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Abstract

We present an algorithm that constructively produces a solution to the

k-dominating set problem for planar graphs in time O(c
√
kn), where

c = 36
√

34. To obtain this result, we show that the treewidth of a pla-
nar graph with domination number γ(G) is O(

√
γ(G)), and that such a

tree decomposition can be found in O(
√
γ(G)n) time. The same tech-

nique can be used to show that the k-face cover problem (find a size k
set of faces that cover all vertices of a given plane graph) can be solved

in O(c
√
k

1 n + n2) time, where c1 = 236
√

34 and k is the size of the face
cover set. Similar results can be obtained in the planar case for some vari-
ants of k-dominating set, e.g., k-independent dominating set and
k-weighted dominating set.
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1 Introduction

A k-dominating set D of an undirected graphG is a set of k vertices ofG such that
each of the rest of the vertices has at least one neighbor in D. The minimum k
such that the graph G has a k-dominating set is called the domination number
of G, denoted by γ(G). The k-dominating set problem, i.e., the task to decide,
given a graph G = (V,E) and a positive integer k, whether or not there exists
a k-dominating set, is among the core problems in algorithms, combinatorial
optimization, and computational complexity [4, 16, 27, 32, 44]. The problem
is NP-complete, even when restricted to planar graphs with maximum vertex
degree 3 and to planar graphs that are regular of degree 4 [27].

Coping with NP-hard problems. Despite their intractability, many NP-
hard problems are of great practical importance. Besides heuristic methods [39]
which often lack theoretical analysis, the main contribution of theoretical com-
puter science on the attack of intractability so far has been to design and analyze
approximation algorithms [4, 32]. The approximability of the dominating set
problem has received considerable attention [4, 16, 32]. It is not known and it
is not believed that dominating set for general graphs has a constant factor
approximation algorithm (see, e.g., [4, 16] for details). The planar dominat-
ing set problem (i.e., the dominating set problem restricted to planar graphs),
however, possesses a polynomial time approximation scheme [5]. That is, there
is a polynomial time approximation algorithm with approximation factor 1 + ε,
where ε is a constant arbitrarily close to 0. However, the degree of the polynomial
grows with 1/ε. Hence, applying the approximation scheme does not necessarily
lead to practical solutions. As an alternative, finding an “efficient” exact solution
in “reasonable exponential time” for planar dominating set is an interesting
and promising research question.

Fixed parameter tractability. Lately, it has become popular to cope with
computational intractability in a different way: parameterized complexity [1, 22,
23, 24]. Here, the basic observation is that, for many hard problems, the seemingly
inherent combinatorial explosion can be restricted to a “small part” of the input,
the parameter. For instance, the k-vertex cover problem can be solved by an
algorithm with running time O(kn + 1.3k) [14, 41], where the parameter k is a
bound on the maximum size of the vertex cover set we are looking for and n is the
number of vertices in the given graph. The fundamental assumption is k � n. As
can easily be seen, this yields an efficient, practical algorithm for small values of k.
In general, a problem is called fixed parameter tractable if it can be solved in time
f(k)nO(1) for an arbitrary function f which depends only on k. Unfortunately,
according to the theory of parameterized complexity, it is very unlikely that the
k-dominating set problem is fixed parameter tractable. On the contrary, it was
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proven to be complete for W [2] (see [20]), a “complexity class of parameterized
intractability” (refer to Downey and Fellows [22] for details). However, planar
k-dominating set is fixed parameter tractable. This already easily follows from
Baker’s approximation result for planar dominating set [5]. More precisely,
Baker’s method implies an O(83kn) time algorithm, where n is the number of
vertices. To obtain this result, note that a planar graph with a dominating set
of size k is at most 3k-outerplanar (see Section 2). Besides that, an O(39kn)
time algorithm can be derived from this observation and the fact that an r-
outerplanar graph has treewidth of at most 3r − 1 (as exhibited in Section 2).
Alternatively, the general logical framework of Frick and Grohe [26] easily proves
the fixed parameter tractability of planar k-dominating set. Downey and
Fellows [21, 22] give an O(11kn) time algorithm, the so far best known time
bound for planar k-dominating set.

Relevance of (planar) dominating set. The literature on dominating
set problems in mathematics, computer science, and their applications (e.g.,
computational biology) is huge. Hence, we only refer to some surveys here, for
instance, [29, 30, 31, 37, 46]. In particular, note that many papers have been
published on domination problems for special graph classes [11] and/or variations
of the fundamental problem, see, for example, [2, 6, 12, 13, 15, 25, 17, 34, 35, 40,
49].

Our main result. We present fixed parameter tractability results for planar
k-dominating set and related problems. Our main result is to prove a new and
perhaps surprising structural relationship: We show that a planar graph with a
dominating set of size k has treewidth O(

√
k). Up to now, only treewidth O(k)

was known, which is basically straightforward. Note that our proof can be made
constructive. From this result, we then conclude that planar k-dominating
set can be solved in time O(c

√
kn), where c = 36

√
34. Clearly, the proven con-

stant c is huge and exhibits the limited usefulness of our result in practice. It is
conceivable that this constant might be improved significantly due to refined anal-
ysis and/or additional algorithmic ideas. Also note that our analysis and, thus,
the constant refers to a pure worst case scenario; it might say little about the aver-
age case performance or the behavior of our method on problem instances drawn
from practical applications. Finally, and maybe most importantly, it should be
emphasized that our result means a significant structural breakthrough. The best
known running time for k-planar dominating set was O(ck1n) [21, 22], which

we improved to O(c
√
kn). Indeed, this seems to be the first non-trivial result for

an NP-hard, fixed parameter tractable problem at all where the exponent of the
exponential term is growing sublinearly.
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Further contributions of our work. Our new method can also be used to
significantly improve a known bound for the k-face cover problem [7, 22, 45].
The problem is defined as follows [22, 7, 45]: Given a plane graph G, i.e., a graph
with a fixed embedding in the plane and a positive integer k, is there a set of
at most k faces (also called disks [7, 45]), such that all of the graph vertices are
covered by the faces, i.e., each vertex is part of at least one of these k faces?
The problem is NP-complete [7]. Downey and Fellows [22] gave an O(12kn)
algorithm for this problem. For a slightly more general version of the problem,
Bienstock and Monma [7] showed that there is a time O(ck2n) algorithm, where
c2 is an unspecified constant. In this paper, we give an algorithm that solves

k-face cover in time O(c
√
k

3 n + n2), where c3 = 236
√

34. Finally, it is easy
to extend our results for planar dominating set to “planar dominating
set with property P” problems. For example, this includes the problems k-
independent dominating set or k-total dominating set. In addition, our
results can also be generalized to the weighted case with positive integer weights,
i.e, planar k-weighted dominating set.

Outline of the paper. Our paper is structured as follows. In Section 2, we in-
troduce some key concepts for our work, including r-outerplanarity, layer decom-
positions of r-outerplanar graphs, and treewidth. Moreover, we point out the rela-
tions between domination number and r-outerplanarity, between r-outerplanarity
and treewidth, and how to compute a minimum size dominating set given a tree
decomposition of a graph. In Section 3, our main result follows, showing that for
planar graphs with domination number k, a tree decomposition of width O(

√
k)

exists. In addition, we also show how to actually construct such a tree decom-
position. In Section 4, we summarize our findings in describing an algorithm
solving the planar dominating set problem in time 3O(

√
k)n. In Section 5,

we extend our results to variations of planar k-dominating set, planar k-
weighted dominating set, and, in particular, to the k-face cover problem.
We conclude the paper with some open problems and final remarks (Section 6).

2 Preliminaries:

Domination, r-outerplanarity, and treewidth

In this section, we provide necessary notions and some known results. We as-
sume familiarity with basic graph-theoretical notation as provided in [19, 38]. In
particular, for a graph G = (V,E) and a subset V ′ ⊆ V , the subgraph induced
by the vertices V \ V ′ will frequently be denoted by G − V ′. If V ′ = {v} is a
singleton, we write G− v instead of G− {v}.

This section is split into three parts. The first subsection introduces the notion
of r-outerplanarity and the concept of a layer-decomposition of a planar graph.
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Moreover, we state a central observation relating the domination number and the
outerplanarity number of a planar graph. In the second subsection, we provide
the concepts of tree decompositions and treewidth. Also, we explicitly outline
how the Dominating Set problem can be solved in this framework. This idea
will be used as a main tool for our algorithm. In the third subsection, we outline
how to construct a tree decomposition of small width for r-outerplanar graphs,
which is used as an important lemma in later parts.

2.1 Domination and r-outerplanarity

Definition 1 A crossing-free embedding of a graph G in the plane is called
outerplanar if each vertex lies on the boundary of the outer face. A graph G is
called outerplanar if it admits an outerplanar embedding in the plane.

The following generalization of the notion of outerplanarity was introduced
by Baker [5].

Definition 2 A crossing-free embedding of a graph G in the plane is called
r-outerplanar if, for r = 1, the embedding is outerplanar, and, for r > 1, induc-
tively, when removing all vertices on the boundary of the outer face and their
incident edges, the embedding of the remaining subgraph is (r − 1)-outerplanar.
A graph G is called r-outerplanar if it admits an r-outerplanar embedding. The
smallest number r, such that G is r-outerplanar is called the outerplanarity num-
ber.

In this way, we may speak of the layers L1, . . . , Lr of an embedding of an r-
outerplanar graph.

Definition 3 For a given r-outerplanar embedding of a graph G = (V,E), we
define the ith layer Li inductively as follows. Layer L1 consists of the vertices on
the boundary of the outer face, and, for i > 1, the layer Li is the set of vertices
that lie on the boundary of the outer face in the embedding of the subgraph
G− (L1 ∪ . . . ∪ Li−1).

One easily observes the following central relation between the domination
number and the outerplanarity number of a planar graph.

Proposition 4 If a planar graph G = (V,E) has a k-dominating set, then all
plane embeddings of G can be at most 3k-outerplanar.

Proof. Note that, for a given crossing-free embedding of G in the plane, each
vertex in the dominating set can dominate vertices from the previous, the next,
or its own layer only. Hence, each vertex in the dominating set can contribute to
at most 3 new layers. 2

To understand the techniques used in the following sections, it is helpful to
consider the concept of a layer decomposition of an r-outerplanar embedding of
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graph G. It is a forest of height r − 1 which is defined as follows: the nodes of
the trees are sets of vertices of G and the different trees correspond to different
components of G. In general, the ith layer of the layer decomposition forest
defines a set of vertices Li, namely, the ith layer of G.

Consider now the ith layer of the forest, i.e., the nodes of level i in the
decomposition forest consisting of, possibly, several vertex sets Ci,1, . . . , Ci,`i .

In other words, Li =
⋃`i
j=1Ci,j. The vertex sets Ci,1, . . . , Ci,`i correspond to the

vertices of different components of the subgraph induced by Li. We refer to Ci,j
as a layer-component . In particular, the first layer consists of layer-components
each of which equals the vertices from L1 of one particular component.

We need some further notation for the construction in the next sections.

Definition 5 A layer-component Ci,j of layer Li is called non-vacuous if there
are vertices from layer Li+1 in the interior of Ci,j (i.e., in the region enclosed by
the subgraph induced by Ci,j).

Lemma 6 Let ∅ 6= C ⊆ Ci,j be a subset of a non-vacuous layer-component Ci,j of
layer i, where i ≥ 2. Then there exists a unique smallest (in number of vertices)
cycle B(C) in layer Li−1, such that C is contained in the region enclosed by B(C).
No other vertex of layer Li−1 is contained in this region.

Proof. The existence of a cycle B ′(C) in layer Li−1 which encloses C follows
easily from the definition of a layer. Note, that the region enclosed by B ′(C),
again by the definition of a layer, cannot contain vertices of layer Li−1. In order to
obtain the smallest such cycle, we proceed as follows. Let B ′(C) = (w1, . . . , wm).
If there exists a pair of vertices wi, wj with j > i and |i − j| /∈ {1,m − 1} that
happen to be neighbors in the graph, and if C is enclosed by one of the cycles
(wi, . . . , wj) or (wj , . . . , wm, w1, . . . , wi), then we exchange B ′(C) by this one.
Continuing this procedure until no further such situation occurs it is not hard to
verify that we end up with a smallest cycle that encloses C. 2

Definition 7 For each non-empty subset C of a non-vacuous layer-component
of layer i (i ≥ 2), the set B(C) as given in Lemma 6 is called the boundary cycle
of C.

2.2 Domination and treewidth

The main tool we use in our algorithm is the concept of tree decompositions as,
e.g., described in [9].

Definition 8 Let G = (V,E) be a graph. A tree decomposition of G is a pair
〈{Xi | i ∈ I}, T 〉, where each Xi is a subset of V , called a bag, and T is a tree
with the elements of I as nodes. The following three properties should hold:
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1.
⋃
i∈I Xi = V ;

2. for every edge {u, v} ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi;

3. for all i, j, k ∈ I, if j lies on the path between i and k in T , then Xi ∩Xk ⊆
Xj.

The width of 〈{Xi | i ∈ I}, T 〉 equals max{|Xi| | i ∈ I} − 1. The treewidth of G
is the minimum k such that G has a tree decomposition of width k.

In Section 2.3 we give a constructive proof of a result stated in [36, Table 2,
page 550] and in [10, Theorem 83]:

Theorem 9 An r-outerplanar graph has treewidth of at most 3r − 1.

Proposition 4 and Theorem 9 immediately imply the following relation be-
tween the domination number and the treewidth of a planar graph.

Corollary 10 If a planar graph G = (V,E) has a k-dominating set, then it has
bounded treewidth, or, more precisely, its treewidth is bounded by 9k − 1.

We will give a considerably stronger bound later.

The concept of tree decompositions can be used to solve various graph prob-
lems. Typically, treewidth based algorithms proceed in two stages: The first
stage finds a tree decomposition of bounded width of the input graph, and the
second stage solves the problem using dynamic programming approaches on the
tree decomposition (see [9]).

As to the first stage, the problem to determine whether a graph has treewidth
bounded by some constant ` and, if so, producing a corresponding tree decompo-
sition, has, at the current state of research, no algorithmically feasible solution.
Even though the problem is proven to be fixed parameter tractable, the constants
in the algorithm presented in [8] are too large for practical purposes. However, in
the case of planar k-dominating set, this first stage of the tree decomposition
algorithm is less involved, as will be shown in Theorem 12.

The second stage can be proceeded in polynomial time with a factor depending
on the bound of the treewidth. The corresponding result for the dominating
set problem is the following. Note that, in this situation, we do not need to
assume planarity of the underlying graph.

Theorem 11 If a tree decomposition of width ` of a graph is known, then a
minimum dominating set can be determined in time 3`N , where N is the number
of nodes of the tree decomposition.
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Proof. The theorem can be proven by using dynamic programming techniques,
as described in a more general context, e.g., in [9, 48]. For the sake of preciseness,
we outline how these techniques apply to solving dominating set in the claimed
running time.

Let X = 〈{Xi | i ∈ I}, T 〉 be a tree decomposition for the graph G = (V,E).
We assume that the vertices in the bags are given some order. For each bag
Xi = (x

(i)
1 , . . . , x

(i)
ni ) with ni := |Xi|, we keep a table Ai of size 3ni× (ni+1). Each

of the 3ni rows represents a coloring of the vertices in Xi using the 3 distinct
colors

• “black” (represented by 0, meaning that the vertex belongs to the domi-
nating set),

• “grey” (represented by 1, meaning that the vertex is dominated but does
not (yet) belong to the dominating set), and

• “white” (represented by 2, meaning that the vertex still needs to be domi-
nated).

More precisely, for each j ∈ {1, . . . , 3ni}, we define the coloring

C
(i)
j := (c

(i)
j,1, . . . , c

(i)
j,ni

) ∈ {0, 1, 2}ni, such that j − 1 =

ni∑

t=1

c
(i)
j,t 3ni−t.

The color assigned to vertex x
(i)
t by the coloring C

(i)
j is given by the coordinate c

(i)
j,t .

A coloring C
(i)
j is called non-valid if, for some s, t ∈ {1, . . . , ni}, we have c

(i)
j,s = 0,

c
(i)
j,t = 2 and (x

(i)
s , x

(i)
t ) ∈ E.

Table Ai, then, is of the form

Ai =



C

(i)
1 min

(i)
1

...
...

C
(i)
3ni min

(i)
3ni


 ,

where min
(i)
j ∈ N ∪ {+∞} is the variable which stores, at each stage of the

dynamic programming step, the minimum number of vertices needed so far in a
dominating set that uses the particular coloring C

(i)
j for the vertices in Xi.

Now we are ready to describe the three steps in which the algorithm proceeds.

Step 1: In the first step of the algorithm, we initialize all tables Ai as follows:

min
(i)
j ←

{
+∞, if the coloring represented by row j is non-valid

|{t ∈ {1, . . . , ni} | c(i)
j,t = 0}|, otherwise
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Step 2: After this initialization, we visit the tables of our tree decomposition
from the leaves to the root, updating the tables in each step as follows. Suppose
node i has a child k in the tree T . We show how table Ai is updated using table
Ak. In the case that i has several children k1, . . . , ks in the tree T , this step has
to be repeated for each child.

1. Determine Xi ∩Xk, say Xi ∩Xk = {y1, . . . , ys}.

2. W.l.o.g., we assume that y1 = x
(i)
1 = x

(k)
1 , . . . , ys = x

(i)
s = x

(k)
s . Otherwise

we have to reorder the sets Xi, Xk and the last column of the tables Ai and
Ak accordingly. This can be done in O(3`) time as follows.

Suppose we have y1 = x
(i)
i1
, . . . , ys = x

(i)
is

and {1, . . . , ni} = {i1, . . . , is} ∪
{is+1, . . . , ini}. Then, we let

Xi ← (x
(i)
i1
, . . . , x

(i)
is
, x

(i)
is+1

, . . . , x
(i)
ini

)

and the corresponding table becomes

Ai ←



C

(i)
1 min

(i)
φ(1)

...
...

C
(i)
3ni min

(i)
φ(3ni)


 , where φ(j)− 1 =

ni∑

t=1

c
(i)
j,it

3ni−t.

The rearrangement for Xk and the last column of Ak has to be carried out
similarly.

3. For each of the 3s colorings C = (c1, . . . , cs) ∈ {0, 1, 2}s of the vertices
y1, . . . , ys, we do the following.

(a) Determine

min(C) = min{min
(l)
j | C(k)

j ∈ C × {0, 1}nk−s}.

Note that, from property (3) of a tree decomposition (Definition 8),

we know that none of the vertices x
(k)
s+1, . . . , x

(k)
nk will appear in a bag

that has not been visited up to this point. Otherwise, such a vertex
would also appear in Xi. That is why, by evaluating min(C), we do not
take into account the colorings that leave these vertices unresolvedly
“white.”

It takes O(3`) time to determine all these minima.

(b) For each of the row in Ai that corresponds to a coloring C
(i)
j of the

form C × {0, 1}ni−s, we let

min
(i)
j ← min

(i)
j + min(C)− |{t ∈ {1, . . . , s} | ct = 0}|.

9



Again, all these assignments can be done in time O(3`).

Step 2 of the algorithm has running time O(3`N), where N is the number of bags
in the tree decomposition.

Step 3: Let r denote the root of T . For the domination number γ(G), we finally
get

γ(G) = min{min
(r)
j | C(r)

j ∈ {0, 1}nr}.

The total running time of the algorithm is O(3`N). For the correctness of the
algorithm, we observe the following. Firstly, property (1) of a tree decomposition
(see Definition 8) guarantees that each vertex is assigned a color. Secondly, in
our initialization Step 1, we made sure that only valid colorings are taken into
consideration. Since, by property (2) of a tree decomposition (see Definition 8),
any pair of neighbors appears in at least one bag, the validity of the colorings
was checked for each such pair of neighbors. And, thirdly, property (3) of a tree
decomposition (see Definition 8), together with the comments after Step 2.2 of
the algorithm, implies that the updating of each table is done consistently with
all tables that have been visited earlier in the algorithm.

Also, note that, when bookkeeping how the minima in Step 2 were obtained,
this algorithm constructs a dominating set D corresponding to γ(G). 2

We remark that Aspvall et al. [3] addressed the memory requirement problem
arising in the type of algorithms described above. They suggested a method to
minimize the sum of the sizes of the tables that need to be stored simultaneously.

Using Corollary 10 and Theorem 11, a straightforward solution to the planar
k-dominating set problem using tree decompositions leads to an algorithm
which runs in time O(39kn). Downey and Fellows [21, 22] suggested an idea that
leads to a faster search tree algorithm. They state an algorithm with running
time O(11kn) (without using tree decompositions).

In section 3, we show that a graph with a k-dominating set has treewidthO(
√
k).

Moreover, we prove that a corresponding tree decomposition can be found in
time O(

√
kn). Combining this with Theorem 11 gives a significant asymptotic

improvement of the result of Downey and Fellows.

2.3 Treewidth and r-outerplanarity

In this section, we give a constructive proof of the result stated in Theorem 9.
The proof is based upon the proof in [10, Theorem 83]. To be more precise, we
prove:

Theorem 12 Let an r-outerplanar graph G = (V,E) be given together with an
r-outerplanar embedding. Then a tree decomposition 〈{Xi | i ∈ I}, T 〉, with width
at most 3r − 1 and with |I| = O(|V |) of G, can be found in O(r|V |) time.
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v

w1 w2 w3 wd−1 wd w1 w2 w3 wd−1 wd

v1 v2 vd−2

Figure 1: Replacing a vertex by a path with vertices of degree 3.

We make the assumption that with the embedding, for each vertex v, the
incident edges of v are given in clockwise order as they appear in the embedding.
Most (linear time) graph planarity testing and embedding algorithms yield such
orderings of the edge lists (see [18]).

Now, we discuss the proof of Theorem 12. For the construction of the desired
tree decomposition we proceed in several steps. Firstly, we determine the layers
of the given graph G. Secondly, G is embedded in a graph H, whose degree is
bounded by 3 and whose outerplanarity number doesn’t exceed the one of G.
Then, a suitable maximal spanning forest is constructed for H. This step is done
inductively proceeding along the different layers of H in a way that the so-called
“edge and vertex remember numbers” are kept small. Using this spanning tree,
in a further step, we determine a tree decomposition of H. Finally, this tree
decomposition can be turned into a tree decomposition of G.

Determining the layers of the embedded graph. Without loss of generality,
we assume G is connected. Suppose G is given with an r-outerplanar embedding
with, for every vertex, a clockwise ordering of its adjacent edges. With the help of
these orderings, one can build, in O(|V |) time, the dual graph G∗, with pointers
from edges of G to the two adjacent faces in the dual. We can first partition the
set of faces into ‘layers’: put a face f in layer L∗i+1 if the distance of this face in
the dual graph to the exterior face is i. This distance can be determined in linear
time using breadth-first search on the dual graph.

Now, a vertex v of G belongs to layer Li for the smallest i such that v is
adjacent to a face fv in L∗i . Note that faces can belong to layer L∗r+1, but not to
layers L∗s with s > r + 1.

Embedding G in a graph H of degree three. The next step is to construct
an r′-outerplanar (where r′ ≤ r) graph H = (VH , EH) of degree at most three
that contains G as a minor, i.e., G can be obtained from H by a series of vertex
deletions, edge deletions, and edge contractions.

In order to do this, every vertex with degree d ≥ 4 is replaced by a path of
d − 2 vertices of degree 3, as shown in Fig. 1. This is done in such a way that
the graph stays r′-outerplanar. More precisely, for each vertex v of layer Li we
determine the face fv in L∗i as described above. We then find two successive edges
{x, v}, {v, y} that are border to fv. Now, let x take the role of w1 and y take the

11



role of wd in Fig. 1. Observe that, in this manner, all vertices vi on the newly
formed path are adjacent to face fv ∈ L∗i . Let H be the graph obtained after
replacing all vertices of degree at least four in this manner.

Note that H has the same set of faces as G (i.e., H∗ and G∗ share the same
set of vertices) and that faces adjacent in G are still adjacent in H (i.e., G∗ is a
subgraph of H∗). Hence, H∗ can be obtained from G∗ by possibly adding some
further edges. Clearly, the minimum distance of a vertex in H∗ to the exterior face
vertex may only decrease (not increase) compared to the corresponding distance
in G∗. Since the layer to which a vertex belongs is exactly one more than the
minimum distance of the adjacent faces to the exterior face, the outerplanarity
number r′ of H is bounded by r.

Constructing a suitable maximal spanning forest for H. At this point,
we have an r′-outerplanar graph H = (VH , EH) of maximum degree 3. We now
construct a maximal spanning forest T for H that yields small so-called “edge
and vertex remember numbers.” This step is done inductively along the different
layers proceeding from inside towards the exterior.

Observe that when removing all edges on the exterior face of an s-outerplanar
graph of maximum degree three, we obtain an (s − 1)-outerplanar graph, when
s > 1. When we remove all edges on the exterior face of an outerplanar graph,
we obtain a forest.

Thus, we can partition the edges into r′ + 1 sets E1, . . . , Er′+1, with E1 the
edges on the exterior face, and Ei the edges on the exterior face when all edges
in E1 ∪ . . . ∪ Ei−1 are removed. Again, using the dual, this partition can be
computed in O(|V |) time.

Now, we form a sequence of forests. We start with forest Tr′+1, which consists
of all edges in Er′+1. (Note that these are the interior edges of an outerplanar
graph of maximum degree 3, so Tr′+1 is acyclic.)

When we have Ti, 1 < i ≤ r′ + 1, we form Ti−1 in the following way: add a
maximal set of edges from Ei−1 to Ti such that no cycles are formed. Note that
in this way, each Ti is a maximal spanning forest of the subgraph formed by the
edges in Ei ∪ . . . ∪ Er′+1; we call this subgraph Hi. (Maximality is meant here
with respect to set inclusion; a maximal spanning forest of an arbitrary graph
hence can be found in O(|V |) time using a standard depth first search approach,
but here we need such a forest made in a specific way.)

It is not hard to see that one such step can be done in O(|V |) time; as we do
at most r such steps, the time to build T1 becomes O(r|V |).

Definition 13 For a graph G = (V,E), and a forest T = (V, F ) that is a sub-
graph of G, define the edge remember number er(G, T, e) of an edge e ∈ F (with
respect to G and T ) as the number of edges {v, w} ∈ E − F such that there
is a simple path in T from v to w that uses e. The edge remember number
of T (with respect to G) is er(G, T ) = maxe∈F er(G, T, e). The vertex remem-
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ber number vr(G, T, v) of a vertex v ∈ V (with respect to G and T ) is the
number of edges {v, w} ∈ E − F such that there is a simple path in T from
v to w that uses v. The vertex remember number of T (with respect to G) is
vr(G, T ) = maxv∈V vr(G, T, v).

One may observe that the construction of the trees Ti is the one used in the
proofs given in [10, Section 13]. The following result is proved in [10, Lemma
80]. Note that in order to obtain this result it is essential that the degree of H is
bounded by 3:

Lemma 14 (i) For every i, 1 ≤ i ≤ r′ + 1, er(Hi, Ti) ≤ 2(r′ + 1− i).
(ii) For every i, 1 ≤ i ≤ r′, vr(Hi, Ti) ≤ 3(r′ + 1− i)− 1.

Without loss of generality, we can suppose that G and, therefore, H is con-
nected and, hence, we have a spanning tree T1 of H with er(H,T1) ≤ 2r′ and
vr(H,T1) ≤ 3r′ − 1.

Deriving a tree decomposition from the spanning forest. We now apply
the following result of [10, Theorem 71] to the graph H and the spanning forest T1

in order to obtain a tree decomposition in time O(r|V |) of width bounded by

max(vr(H,T1), er(H,T1) + 1) ≤ 3r′ − 1 ≤ 3r − 1.

For the sake of completeness of the whole construction, we outline the easy proof.

Theorem 15 Let T = (V, F ) be a maximal spanning forest for the graph G =
(V,E). Then a tree decomposition with width at most max(vr(G, T ), er(G, T )+1)
and O(|V |) nodes can be determined in O(vr(G, T ) · |V |) time.

Proof. Our aim is to construct a tree decomposition 〈{Xi | i ∈ I}, T ′〉 of G.
Let T ′ = (V ∪ F, F ′) with F ′ = {{v, e} | v ∈ V, e ∈ F,∃w ∈ V : e = {v, w}} be
the tree obtained by subdividing every edge of T . The bags Xi for i ∈ I := V ∪F
are obtained as follows. For every v ∈ V , add v to Xv. For every e = {v, w} ∈ F ,
add v and w to Xe. Now, for every edge e = {v, w} in E but not in F , add v to
all sets Xu and Xe, with u ∈ V or e ∈ F on the path from v to w in T .

Using standard graph algorithmic techniques, the shortest path between two
vertices in a tree can be found in time proportional to the length of that path;
since each vertex in T can contribute to at most vr(G, T ) such paths, the running
time is bounded by O(vr(G, T ) · |V |).

It is easy to check that this indeed yields a tree decomposition. Its bags have
size |Xv| ≤ 1 + vr(G, T ) (for all v ∈ V ) and |Xe| ≤ 2 + er(G, T ) (for all e ∈ E).
Hence, the resulting treewidth is at most max(vr(G, T ), er(G, T ) + 1). 2

Undoing the minor operations. Finally, the tree decomposition of H can
be turned into a tree decomposition of G of equal or smaller width by replacing

13



every occurrence of a vertex vi in a set Xi by an occurrence of the corresponding
vertex v (see e.g., [10, Lemma 16].) This again costs time, linear in the total size
of all sets Xi in the tree decomposition, i.e., O(r|V |) time.

Altogether this establishes the correctness of Theorem 12.

3 The main result

In this section, we show that a planar graph with domination number k has
treewidth of at most O(

√
k). This improves Corollary 10 considerably. In the

next section, we will show how this new result can be turned into a constructive
algorithm. Combining the results of this section with Theorem 11, we will present
an algorithm having time complexity 3O(

√
k)n. This obviously gives an asymptotic

improvement of the O(11kn) algorithm presented by Downey and Fellows [21, 22].
This section is organized as follows. In a first subsection, we make some

general observations on how to construct tree decompositions using separators.
The following two subsections show that, in a planar graph which admits a k-
dominating set, we can find small separators layerwise. Finally, the results are
pieced together to prove our main result in this section.

3.1 Separators and treewidth

Here, the main idea is to find small separators of the graph and to merge the tree
decompositions of the resulting subgraphs.

Definition 16 Let G = (V,E) be a graph. A subset S of the vertex set V is
called a separator of G, if the subgraph G− S is disconnected.

For any given separator splitting a graph into different components, we obtain
a simple upper bound for the treewidth of this graph which depends on the size
of the separator and the treewidth of the resulting components.

Proposition 17 If a connected graph can be decomposed into components of
treewidth of at most t by means of a separator of size s, then the whole graph
has treewidth of at most t+ s.

Proof. The separator splits the graph into different components. Suppose we
are given the tree decompositions of these components of width at most t. The
goal is to construct a tree decomposition for the original graph. This can be
achieved by firstly merging the separator to every bag in each of these given tree
decompositions. In a second step, add some arbitrary connections between the
trees corresponding to the components. It is straightforward to check that this
forms a tree decomposition of the whole graph of width at most t+ s. 2

For plane graphs, there is an iterated version of this observation.
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Proposition 18 Let G be a plane graph with layers Li, (i = 1, . . . , r). For
i = 1, . . . , `, let Li be a set of consecutive layers, i.e., Li = {Lji, Lji+1, . . . , Lji+ni},
such that Li ∩Li′ = ∅ for all i 6= i′. Moreover, suppose G can be decomposed into
components, each of treewidth of at most t, by means of separators S1, . . . , S`,
where Si ⊆

⋃
L∈Li L for all i = 1, . . . , `. Then G has treewidth of at most t+ 2s,

where s = maxi=1,...,` |Si|.
Proof. The proof again uses the merging-techniques illustrated in the previous
proposition: Suppose, w.l.o.g., the sets Li appear in successive order, i.e., ji <
ji+1. For each i = 0, . . . , `, consider the component Gi of treewidth at most t
which is cut out by the separators Si and Si+1 (by default, we set S0 = S`+1 = ∅).
We add Si and Si+1 to every node in a given tree decomposition of Gi. In
order to obtain a tree decomposition of G, we successively add an arbitrary
connection between the trees Ti and Ti+1 of the so-modified tree decompositions
that correspond to the subgraphs Gi and Gi+1. 2

3.2 Finding separators layerwise

In the following, we assume that our graph G has a fixed plane embedding with
r layers. We show that the treewidth cannot exceed O(

√
k) if a dominating set

of size k exists.
We assume that we have a dominating set D of size at most k. Let ki be the

number of vertices of Di = D ∩ Li. Hence,
∑r

i=1 ki = k. In order to avoid case
distinctions, we set k0 = kr+1 = kr+2 = 0. Moreover, let ci denote the number of
non-vacuous layer-components of layer Li.

Our approach is based on finding small separators in G layerwise. More
precisely, for each i = 1, . . . , r−2, we want to construct a set Si ⊆ Li−1∪Li∪Li+1

separating layer Li−1 from layer Li+2 in such a way1 that the total size of these
sets can be bounded by some linear term in k. The key idea for proving that Si
separates layers Li−1 from Li+2 relies on a close investigation of the paths leaving
layer Li−1 to the interior of the graph. Each such path passes a “first” vertex
in layer Li. This particular vertex can be dominated by vertices from Di−1, Di,
or Di+1. It turns out that, in order to cut this particular path, the set Si has
to contain the vertices of the sets Di−1, Di, and Di+1 plus some suitably chosen
pairs of neighbors of any of these vertices. This results in letting Si be the union
of so-called “upper,” “lower,” and “middle” triples. We will carry out the to
some extent technically complicated step in what follows.

For this purpose, in the following, we write N(x) to describe the set of neigh-
bors of a vertex x and use the notion B(·) for boundary cycles as introduced in
Definition 7.

1Intuitively, one might be tempted to construct a set of vertices separating layer Li−1 from
layer Li+1. However, for technical reasons that become clear in the proof of the forthcoming
Theorem 23, it is more convenient to separate layers Li−1 and Li+2.
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Figure 2: Upper triples.

Upper triples. An upper triple for layer Li is associated to a non-vacuous2

layer-component Ci+1,j of layer Li+1 and a vertex x ∈ Di−1 that has a neighbor
on the boundary cycle B(Ci+1,j) (see Fig. 2). Then, clearly, x ∈ B(B(Ci+1,j)),
by definition of a boundary cycle. Let x1 and x2 be the neighbors of x on the
boundary cycle B(B(Ci+1,j)). Starting from x1, we go around x up to x2 so
that we visit all neighbors of x in layer Li. We note the neighbors of x on the
boundary cycle B(Ci+1,j). Going around gives two outermost neighbors y and z
on this boundary cycle. The triple, then, is the three-element set {x, y, z}. In
case x has only a single neighbor y in B(Ci+1,j), the “triple” consists of only
{x, y} (let, by default, z = y).

Definition 19 For each non-vacuous layer-component Ci+1,j of Li+1 and each
vertex x ∈ Di−1 with neighbors in B(Ci+1,j), the set {x, y, z} as described above
is called an upper triple of layer Li.

Lower triples. A lower triple for layer Li is associated to a vertex x ∈ Di+1

and a non-vacuous layer-component Ci+1,j of layer Li+1 (see Fig. 3). We only
consider layer-components Ci+1,j of layer Li+1 that are enclosed by the boundary
cycle B({x}). For each pair ỹ, z̃ ∈ B({x})∩N(x) (where ỹ 6= z̃), we consider the
path Pỹ,z̃ from ỹ to z̃ along the cycle B({x}), taking the direction such that the
region enclosed by {z̃, x}, {x, ỹ}, and Pỹ,z̃ contains the layer-component Ci+1,j.
Let {y, z} ⊆ B({x})∩N(x) be the pair such that the corresponding path Py,z is
shortest. The triple, then, is the three-element set {x, y, z}. If x has no or only a
single neighbor y in B({x}), then the “triple” consists only of {x}, or {x, y} (by
default, in these cases, we let x = y = z, or y = z, respectively).

2Note that here, as well as in the definitions of middle and upper triples, all vacuous com-
ponents of layer Li+1 are of no interest to us, since we want to find a set of vertices separating
levels Li−1 from Li+2.
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Figure 3: Lower triples.

Definition 20 For each vertex x ∈ Ci+1,j of Di+1 and each non-vacuous layer-
component Ci+1,j that is enclosed by B({x}), the set {x, y, z} as described above
is called a lower triple of layer Li.
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z
yz

B(Ci+1,j) ⊆ Li

Figure 4: Middle triples.

Middle triples. A middle triple for layer Li is associated to a non-vacuous
layer-component Ci+1,j and a vertex x ∈ Di that has a neighbor in B(Ci+1,j) (see
Fig. 4). Note that, due to the layer model, it is easy to see that a vertex x ∈ Di

can have at most two neighbors y, z in B(Ci+1,j). Depending on whether x itself
lies on the cycle B(Ci+1,j) or not, we obtain two different cases which are both
illustrated in Fig. 4. In either of these cases, the middle triple is defined as the set
{x, y, z}. Again, if x has none or only a single neighbor y in B(Ci+1,j), then the
“triple” consists only of {x}, or {x, y}, respectively (by default, in these cases,
we let x = y = z, or y = z, respectively).

Definition 21 For each non-vacuous layer-component Ci+1,j and each vertex
x ∈ Di, the set {x, y, z} as described above is called a middle triple for layer Li.
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Figure 5: Si separates Li−1 and Li+2.

Definition 22 We define the set Si as the union of all upper triples, lower triples
and middle triples of layer Li.

In the following, we will show that Si is a separator of the graph. Note that
the upper bounds on the size of Si, which are derived afterwards, are crucial for
the upper bound on the treewidth derived later on.

Theorem 23 The set Si separates vertices of layers Li−1 and Li+2.

Proof. Suppose there is a path P (with no repeated vertices) from layer Li+2

to layer Li−1 that avoids Si. This clearly implies that there exists a path P ′

from a vertex x in a non-vacuous layer-component Ci+1,j of layer Li+1 to a vertex
z ∈ B(B(Ci+1,j)) in layer Li−1 which has the following two properties:

• P ′ ∩ Si = ∅.

• All vertices inbetween x and z belong to layer Li or to vacuous layer-
components of layer Li+1.

This can be achieved by simply taking a suitable subpath P ′ of P . Let y1 (and
y2, respectively) be the first (last) vertex along the path P ′ from x to z that lies
on the boundary cycle B(Ci+1,j) ⊆ Li (see Fig. 5).

Obviously, y2 cannot be an element of D since, then, it would appear in a
middle triple of layer Li and, hence, in Si. We now consider the vertex that
dominates y2. This vertex can lie in layer Li−1, Li, or Li+1.

Suppose first that y2 is dominated by a vertex d1 ∈ Li−1. Then d1 is in
B(B(Ci+1,j)), simply by definition of the boundary cycle (see Fig. 5). Since G
is planar, this implies that y2 must be an “outermost” neighbor of d1 among all
elements in N(d1) ∩ B(Ci+1,j). If this were not the case, then there would be
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an edge from d1 to a vertex on B(Ci+1,j) that leaves the closed region bounded
by {d1, y2}, the path from y2 to z, and the corresponding path from z to d1

along B(B(Ci+1,j)). Hence, y2 would be in the upper triple of layer Li which is
associated to the layer-component Ci+1,j and d1. This contradicts the fact that
P ′ avoids Si.

Now, suppose that y2 is dominated by a vertex d2 ∈ Di (see Fig. 5). By
definition of the middle triples, this clearly implies that y2 is in the middle triple
associated to Ci+1,j and d2. Again, this contradicts the assumption that P ′∩Si =
∅.

Consequently, the dominating vertex d3 of y2 has to lie in layer Li+1. Let
{d3, d

1
3, d

2
3}, where d1

3, d
2
3 ∈ N(d3) ∩ B(Ci+1,j), be the lower triple associated to

layer-component Ci+1,j and d3 (see Fig. 5). By definition, Ci+1,j is contained
in the region enclosed by {d1

3, d3}, {d3, d
2
3}, and the path from d2

3 to d1
3 along

B(Ci+1,j), which—assuming that y2 /∈ {d3, d
1
3, d

2
3}—does not hit y2 (see Fig. 5).

We now observe that, whenever the path from y1 to y2 leaves the cycle B(Ci+1,j)
to its exterior, say at a vertex q, then it has to return to B(Ci+1,j) at a vertex
q′ ∈ N(q) ∩ B(Ci+1,j). Otherwise, we would violate the fact that, by definition,
B(Ci+1,j) ⊆ Li. This, however, shows that the path P ′ has to hit either d1

3 or d2
3

on its way from y1 to y2. Since d1
3, d

2
3 ∈ Si, this case also contradicts the fact that

P ′ ∩ Si = ∅. 2

3.3 An upper bound for the size of the separators

In this subsection, we want to show that the sum of the cardinalities of all sepa-
rators can be bounded by some linear term in k.

Lemma 24 |Si| ≤ 5(ki−1 + ki + ki+1) + 12ci+1.

Proof. We give bounds for the number of vertices in upper, middle, and lower
triples of layer i, separately.

Firstly, we discuss the upper triples of layer i, which were associated to a
non-vacuous layer-component Ci+1,j of layer Li+1 and a vertex x ∈ Di−1 with
neighbors in B(Ci+1,j). Consider the bipartite graph G′ which has vertices for
each non-vacuous layer-component Ci+1,j and for each vertex in Di−1. Whenever
a vertex in Di−1 has a neighbor in B(Ci+1,j), an edge is drawn between the cor-
responding vertices in G′. Each edge in G′, by construction, may correspond to
an upper triple of layer Li. Note that G′ is a planar bipartite graph whose bipar-
tition subsets consist of ki−1 and ci+1 vertices, respectively. Thus, the number of
edges of G′ is linear in the number of vertices; more precisely, it is bounded by
2(ki−1 + ci+1) (see [43, Corollary 1.2.]). From this, we obtain an upper bound for
the number of vertices in upper triples of layer Li as follows: Potentially, each
vertex of Di−1 appears in an upper triple and, for each edge in G′, we possibly
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obtain two further vertices in an upper triple. This shows that the total number
of vertices in upper triples is bounded by ki−1 + 4(ki−1 + ci+1).

A similar analysis can be used to show that the number of vertices in the
lower triples is bounded by ki+1 + 4(ki+1 + ci+1) and that the number of vertices
in the middle triples can be bounded by ki + 4(ki + ci+1).

By definition of Si, this proves our claim. 2

Note that, by a more detailed investigation, the bound given in Lemma 24
probably can be improved. One observes, e.g., that the planar bipartite graph G′,
which was constructed in the proof, has the special property that it is a “hyper-
plane” bipartite graph, i.e., one of the bipartition subsets can be arranged on a
line and all edges of the graph lie in one halfplane of this line. This property of
G′ is immediate from the fact that the upper triples associated to a non-vacuous
layer-component Ci+1,j lie within the boundary cycle B(B(Ci+1,j)). For such
graphs, our investigations indicate that one might obtain better estimates on the
number of their edges than the ones used in the proof of Lemma 24.

A similar observation can be made for estimating the bounds for the lower
triples.

For the number ci of non-vacuous components in layer i we have the following
estimate.

Lemma 25 ci ≤ ki + ki+1 + ki+2.

Proof. By definition, ci refers to only non-vacuous layer-components in layer
Li, i.e., there is at least one vertex of layer Li+1 contained within each such layer-
component. Such a vertex can only be dominated by a vertex from layer Li, Li+1,
or Li+2. In this way, we get the claimed upper bound. 2

Combining the two previous results yields the bound claimed at the beginning
of this subsection.

Proposition 26
∑r

i=1 |Si| ≤ 51k, where r is the number of layers of the graph.

Proof. This follows directly when we combine the previous two lemmas, noting
that

∑r
i=1 ki = k. 2

3.4 An improved relation of domination number and treewidth

We are now ready to state our main result relating the domination number and
the treewidth of a planar graph. Note that the following theorem gives a decisive
asymptotic improvement of Corollary 10.

Theorem 27 A planar graph with domination number k has treewidth of at most
6
√

34
√
k + 8.
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Proof. Using the separators Si as found in the previous subsections, we consider
the following three sets of vertices: S1 = S1∪S4∪S7∪ . . ., S2 = S2∪S5∪S8∪ . . .,
and S3 = S3 ∪ S6 ∪ S9 ∪ . . .. Since, by Proposition 26, |S1| + |S2| + |S3| ≤ 51k,
one of these sets has size at most 51

3
k, say Sδ (with δ ∈ {1, 2, 3}).

Let δ and Sδ be obtained as above. Let d := 3
2

√
34. We now go through the

sequence S1+δ, S4+δ, S7+δ, . . . and look for separators of size at most s(k) := d
√
k.

Due to the estimate on the size of Sδ, such separators of size at most s(k) must
appear within each n(k) := 51

3
· 1
d
√
k
· k = 1

3

√
34
√
k sets in the sequence. In

this manner, we obtain a set of disjoint separators of size at most s(k) each,
such that any two consecutive separators from this set are at most 3n(k) lay-
ers apart. Clearly, the separators chosen in this way fulfill the requirements in
Proposition 18.

Observe that the components cut out in this way each have at most 3(n(k)+1)
layers and, hence, their treewidth is bounded by 9(n(k)+1)−1 due to Theorem 9.

Using Proposition 18, we can compute an upper bound on the treewidth tw
of the originally given graph with domination number k:

tw(k) ≤ 2s(k) + 9(n(k) + 1)− 1

= 2(
3

2

√
34
√
k) + 9(

1

3

√
34
√
k) + 8

= 6
√

34
√
k + 8.

This proves our claim. 2

How did we come to the constants? We simply computed the minimum of
2s(k) + 9(n(k) + 1) − 1 (the upper bound on the treewidth) given the bound
s(k)n(k) ≤ 51

3
k. This suggests s(k) = d

√
k, and d is optimal when 2s(k) =

9n(k) = 9 · 51
3
· k · s(k)−1, so, 2d = 153

d
, i.e., d = 3

2

√
34.

Observe that the tree structure of the tree decomposition obtained in the
preceding proof corresponds to the structure of the layer decomposition forest.

4 The algorithm

In this section, we outline our fixed parameter algorithm for solving planar k-
dominating set constructively. The input instance to the algorithm is a planar
graph G and a positive integer k. The algorithm determines whether G admits
a dominating set of size at most k, and, if so, constructs such a set. The running
time for the algorithm will be 3O(

√
k)n, where n = |V |.

Clearly, this generalizes to constructing a minimum size dominating set in a

plane graph in time 3O(
√
γ(G))n, where γ(G) is the domination number of the

graph. If γ(G) is not known in advance, one has to apply the fixed parameter
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algorithm and try different values of k—this can be done at the cost of an extra
multiplicative factor of O(log γ(G)) by using binary search.

The key idea for our algorithm is to construct a tree decomposition of the
stated width. However, Theorem 27 is a pure existence theorem which cannot be
made constructive directly. There is one point that needs specific attention. As
we do not start with the dominating set given, we cannot construct the upper,
middle, and lower triples. Instead, we have to compute the minimum size separa-
tor Ŝi between Li−1 and Li+2 directly, and use that set instead of Si as defined in
the proof of Section 3.2. Such a minimum size separator can be computed with
well known techniques based on maximum flow (see, e.g., [33]).

Our algorithm proceeds in the following steps:

1. Embed the planar graph G = (V,E) crossing-free into the plane. Determine
the outerplanarity number r of this embedding and all layers L1, . . . , Lr. By
default, we set Li = ∅ for all i < 0 and i > r.

2. If r > 3k then exit (there exists no k-dominating set). This step of the
algorithm is justified by Proposition 4.

3. For δ = 1, 2, 3 and i = 0, . . . , b r
3
c − 1, find the minimum separator Ŝ3i+δ,

separating layers L(3i+δ)−1 and L(3i+δ)+2. Let s3i+δ = |Ŝ3i+δ|.

4. Check whether there exists a δ ∈ {1, 2, 3} and an increasing sequence
(ij)j=1,...,t of indices in {0, . . . , b r

3
c − 1}, such that

s3ij+δ ≤ s(k) :=
3

2

√
34
√
k for all j = 1, . . . , t and

|ij+1 − ij| ≤ n(k) :=
1

3

√
34
√
k for all j = 1, . . . , t− 1.

If the answer is “no”, then exit (there exists no k-dominating set). This
step of the algorithm is justified by the considerations in the proof of The-
orem 27.

5. Consider the separators Sj := Ŝ3ij+δ for j = 1, . . . , t (by default, Sj = ∅ for
all other j) and, for each j = 0, . . . , t, let Gj be the subgraph cut out by
the separators Sj and Sj+1 or, more precisely, let

Gj := G−
( (3i(j+1)+δ)+1⋃

`=(3ij+δ)−1

L` \ (Sj ∪ Sj+1)
)
.

Note that Gj is at most 3(n(k) + 1)-outerplanar.
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6. Construct tree decompositions Xj for Gj (j = 0, . . . , t) with O(n) nodes
each. For this step, we refer to Theorem 12.

7. Construct a tree decomposition X of G with O(n) nodes using the sepa-
rators S1, . . . ,St and the tree decompositions Xj by the separator merging
technique described in the proof of Proposition 18.

8. Solve the dominating set problem for G with tree decomposition X as
described in Theorem 11.

Step 1 can be implemented with methods described in Section 2.3.
As to Step 3 of the algorithm, we want to remark that such a minimum size

separator can be computed with well known techniques based on maximum flow
(see, e.g., [33]) as follows: For given values of i and δ, we first, build the graph G′,
induced by the vertices in L3i+δ−1 ∪L3i+δ ∪L3i+δ+1 ∪L3i+δ+2. Then, we contract
all vertices in L3i+δ−1 to one vertex s, and all vertices in L3i+δ+2 to one vertex t.
We look for a minimum s-t-separator in the resulting graph but, if this separator
has size more than s(k), then we just note that no separator of size at most s(k)
exists (compare with Step 4). Finding the separator or determining that no small
enough separator exists can be done with the following standard method. Build
a directed graph G′′ in the following way. Every vertex v in the graph is replaced
by two vertices v− and v+, with an edge from v− to v+, and an edge {v, w} is
replaced by two edges (v+, w−), (w+, v−). As explained in [38, Lemma 11, page
83], the minimum s-t separator in G′ can be found by applying a maximum flow
algorithm in G′′. To keep the running time in the stated bounds, we use the Ford-
Fulkerson maximum flow algorithm, but stop as soon as a flow value of more than
s(k) is used since, in such a case, we can conclude that no s-t-separator of size at
most s(k) exists. As each flow augmentation step costs time linear in the number
of vertices and edges of G′′ and increases the flow value by one, the time used by
this procedure is O(n′ · s(k)), with n′ = |L3i+δ−1 ∪ L3i+δ ∪ L3i+δ+1 ∪ L3i+δ+2|.

As for every vertex in G, there are at most four combinations of δ and i in
Step 3 such that it belongs to L3i+δ−1 ∪ L3i+δ ∪ L3i+δ+1 ∪ L3i+δ+2 and the total
time of step 3 is bounded by O(|V | · s(k)) = O(n

√
k).

The correctness of the algorithm above follows from our considerations in the
previous sections.

Steps 1-7 allow us to construct a tree decomposition of width 6
√

34
√
k + 9

of G in O(
√
kn) time. The running time for the last step in the algorithm is

O(36
√

34
√
kn).

Summarizing these observations, we obtain the following theorem.

Theorem 28 The planar k-dominating set problem can be solved in time
O(c

√
kn), where n is the size of the graph G, and c = 36

√
34. Moreover, if γ(G) ≤

k, a minimum size dominating set can be constructed within the same time.
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The constant c above is 36
√

34, which is rather large. However, a more refined
analysis should help to reduce this constant. Moreover, it is a worst case estimate,
which might be far from what happens in practical applications.

We want to mention that an algorithm of similar running time could be ob-
tained by combining our result (Theorem 27) with the O(8rn) time algorithm
for solving dominating set on r-outerplanar graphs indicated by Baker [5]. To
that end, one executes Steps 1-5 as presented above. Afterwards Steps 6-8 are
replaced by a dynamic programming approach, the idea of which we briefly want
to sketch. One keeps tables Ai for each of the separators Si similar to the algo-
rithm presented in the proof of Theorem 11. Again, one uses three distinct colors
for the vertices in the separator Si:

• “black” (meaning, that the vertex belongs to the dominating set)

• “whiteouter” (meaning, that the vertex still needs to be dominated by the
subgraph Gi−1)

• “whiteinner” (meaning, that the vertex still needs to be dominated by the
subgraph Gi)

The tables are updated starting from i = 1 up to i = t as follows. The new
entry for a specific coloring C(i+1) in table Ai+1 can be obtained from minimizing
over all colorings C(i) in table Ai and applying Baker’s algorithm to the graph Gi

precolored according to C(i) and C(i+1). Working out the details of this approach
yields a running time of O(c

√
kn) for some slightly better constant c than the

one obtained in Theorem 28. However, we want to point out that the algorithm
claimed by Baker is not worked out in detail for the dominating set problem,
and, hence, it is hard to verify whether it can deal with precolored graphs, a basic
assumption we need for this approach.

5 Variations of planar dominating set and the

face cover problem

For several variations of the planar dominating set problem, our technique
can also help to obtain algorithms with a similar running time. In particular,
we will consider the following problems: dominating set with property P ,
planar weighted dominating set, and face cover.

5.1 Planar dominating set with property P

In the following, a property P of a vertex set V ′ ⊆ V of an undirected graph
G = (V,E) will be a Boolean predicate which yields true or false values when
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given as input V , E, and V ′. Since V and E will always be clear from the context,
we will simply write P (V ′) instead of P (V,E, V ′). Examples for such properties
P are:

• V ′ is an independent set, i.e., the graph induced by V ′ has no edges, or

• the graph induced by V ′ is connected.

A k-dominating set with property P of an undirected graphG is a k-dominating
set D of G which has the additional property P (D) in G. The dominating set
with property P problem is the task to find a minimum size dominating set
with property P . The k-dominating set with property P problem is the
task to decide, given a graph G = (V,E), a property P , and a positive integer k,
whether or not there exists a k-dominating set with property P .

Examples for such problems are:

• the k-independent dominating set problem, see [47, 48] or [22, p.464],
where the property P (D) of the k-dominating set D is that D is indepen-
dent,

• the k-total dominating set problem, see [47, 48], where the property
P (D) of the k-dominating set D is that each vertex of D has a neighbor
in D,

• the k-perfect dominating set problem [47, 48], where the property
P (D) of the k-dominating set D is that each vertex which is not in D has
exactly one neighbor in D,

• the k-perfect independent dominating set problem, also known as
the k-perfect code problem [22, 28, 47, 48], where the k-dominating set
has to be perfect and independent, and

• the k-total perfect dominating set problem [47, 48], where the k-
dominating set has to be total and perfect.

For all these instances, the condition of the following Theorem 29 holds and,
hence, for these problems, we have anO(c

√
kn) time algorithm for some constant c.

More precisely, a variant of Theorem 11 can be stated for each of these problems,
leading to algorithms where the base q of the exponential term is as follows:

• independent dominating set: q = 3,

• total dominating set: q = 4, since one must also distinguish for the
vertices in the domination set whether or not they have been dominated by
other vertices from the dominating set,
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• perfect dominating set: q = 3; here, in contrast to the algorithm given
in the proof of Theorem 11, a vertex is colored “grey” if it is dominated by
exactly one “black” vertex which either lies in the “current” bag of the tree
decomposition algorithm or in one of its child bags,

• perfect code: q = 3, and

• total perfect dominating set: q = 4.

More details on the structure of the tables within the algorithm using the tree
decomposition can be found in [47, 48]. Observe that the table combination
technique exhibited in Theorem 11 yields a basis in the exponential term of the
running time which is only the square root of the basis obtained by Telle and
Proskurowski in [47, 48] for these variants.

Note that all the problems listed above are defined via properties P which can
be viewed as being “local properties.” This means that essential information for
deciding P can be maintained by the algorithms based on the tree decomposition
approach. On the other hand, the connected dominating set problem (where
it is required that the dominating set which is looked for should be connected)
does not seem to be solvable in this way, since connectedness cannot be decided
on the basis of knowing only a subset of the dominating set.

All the problem variants listed above are known to be NP-complete problems
[47, 48] for general graphs. As regards their parameterized complexity, it is only
known that k-perfect code (on general graphs) is a W[2]-problem which is
W[1]-hard, and k-independent dominating set (on general graphs) is W[2]-
complete, see [22]. The other variants are not mentioned in [22]. In spite of these
hardness results, we can obtain algorithms which have a running time of the form
O(c

√
kn) for some constant c for all of the instances of k-dominating set with

property P when restricting oneself to planar graphs. More generally, we can
state:

Theorem 29 Suppose that there is an algorithm that solves in O(q`N) time the
dominating set with property P problem on graphs, given a tree decomposi-
tion with treewidth ` and N nodes for some constant q. Then, the k-dominating
set with property P problem can be solved in O(qd

√
kn) time, given a planar

graph G = (V,E), where d = 6
√

34 and n = |V |. Moreover, if a k-dominating
set with property P exists, a minimum size dominating set with property P can
be constructed within the same time.

Proof. If the planar graph G admits a dominating set with property P of size
at most k, then, clearly, G has domination number at most k. By Theorem 27,
the treewidth of G is bounded by 6

√
34
√
k + 8. According to the discussion in

Section 4, a corresponding tree decomposition with O(n) nodes can be found in
time O(

√
kn). The assumption on the existence of an O(q`N) time algorithm for

given tree decomposition of width ` then yields the claim. 2
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5.2 Weighted dominating set

Here, we consider the following variant of dominating set: Take a graph G =
(V,E) together with an integer weight function w : V → N with w(v) > 0 for all
v ∈ V . The weight of a vertex set D ⊆ V is defined as w(D) =

∑
v∈D w(v). A

k-weighted dominating set D of an undirected graph G is a dominating set D of
G with w(D) ≤ k. The k-weighted dominating set problem is the task to
decide, given a graph G = (V,E), a weight function w : V → N, and a positive
integer k, whether or not there exists a k-weighted dominating set.

Theorem 30 The planar k-weighted dominating set problem can be solved
in time O(c

√
kn), where n is the size of the graph, and c = 36

√
34. Moreover, if

a k-weighted dominating set exists, a dominating set of minimum weight can be
constructed within the same time.

Proof. By definition of the integer weight function, a graph which possesses
a k-weighted dominating set has a domination number bounded by k. Hence,
its treewidth is bounded by 6

√
34k + 8, see Theorem 27. Now, the techniques

explained in Theorem 28 based on Theorem 11 work accordingly. In particular,
only small modifications in the bookkeeping technique used in Theorem 11 are
necessary in order to obtain a k-weighted dominating set. More precisely, we
have to adapt the initialization of the variables min

(i)
j according to:

min
(i)
j ←

{
+∞, if the coloring represented by row j is non-valid

w({x(i)
t | t ∈ {1, . . . , ni}, c(i)

j,t = 0}), otherwise.

The updating of the variables min
(i)
j is adapted similarly. 2

Also weighted variants of domination problems with property P can be treated
in this way. Observe that it is not straightforward to generalize the theorem above
to domination problems with rational or “real” weights. The natural reduction to
the integer weight problem treated above would also influence the parameter k,
which then would depend on the whole problem instance, which is not feasible in
the fixed parameter setting. Only if we fix beforehand a constant ε such that all
admissible positive weights are greater than ε, this reduction would be feasible,
showing that of the corresponding generalized problem instance for planar k-
weighted dominating set is fixed parameter tractable.

5.3 Face cover

We now turn our attention to the face cover problem (see [7, 22, 45]). A k-
face cover C of an undirected plane graph G = (V,E) (i.e., a planar graph with
a fixed embedding) is a set of faces that cover all vertices of G, i.e., for every
vertex v ∈ V , there exists a face f ∈ C so that v lies on the boundary of f . The
k-face cover problem is the task to decide, given a plane graph G = (V,E)
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and a positive integer k, whether or not there exists a k-face cover. The size of a
face cover of minimum size of a plane graph G is called the face cover number of
G. The face cover problem is the task to find a minimum size face cover for a
given plane graph.

Downey and Fellows [22, p.38] derived an O(12kn) algorithm for k-face
cover, which they call face cover number for planar graphs. Before,
Bienstock and Monma [7] had derived an O(ckn) algorithm (with an unspecified
but large constant c) for a generalization of face cover which they call disk
dimension problem.

Basically, Downey and Fellows reduce face cover to a problem which they
call planar red/blue dominating set. Actually, we will use the same re-
duction technique in the following. This justifies why we also briefly treat this
auxiliary problem.

An instance of planar red/blue dominating set is given by a planar
bipartite graph G = (V,E), where the bipartition is given by V = Vred ∪ Vblue.
The parameter is k. The question is whether there exists a set V ′ ⊆ Vred with
|V ′| ≤ k such that every vertex of Vblue is adjacent to at least one vertex of V ′.

Observe that planar red/blue dominating set is not a variant of planar
dominating set in the sense of the first subsection, because a solution V ′ is not
a dominating set, since red vertices can not and hence need not be dominated
by red vertices. Downey and Fellows [22, p.38] give an O(12kn) algorithm for
planar red/blue dominating set.

Although it would surely be possible to develop an analogue to Theorem 28
for planar red/blue dominating set as well, we will only state and prove
the following version here, since we are mainly interested in solving the face
cover problem.

Lemma 31 Let a (planar) bipartite graph G = (V,E) with bipartition V =
Vred∪Vblue be given together with a tree decomposition of width `. Then red/blue
dominating set can be solved in time O(2`N), where N is the number of bags
of the tree decomposition.

Proof. Basically, the technique exhibited in Theorem 11 can be applied. Due
to the bipartite nature of the graph, only two “states” have to be stored for each
vertex: red vertices are either within the dominating set or not, and blue vertices
are either already dominated or not yet dominated. Therefore, we can derive
base 2 instead of 3 for the exponential term of the claimed running time. The
apparent technical details are left to the reader. 2

In order to solve the face cover problem with the previously established
techniques, we need the following auxiliary notion. Let G = (V,E) be a plane
graph. Let F denote the set of faces of G. A mapping r : F → V is called a
c-bounded face representation iff for all v ∈ r(F ):

1. for all f ∈ r−1(v), v lies on the boundary of f , and
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2. |r−1(v)| ≤ c.

Lemma 32 Each plane graph has a 5-bounded face representation. Moreover,
such a face representation function can be constructed in time O(n2), where n is
the number of vertices of the given graph.

Proof. Let G0 = (V0, E0) be a plane graph. We are going to define a 5-bounded
face representation r of G0 in a step-by-step fashion.

It is well-known that each planar graph has a vertex of degree of at most five
[43, Corollary 1.4]. Hence, select one of these low-degree-vertices of G0 and call
it v0. Since v0 has degree at most five, there are at most five faces adjacent to v0.
For all these faces f , we define r(f) = v0.

Consider, then, the graph G1 = (V1, E1), where G1 = G0 − v0. We assume
the “same” planar embedding for G1 as for G0. As before, we can find a vertex
v1 ∈ V1 with at most five adjacent faces (in G1). Therefore, v1 has at most five
adjacent faces in G0 to which no vertices have yet been assigned. For all these
faces f , we define r(f) = v1.

Inductively, Gi+1 is obtained as Gi − vi, where vi has degree of at most five
in Gi. Here, vi represents all adjacent faces in G0 which are not already repre-
sented by the previously selected vertices v0, . . . , vi−1.

This loop is repeated until all faces f of G0 have one representing vertex r(f),
i.e., until r is completely defined.

The claimed time bound is obvious. 2

The preceding lemma will be the key in the proof of the following theorem.

Theorem 33 The k-face cover problem can be solved in time O(c
√
k

1 n + n2),

where n is the size of the given plane graph, and c1 = 236
√

34. Moreover, if the
face cover number of the input graph is at most k, then a minimum size face
cover can be constructed within the same time.

Proof. Let G = (V,E) be a plane graph with face set F . Due to Lemma 32,
we can find a 5-bounded face representation r : F → V in time O(n2).

Consider the following graph: Add a vertex to each face of G, and make each
such “face vertex” adjacent to all vertices that are on the boundary of that face.
These are the only edges of the bipartite graph G′ = (V ′, E ′). Write V ′ = V ∪VF ,
where VF is the set of face vertices, i.e., each v ∈ VF represents a face fv in G.
In other words, V and VF form the bipartition of G′. Observe that G′ can be
viewed as an instance of red-blue dominating set: the face vertices VF are
“red” and the other vertices V are “blue.” Basically, this is the idea Downey and
Fellows indicated in [22, Exercise 3.1.5]. Now, we would like to apply Lemma 31
to finish the proof.

To this end, consider the graph Ĝ = (V, Ê) obtained from G′ by contracting
each edge connecting a face vertex v ∈ VF of G′ with r(fv). In other words,
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Ĝ is obtained from G by firstly removing all “original” edges from E, and then
inserting, for every f ∈ F , edges between r(f) and each other vertex v adjacent
to f in G.

Now, assume that G has a k-face cover. Then, Ĝ has a k′-dominating set
with k′ ≤ k. Namely, if C ⊆ F is a face cover of G, then r(C) is a dominating
set of Ĝ. Therefore, Theorem 27 yields tw(Ĝ) ∈ O(

√
k). We consider one tree

decomposition of Ĝ of width ≤ 6
√

34k. In order to be able to apply Lemma 31,
we are going to construct a tree decomposition of G′ of width ≤ 36

√
34k from

the tree decomposition of Ĝ. To this end, we enhance the bags of Ĝ’s tree
decomposition according to the following rule: if r(f) is in some bag for some
face f ∈ F , then put all v ∈ VF into that bag which satisfies r(fv) = r(f). The
reader should verify that this, indeed, yields a tree decomposition of G′, and the
claimed width bound follows from Lemma 32. 2

Hence, our algorithm for face cover leads to an asymptotic improvement
of the result of Downey and Fellows [22, p.38]. The disk dimension problem
treated by Bienstock and Monma [7] generalizes face cover in two ways: firstly,
they do not start with a fixed embedding of the planar input graph and, secondly,
they have an additional input of their problem, namely a set D of designated
vertices, where only these need to be covered. Both of these generalizations seem
to be hard to treat within our framework.

6 Conclusion

In this paper, we presented a treewidth-based approach to improve the fixed pa-
rameter complexity of planar k-dominating set, k-face cover and related
problems drastically—we gained a significant exponential improvement over pre-
vious exact solutions for the problems. Seemingly for the first time, our results
provide fixed parameter algorithms whose exponential factor has an exponent
sublinear in the parameter.

The results. We show that for the treewidth of planar graphs, we have tw(G) ∈
O(
√
γ(G)), where γ(G) is the domination number of G. From this, we derive that

Planar k-dominating set can be solved in time O(c
√
kn), where c = 36

√
34.

Analogously, planar k-independent dominating set, planar k-perfect
dominating set, planar k-perfect code, and planar k-weighted dom-
inating set can be solved in the same time bounds and planar k-total
dominating set and planar k-total perfect dominating set can be
solved in time O(c

√
k

1 n), where c1 = 46
√

34. Finally, the k-face cover problem

can be solved in time O(c
√
k1

2 n+ n2), where c2 = 236
√

34.
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The constants. As already discussed earlier in the paper, our proven constants
are huge. Hence, our result might be of only structural importance. There is
hope for getting our results to be more practical, however: Our analysis only
deals with worst case bounds. Even these might be improved significantly. A
matter of special importance in this context is to note that our bounds heavily
depend on the layer decomposition of the given planar graph, which seems to be
a good starting point for the fight for better constants. In summary, ameliorating
the constants needs and deserves future work.

The philosophical matters. As our results suffer from bad constants, besides
discussing the opportunities to improve these, it is also valuable to investigate
the “philosophical” perspectives opened by our work. Does our result mean that
planar k-dominating set is an “easy” fixed parameter tractable problem,
e.g., easier than (the classical parameterized problem) k-vertex cover on gen-
eral graphs? In theory, seemingly yes, because the asymptotics of the known
exponential term for planar k-dominating set is much better than for k-
vertex cover (“sublinear versus linear”); in practice, seemingly no, because
for probably all reasonable sizes of k (say, e.g., k ≈ 100) the exponential term for
k-vertex cover (currently already smaller than 1.3k [14, 41]) is much better.
Does this imply something for the theory of fixed parameter tractability [22] as
a whole? A different matter is “how sublinear” we can get. Is there an NP-hard,
natural parameterized problem that allows exponents of o(

√
k)? Or is there a

nontrivial lower bound, maybe in relation with classical complexity theory (cf.,
e.g., known bounds for the 3-satisfiability problem)? Also, is there a general
relation to the approximability properties of the corresponding problems?

The concrete open questions. It would be interesting to investigate exper-
imentally the practical usefulness of our result, since our estimates for the con-
stants are worst case and very pessimistic ones. It also would be interesting to
see if these results can be extended to more variants of Dominating Set and to
other graph classes (e.g., graphs of bounded genus3). Another interesting open
problem is how to use the techniques of this paper for the variant of the face
cover problem, where the embedding is not given as a input (i.e., for a given
planar graph, find an embedding with minimum number of faces that cover all the
vertices, cf. [7]). Finally, as a matter of practical importance it would also be in-
teresting to get a time O(ckn) (search tree) algorithm for planar k-dominating
set with constant c significantly smaller than 11, the constant obtained by the
search tree algorithm of Downey and Fellows [21, 22]. Moreover, the question
whether planar k-dominating set admits a problem kernel of small size still
remains unanswered. Both issues, finding a better search tree algorithm and a

3The logical framework of Frick and Grohe [26] already guarantees fixed parameter tractabil-
ity for this problem.
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small problem kernel, could be of high practical relevance, in particular in com-
bination with the interleaving techniques presented in [42].
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