activation mode;
9 transitions

10 Cycle -[when output < 5 then output := output + 1]-> Cycle;
11 end Sensor.Impl;

A.1.3 Filters

The filter bank is similarly structured as a sensor bank: it consists of two filters
which are disjunctively active in the Primary and Backup mode. A switch between
modes occurs upon a switch event.

Listing A.5: The filter bank.

1 system Filters
2 features
3 input: in data port int default 1;
4 output: out data port int default 2;
5 switch: in event port;
6 end Filters;
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8 system implementation Filters.Impl
9 subcomponents

10 filter1: device Filter in modes (Primary);
11 filter2: device Filter in modes (Backup);
12 connections
13 data port input -> filter1.input in modes (Primary);
14 data port input -> filter2.input in modes (Backup);
15 data port filter1.output -> output in modes (Primary);
16 data port filter2.output -> output in modes (Backup);
17 modes
18 Primary: activation mode;
19 Backup: mode;
20 transitions
21 Primary -[switch]-> Backup;
22 end Filters.Impl;

A single filter simply multiplies its input by 2. Akin to the sensor, it does not
represent a real filter. This behaviour suffices for demonstration purposes.

Listing A.6: A single filter.

1 device Filter
2 features
3 input: in data port int default 1;
4 output: out data port int default 2;
5 end Filter;

7 device implementation Filter.Impl
8 flows
9 output := input *2;

10 end Filter.Impl;

A.1.4 Monitor

The monitor is responsible for fault detection, isolation and recovery. There are
two detection criteria, namely that the value drops to 0, or when the value of the
sensors is above 5. Both indicate a fault. Depending on which one occurred, or
possibly both, appropriate switch events are sent out. In case the redundancy has
failed, the appropriate alarms are raised.

Listing A.7: FDIR monitor.

1 fdir system Monitor
2 features
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3 valueS: in data port int default 0;
4 valueF: in data port int default 0;
5 switchS: out event port;
6 switchF: out event port;
7 alarmS : out data port bool default false;
8 alarmF : out data port bool default false;
9 end Monitor;

11 fdir system implementation Monitor.Impl
12 modes
13 OK: activation mode;
14 FailS: mode;
15 FailF: mode;
16 FailSF: mode;
17 transitions
18 OK -[switchF when valueF = 0]-> FailF;
19 OK -[switchS when valueS > 5]-> FailS;
20 FailF -[switchS when valueS > 5
21 then alarmF := valueF = 0]-> FailSF;
22 FailF -[when valueF = 0 then alarmF := true]-> FailF;
23 FailS -[switchF when valueF = 0
24 then alarmS := valueS > 5]-> FailSF;
25 FailS -[when valueS > 5 then alarmS := true]-> FailS;
26 FailSF -[when valueF = 0
27 then alarmF := true; alarmS := valueS > 5]-> FailSF;
28 FailSF -[when valueS > 5
29 then alarmS := true; alarmF := valueF = 0]-> FailSF;
30 end Monitor.Impl;

A.2 Error Model

In the sensor-filter model, we consider two possible errors, namely those occurring
in the sensor and those occurring in the filter. Their erroneous behaviours are
described in the following subsections.

A.2.1 Sensor Errors

For demonstration purposes, a sensor is initially OK after which it can immediately
die. It can also drift first before it dies. The rates of dying and drifting do not
represent any real erroneous behaviour.
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Listing A.8: Error model of a sensor.

1 error model SensorFailures
2 features
3 OK: initial state;
4 Drifted: error state;
5 Dead: error state;
6 end SensorFailures;

8 error model implementation SensorFailures.Impl
9 events

10 drift: error event occurrence poisson 0.083;
11 die: error event occurrence poisson 0.00001;
12 dieByDrift: error event occurrence poisson 0.00015;
13 transitions
14 OK -[ die ]-> Dead;
15 OK -[ drift ]-> Drifted;
16 Drifted -[ dieByDrift ]-> Dead;
17 end SensorFailures.Impl;

A.2.2 Filter Errors

Akin to the sensor, a filter is initially OK after which it can die. It can also degrade
first before it dies.

Listing A.9: Error model of a filter.

1 error model FilterFailures
2 features
3 OK: initial state;
4 Degraded: error state;
5 Dead: error state;
6 end FilterFailures;
7 error model implementation FilterFailures.Impl
8 events
9 die: error event occurrence poisson 0.007;

10 degrade: error event occurrence poisson 0.051;
11 transitions
12 OK -[ die ]-> Dead;
13 OK -[ degrade ]-> Degraded;
14 Degraded -[ die ]-> Dead;
15 end FilterFailures.Impl;
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