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Pod Vodárenskou věž́ı 2, 182 07 Prague 8, Czech Republic.

1 Introduction

The importance of algorithms is now recognized in all mathematical sci-
ences, thanks to the development of computability and computational
complexity theory in the 20th century. The basic understanding of com-
putability theory developed in the nineteen thirties with the pioneering
work of mathematicians like Gödel, Church, Turing and Post. Their work
provided the mathematical basis for the study of algorithms as a formal-
ized concept. The work of Hartmanis, Stearns, Karp, Cook and others
in the nineteen sixties and seventies showed that the refinement of the
theory to resource-bounded computations gave the means to explain the
many intuitions concerning the complexity or ‘hardness’ of algorithmic
problems in a precise and rigorous framework.

The theory has its roots in the older questions of definability, prov-
ability and decidability in formal systems. The breakthrough in the nine-
teen thirties was the formalisation of the intuitive concept of algorithmic
computability by Turing. In his famous 1936-paper, Turing [43] presented
a model of computation that was both mathematically rigorous and gen-
eral enough to capture the possible actions that any ‘human computer’
could carry out. Although the model was presented well before digi-
tal computers arrived on the scene, it has the generality of describing
computations at the individual bit-level, using very basic control com-
mands. Computability and computational complexity theory are now
firmly founded on the Turing machine paradigm and its ramifications
in recursion theory. In this paper we will extend the Turing machine
paradigm to include several key features of contemporary information
processing systems.

1.1 From Machines to Systems that Compute

Turing’s model is generally regarded as capturing the intuitive notion
of what is algorithmically computable in a very broad sense. The gen-
eral belief that every algorithm can be expressed in terms of a Turing
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and by EC Contract IST-1999-14186 (Project ALCOM-FT).



2 Jan van Leeuwen and Jǐŕı Wiedermann

machine, is now known as the Church-Turing thesis (cf.[12], [37]). Even
though many other formalisations of computability have been proposed
and studied through the years, there normally proved to exist effective
simulations in terms of standard Turing machines. This has been specif-
ically demonstrated for the many formalisms for defining computable
(partial) functions on N (cf. [8], [15], [26]).

With the origin of Turing machines dating back to the nineteen thir-
ties, the question arises whether the notion of ‘computation’ as it is
now understood is still adequately described by them. The emphasis in
modern computer technology is gradually shifting away from individual
machines towards the design of systems of computing elements that in-
teract. New insights in the way physical systems and biological organisms
work are uncovering new models of computation. Is the Church-Turing
thesis as we know it still applicable to the novel ways in which comput-
ers are now used in modern information technology? Will it hold for the
emerging computing systems of the future?

At least three new ingredients have entered into the world of algorith-
mic computability that need further examination from this viewpoint:
non-uniformity of programs, interaction of machines, and infinity of op-
eration. Whereas these ingredients are well-studied in computer science
separately, future computing systems require that they are considered
simultaneously. It is expected that the synergetic effect among them will
lead to new qualities of computing that match the systems that are now
emerging. We therefore propose a corresponding extension of the Turing
machine paradigm to capture these features of modern-day computing.

The paper is organized as follows. In Section 2 some crucial fea-
tures of modern computational systems are described and an extended
Church-Turing thesis is formulated. In Section 3 we will introduce two
basic models for a more formal theory. The first one, the site machine,
derives from the insights in distributed computing and models personal
(network-)computers and the way they are operated. The second model is
an extension of a formal model known in the theory of non-uniform com-
putations: the interactive Turing machine with advice. In Section 4 we
will argue that the models are computationally equivalent. In Section 5
we introduce a formalized model of the Internet and show that the result-
ing internet machine is of the same computational power as the previous
two models again, thus giving further evidence of the proposed thesis.
The extended Church-Turing thesis is discussed in Section 6. We assume
no specific background from computability theory for the purposes of
this paper. For a modern treatment of computability and computational
complexity theory, see e.g. [25] or [34].

2 Computational scenarios

In this section we briefly reflect on the study of computability using Tur-
ing machines and on some of the new features that are arising in modern
information technology. We will motivate the need for a reconsideration
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of the classical Turing machine paradigm and formulate an extension of
the Church-Turing thesis.

2.1 The classical Turing machine paradigm

A Turing machine is an abstract computing device consisting of a fi-
nite control, a potentially unbounded memory consisting of one or more
tapes, and a finite program. The program is a list of instructions that
say what step the machine can take based on the current state of its
finite control and the bits in its current ‘window’ on the information on
the tapes. A step normally involves both a change of state in the finite
control, a rewrite of the bits in the window, and a move of the window
to the left or to the right by one position. After starting, the program is
assumed to execute until some halting state is reached.

The computational scenario for Turing machine computations as-
sumes that at the beginning of the computation the entire (finite) input
data is available on the input tape. The rest of the input tape and of any
other tapes is blank. If the machine terminates in an accepting state,
the input is said to be accepted. The result of the computation is given
by the contents of the tapes at this time. If a new computation (on new
input data) is started, then all previous information is erased. No in-
formation can be carried over from the past to the present run of the
Turing machine. For a given machine, the same fixed program is used
uniformly for all inputs.

The framework of Turing machines is very suitable for studying the
power and efficiency of algorithms, considering the achievements of com-
putability and complexity theory (see e.g. [5], [18], [23], [33]). Various
fundamental notions were recognized and added such as nondetermin-
ism (‘finitely many options per step’), probability (‘coin flipping’) and
parallelism (‘many processors’), with no effect on the Church-Turing
thesis but in some cases apparently with severe effects on what can be
computed within predefined resource bounds [46]. Even genetic [32] and
quantum features [14] were introduced. The model was also modified
to more closely resemble the architecture of digital computers. In the
random access machine (RAM) the finite control was replaced by an
arithmetic-logic unit, the tapes by a potentially unbounded memory of
addressable cells, and the instruction set by that of a typical computer.
The RAM-model is now often used as an alternative entrance to the
study of complexity classes and for the machine-independent analysis of
algorithms.

An important extension of the basic Turing machine model which
entered into the theory at an early stage is the extension by oracles (cf.
[5], [33]). Oracles enable one to enter new, external, and possibly non-
computable information into a computation. An oracle is given by an
oracle set. It can be any set of words over an alphabet Σ, in particular
it may be a set for which membership cannot be decided by any Turing
machine, i.e. there is no algorithm for it. An oracle Turing machine
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can consult its oracle by submitting membership queries to it, which
the oracle then answers ‘in one step’. One may also allow oracles that
deliver, for any argument supplied by the machine, the value of some
(in general, non-computable) function for that argument in one step.
Oracles have originally been proposed by Turing [44] and have given
rise to the rich theory of relativised computability (cf. [33]) and to the
modern relativised complexity theory [5]. Oracles can have a dramatic
effect on the complexity of computations and on the relative power of
features like nondeterminism. For our purposes oracles are far too general
and powerful. We will use a weaker version of them called ‘advice’ in
Section 3.

2.2 Towards a new paradigm

The experience with present-day computing confronts us with phenom-
ena that are not captured in the scenario of classical Turing machines.
Personal computers are running practically uninterruptedly from the day
of their installation. Even when they are switched off, the data stored
in permanent memory survives (‘persists’) until the next session. When
the computer is changed in favor of a new model, most data is trans-
ferred from the old computer to the new one. Very often a computer
is ‘upgraded’ by changing its software or hardware, thus giving it new
functionalities in the course of its existence. Its program is thus no longer
fixed but evolves over time in a non-programmed, non-uniform way. (In
the sequel we will refer to such programs as non-uniform programs.)

The idea of having all input data present prior to the start of any
computation also no longer applies. Data is streaming into a computer
practically continuously via its input ports, often in the very moment
of its first (and at the same time perhaps its last) appearance and from
various sources: the keyboard, the mouse, the network connection, the
microphone, a camera and so on. The results of a computation are like-
wise streaming out from the computer continuously also, through vari-
ous channels: texts and pictures appear on the screen or on the printer,
sounds are emitted via loudspeakers, messages and data are sent over
the network connection, and so on.

Also, computers are not running in isolation anymore but are hooked
into dynamic networks of virtually unlimited size, with many computers
sending and receiving signals in sheer unpredictable ways. Along this
line, one can envision the synthesis of large, world-wide Internet-like
systems of communicating processors and networks to form myriads of
programmable global computers ([9], [16]) offering many different quali-
ties of service.

There even are visions that over the next decades, new technologies
will make it possible to assemble systems of huge numbers of computing
elements that need not even all work correctly or be arranged in some
predefined or even computable way. The development of these amor-
phous computing systems [1] is likely to lead to fundamental changes in
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the views of computation, possibly with new inspiration from the kinds
of interaction that take place in physical systems or among cells in bio-
logical organisms. It potentially leads to complex computational behaviors
that cannot be considered to have been explicitly programmed.

The preceding analysis shows that the classical Turing paradigm may
no longer be fully appropriate to capture all features of present-day com-
puting. The contemporary view of computing by means of large and
complex distributed systems of computing elements leads to the view of
computing as a potentially endless process of interaction among compo-
nents (or agents) and of components with their environment. Occasion-
ally, and unpredictably, the software or hardware of some components is
changed by an external agent (‘the system administrator’). In principle
this will be allowed to its potential limit of happening infinitely often.

What would the appropriate computational model for the new fea-
tures be in terms of Turing machines? Can it be described in a tractable
mathematical framework at all? Does the change of the basic computa-
tional scenario have any effect on the computational power of the respec-
tive system? Can the Church-Turing thesis be adjusted to capture the
new situation? These questions have been arising recently within several
communities, indicating the need for a revision of the classical Turing
machine paradigm (see e.g. [9], [49], and [50]). Wegner formulates it as
follows ([50], p. 318):

“The intuition that computing corresponds to formal com-
putability by Turing machines . . . breaks down when the notion
of what is computable is broadened to include interaction. Though
Church’s thesis is valid in the narrow sense that Turing machines
express the behavior of algorithms, the broader assertion that al-
gorithms precisely capture what can be computed is invalid.”

We note that it is not the Church-Turing thesis that is questioned here
but rather the notion of computation that it captures. A further discus-
sion of Wegner’s views from the viewpoint of computability theory was
given in [31] (see also [17] and [51]).

2.3 Non-uniform interactive computations

The aim of the present paper is to consider the following features of mod-
ern computing in more detail: non-uniformity of programs, interaction
of machines, and infinity of operation. We believe that these features,
seen as simultaneous augmentations of the basic machine model, will be
essential components in the development of computability theory in the
years ahead. We will outline an extended Turing machine model and
provide evidence that it captures what can be computed in the newer
information processing systems. In the approach, the informal meaning
of ‘what can be computed’ will be formalized in terms of non-uniform
interactive computations. We will show that such computations are ex-
actly those that are realized by interactive Turing machines with advice,



6 Jan van Leeuwen and Jǐŕı Wiedermann

with ‘advice’ being a weak but highly appropriate type of oracle that
has received only some attention to date. Advice function will liberally
model machine upgrades. It motivates the following extension of the
Church-Turing thesis:

Any (non-uniform interactive) computation can be described in
terms of interactive Turing machines with advice.

We believe that the future developments in computability theory will
more and more have to take the new paradigm into consideration. The
problems of describing and characterizing the behaviour and computa-
tional complexity of dynamic systems of interactive Turing machines
with advice will pose many mathematical challenges, akin to those in
the emerging area of mobile distributed reactive systems [3] and global
computing [9].

3 Two Models of Computation

To model what can be computed, both a computational model and a
computational scenario are needed. In this section we design two models
of computation which capture some of the new features described above.
First we design the site machine, a model inspired by considerations
from computer networks and distributed computing. The second model is
based on Turing machines with advice (cf. [5]). We describe an interactive
version of it that allows for repeated upgrades and continuous operation.
In Section 4 we will show that site machines and ‘interactive Turing
machines with advice’ are computationally equivalent, and that they are
more powerful than ordinary Turing machines.

3.1 Site machines

A site machine models a personal computer that may, but need not be
connected to some computer network. Informally, a site machine consists
of a full-fledged computer with a processor and a potentially unbounded,
permanent read/write memory. It can be modeled either by a Turing ma-
chine, or by a random access machine (RAM) equipped with an external
permanent memory (e.g. a disk), or by any other similar model of a uni-
versal programmable computer. The machine is equipped with several
input and output ports via which it communicates with its environment.
Without loss of generality we can restrict its communication ability to
sending and receiving messages. Messages are finite sequences of sym-
bols chosen from some finite alphabet Σ. The site machine reads or sends
messages symbol by symbol, at each port one symbol at a time. When
there are no symbols to be read or sent a special empty symbol τ ∈ Σ
is assumed to appear at the respective ports. Up to this point, site ma-
chines resemble the well-formalized I/O automata defined by Lynch and
Tuttle (cf. [20]) in the context of the study of distributed algorithms.
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We assume that a site machine is operated by an agent. The agent is
considered to be a part of the environment. An agent can communicate
with the site machine via its ports, but it can also modify the software
or hardware of the machine. In order to modify it, the agent must tem-
porarily switch off the machine. Thanks to the assumption of permanent
memory, no data will be lost by this. Below we will describe some reason-
able limitations on what an agent can do. After upgrading the machine,
the agent switches the machine on again and the machine continues its
interaction with the environment, making use of the data residing in the
permanent memory. Note that by changing a piece of hardware, new
software and new data (residing in a chip in its read-only memory, say)
can enter the system. A potentially endless sequence of upgrades may be
seen as an evolutionary process acting on the underlying site machine.
Formally, this process may be described by a function γ that assigns to
each time t the description γ(t) of the hardware and/or software upgrade
(if any) at that time. In general, this function is non-computable and not
known beforehand. Nevertheless it fully determines the computation of
a site machine from the time of its upgrade, on input entered after that
time and making use of the persistent data.

A computation of a site machine is an incremental, symbol by symbol
translation of an infinite multiple stream of input symbols to a similar
stream of output symbols. If the site has k input and ` output ports, with
k, ` > 0, then the computed mapping Φ is of the form (Σk)∞ → (Σ`)∞.
Thus, an infinite stream of k-tuples is translated to an infinite stream of
`-tuples, one tuple after the other.

3.2 Interactive Turing machines with advice

To study the computational power of site machines, we need to compare
them to a more basic mathematical model. We will design a suitable
analog of the Turing machine that will do for our purposes. The Turing
machine will be equipped with three new features: advice, interaction
and infinity of operation.

3.2.1 Advice functions

In order to mimic site machines, a Turing machine must have a mech-
anism that will enable it to model the change of hardware or software by
an operating agent. We want this change to be quite independent of the
current input read by the machine up to the moment of change. If this
wouldn’t be the case, one could in principle enter ready-made answers
to any pending questions or problems that are being solved or computed
into the machine, which is not reasonable. By a similar argument we do
not want the change to be too large, as one could otherwise smuggle
information into the machine related to all possible present and future
problems. In order to fulfill these two conditions, we quite arbitrarily
insist that the description of the new hardware (or software or data)
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will depend only on the time t of the change and that the size of the
description will be at most polynomial in t.

To enter new, external, and possibly non-computable information
into the machine we will make use of oracles (cf. [5], [33]). We like to view
oracles as ‘hardware upgrades’ and thus need a rather more restricted
version of the general notion that only provides its upgrades in a general
and largely input-independent way. A good candidate are the advice
functions. Turing machines with advice were first considered by Karp
and Lipton [19] in their fundamental study of non-uniform complexity
theory (cf. [5], [36]).

Definition 1. An advice function is a function f : N → Σ?. An ad-
vice function f is called S(n)-bounded if for all n, the length of f(n) is
bounded by S(n).

An advice Turing machine with input of size n will be allowed to
consult its oracle only for that particular value. More precisely, let C be
a class of languages (‘problems’) defined by Turing machines and F be
a class of advice functions. Let 〈, 〉 denote some simple encoding.

Definition 2. The class C/F consists of the languages L for which there
exists a L1 ∈ C and a f ∈ F such that the following holds for all n and
inputs x of length n: x ∈ L if and only if 〈x, f(n)〉 ∈ L1.

Common choices considered for C are: P (‘deterministic polynomial
time’), NP (‘nondeterministic polynomial time), PSPACE (‘polyno-
mial space’), and EXPTIME (‘deterministic exponential time’). Com-
mon choice for F are log, the class of logarithmically bounded advice
functions, and poly, the class of polynomially bounded advice functions.
Classes like P/poly are easily seen to be robust under allowing inputs x
of length ≤ n in the given definition, or even of length ≤ q(n) for some
polynomial q ([6]).

The hardware view of advice functions is supported by the following
theorem that combines results of Pippenger [27], Yap [53] and Schöning
[35]:

Theorem 3. The following characterisations hold:
(i) P/poly is precisely the class of languages recognized by (possibly non-
uniform) families of polynomial size circuits.
(ii) NP/poly is precisely the class of languages generated by (possibly
on-uniform) families of polynomial size circuits.

A classic result by Adleman [2] shows that P/poly contains the class
RP consisting of the languages recognized by polynomial time-bounded
probabilistic Turing machines with one-sided error. More generally it
can be even shown that BPP ⊆ P/poly, where BPP is the class of lan-
guages accepted by polynomial time-bounded probabilistic Turing ma-
chines with two-sided bounded-error. We will return to the power of
advice in Section 4.
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3.2.2 Interaction and Infinity of Operation

Next the Turing machine must accommodate interaction and infinite
computations. Neither of the two features by itself is new in computer
science. Notions of interaction and of interactive computing have already
received considerable attention, for example, in the theory of concurrent
processes (cf. Milner [21,22] and Pnueli [28,29]) and in the design of pro-
gramming systems for parallel processes (cf. [10]). Interaction is also fun-
damental in the many studies of communication protocols and distributed
algorithms in which the building blocks act as (restricted) interactive
Turing machines (cf. [4], [20], and [40]). Interaction is even modelled
using concepts from game theory and microeconomics. Infinite compu-
tations have been formalized and studied from the language-theoretic
viewpoint in the theory of ω − automata (cf. [39] and [41,42]).

To accommodate the features in one model of computation, the Tur-
ing machine with advice described above must be equipped with finitely
many input and output ports like site machines and I/O-automata.
Through its input ports the machine will be able to read symbols, one
symbol at a time. If at some time there is no interesting symbol from
Σ delivered by the machine’s environment to an input port, a special
empty symbol τ is assumed to be input again. Similar situations at out-
put ports are handled analogously. We do not require a fixed or otherwise
specified interconnection structure in advance that links the machine to
other machines.

The computational scenario of an interactive Turing machine is as
follows. The machines starts its computation with empty tapes. It is
essentially driven by a standard Turing machine program. At each step
the machine reads the symbols appearing at its input ports. At the same
time it writes some symbols to its output ports. Based on the current
context, i.e. on the symbols read on the input ports and in the ‘window’
on its tapes, and on the current state, the machine prints new symbols
under its heads, moves its windows by one cell to the left or to the right
or leaves them as they are, and enters a new state. Assuming there is a
possible move for every situation (context) encountered by the machine,
the machine will operate in this manner forever. Doing so, its memory
(i.e. the amount of rewritten tape) can grow beyond any limit. At any
time t > 0 we will also allow the machine to consult its advice, but only
for values of at most t. Also, to prevent the danger of cheating with large
advice values, we allow polynomially bounded advice functions only.

Turing machines that follow these specifications are called interac-
tive Turing machines with advice. For more information concerning the
computational power of ‘pure’ interactive Turing machines (i.e. without
any advice) we refer to [47].
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4 The Power of Site Machines

In order to support the proposed extension of the Church-Turing thesis,
we show that site machines and interactive Turing machines with advice
are computationally equivalent. This means that to any machine of the
former type there is the machine of the latter type that simulates it, and
vice versa. To show that this implies that site machines are essentially
more powerful than classical Turing machines, we first digress on the
power of ordinary Turing machines with the added features.

4.1 The Power of Advice

Turing machines with advice are widely used in non-uniform complexity
theory to study the computational power and efficiency of infinite families
of devices that are not uniformly programmed. It is easily seen that
Turing machines with advice can accept non-recursive languages. By
way of illustration we show how to recognize the diagonal language of
the halting problem using advice. To define the problem, note that every
string w ∈ Σ∗ may be seen both as the encoding 〈M〉 of some Turing
machine M (in some agreed-upon syntax and enumeration) and as a
standard input string.

Definition 4. K is the set of words that are the encodings of those
Turing machines that accept their own encoding.

Turing [43] proved that there does not exist an algorithm, i.e. a Turing
machine, that can decide for any Turing machine M given by means of
its description 〈M〉, whether 〈M〉 ∈ K. In the terms of recursion theory,
K is recursively enumerable but not recursive.

Proposition 5. There exists a Turing machine A with linearly bounded
advice that accepts K and always halts.

Proof. Define an advice function f as follows. For each n it returns the
encoding 〈N〉 of the machine N for which the following holds: 〈N〉 is of
length n, N accepts 〈N〉, and N halts on input 〈N〉 after performing
the maximum number of steps, where the maximum is taken over all
machines with an encoding of length n that accept their own encoding.
If no such machine exists for the given n, f returns a fixed default value
corresponding to a machine that halts in one step. It is easily seen that
f exists and is linearly bounded.

On an arbitrary input w, machine A works as follows. First it checks
whether w is the encoding of some Turing machine. If not then A rejects
w. Otherwise, if w is the encoding 〈M〉 of some Turing machine M , then
A asks its advice for the value f(n), with n = |w|. Let f(n) = 〈N〉, for
some machine N . A now simulates both M and N , on inputs 〈M〉 and
〈N〉, respectively, by alternating moves, one after the other. Now two
possibilities can occur:
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(a) N will stop sooner than M . That is, M has not accepted its input
by the time N stops. Since the time of accepting 〈N〉 by N was maximum
among all accepting machines of the given size, we may conclude that
M does not accept w. In this case A does not accept w either.

(b) M will stop not later than N . Then A accepts w if and only if
M accepts w.

Clearly A stops on every input and accepts K.

By a similar argument it follows that all recursively enumerable lan-
guages and their complements can be recognized by Turing machines
with linear advice.

It is easily seen that classes like P/poly and most other advice classes
contain nonrecursive languages as well [19]. Many problems remain about
the relative power of advice. In fact, several classical open problems in
uniform complexity theory have their equivalents in the non-uniform
world. For example, Karp and Lipton [19] proved, among other results:

Theorem 6. The following equivalences hold:
(i) NP ⊆ P/log if and only if P = NP .
(ii) EXPTIME ⊆ PSPACE/poly if and only if EXPTIME equals
PSPACE.

Molzan [24] and others have explored possible logical frameworks for
characterising the languages in non-uniform complexity classes.

4.2 The Power of Site machines

We now consider the relation between site machines and interactive Tur-
ing machines with advice. We omit the explicit mention of the polynomial
bounds on the upgrades and the advice values that is assumed in the two
models.

Theorem 7. For every site machine S = (γ) there exists an interactive
Turing machine A with advice such that A realizes the same computation
as S does.

Proof. (Outline.) Assume that the model of a site machine is formalized
enough to offer the formal means for describing the complete configura-
tion of the machine at each time t > 0. Knowing this so-called instanta-
neous description at time t, which includes the description of the entire
memory contents of the machine, its program, its current state and the
current input, one can determine the next action of S. This is the central
idea used in the simulation of S by A. At each time t, A keeps on its
tapes the instantaneous description of S. Since it reads the same input
as S, it can update this description in much the same way as S does. In
particular, it can produce the same output.

When the agent that is operating machine S decides to ‘upgrade’ its
machine at some time t, A calls its advice with argument t. In return it
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obtains the description γ(t) of the new hardware/software by which S is
‘upgraded’ at that time. From this and from the fact that the data of S
are permanent, A can infer the instantaneous description of S at time
t + 1 and can resume the simulation of S. It is clear that in this way
both machines realize the same translations. Note that in order for this
simulation to work, the advice at any time t has to contain the record
γ(t) of the relevant upgrade (if any) of machine S.

Theorem 8. For every interactive Turing machine A with advice there
exists a site machine S = (γ) such that S realizes the same computation
as A does.

Proof. (Outline.) The idea of the simulation is similar to the previous
case. At each time, machine S keeps in its permanent memory the com-
plete instantaneous description of A at that time. The advice consulting
moves of A are simulated by S via proper upgrades of its hardware. This
is possible via the proper design of a function γ that reflects the changes
of A’s instantaneous descriptions caused by advice calls at the respective
times.

The given theorems give rise to the following characterisation of the
classes of functions computable by site machines and interactive Turing
machines with advice, respectively.

Theorem 9. Let φ : (Σk)∞ → (Σ`)∞ be a mapping, with k, ` > 0.
Then the following are equivalent:
(i) φ is computable by a site machine, and
(ii) φ is computable by an interactive Turing machine with advice.

Any mapping φ computed by either of the above mentioned machines
will be called a non-uniform interactive mapping. In the next section we
will show that it covers a far greater spectrum of computations.

5 A Computational Model of the Internet and
Other Systems

We now turn attention to the mappings computed by networks of site
machines such as the Internet and to other evolving systems of com-
puting agents. To obtain an adequate model we will introduce so-called
internet machines. We will argue that even internet machines can be
simulated by interactive Turing machines with advice. We implicitly as-
sume again that there are polynomial bounds on the upgrades and the
advice values used in the two models.

5.1 Internet Machines

An internet machine will be a finite but time-varying set of sites ma-
chines. Each machine in the set will be identified by its address. For each
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time t, the address function α gives the list α(t) of addresses of those ma-
chines that are present at that time in the internet machine. We assume
that for all t, the size of the list α(t) is polynomially bounded. If this is
the case, the size of the internet machine can grow at most polynomially
with time. For this exposition we assume also that the machines work
synchronously. Within the internet machine, site machines communicate
by means of message exchanges.

In order for a message to be delivered it must contain, in its header,
the addresses of both the sending and the receiving machine. When sent
from some machine at time t the message will reach its destination in
some future time which, however, is unpredictable. Therefore, the mes-
sage transfer time between any pair (i, j) of site machines with i, j ∈ α(t),
is given by a special function β which for each triple (i, j, t) returns the
respective message delivery time. At time t a message can only be sent
to a machine that is on the list α(t). If a message is sent to a non-existing
machine at that time, an error message will appear at the sending site.
The same will happen when the receiving machine will vanish in the
mean time (i.e. when at time t of message delivery the respective ma-
chine is no longer on the list α(t)). When several messages arrive to a
site at the same time then they will queue. They will be processed by the
receiving machine in order of their sender addresses. All site machines
work synchronously and, as before, the operating agents of the machines
are allowed to modify the hardware/software. Formally, the respective
changes are described similar to the case of site machines by a third
function γ which, for each time t and each site machine i ∈ α(t), returns
the formal description γ(t, i) of the respective upgrade (if any) at that
time.

The three functions α, β and γ together specify the operation of a
given internet machine. The functions are in general non-computable.
For each t their values are given by finite tables.

The resulting model computes a mapping similar to that computed by
a site machine. Messages sent are included among the machine’s output
and messages received among the machine’s inputs. The difference is that
the multiplicity of the input and output stream varies along with the
number of machines that are present in the internet machine. However,
the key observation is that at any time, the description of the internet
machine is finite. If the internet machine consists of a polynomial number
of sites with a polynomially bounded description, then this allows the
encoding of the current ‘software’ running on all its site machines into
an advice, for each time t. In this case the internet machine can again
be simulated by an interactive Turing machine with advice.

Of course, the simulation cannot be done in an on-line manner, as
the simulating advice machine has only a constant (not time-varying)
number of input ports through which it can read the incoming input
stream. Therefore, prior to simulation, the stream of data entering the
internet machine must be ‘sequentialized’. This is done by sequentially
reading for each time t (viewed from the perspective of the internet
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machine) all data that are entered into all sites machine from the list α(t)
at that time. Only then the simulating sequential machine can update the
instantaneous descriptions of all machines in the set α(t) appropriately
and proceed to the simulation of the next step of the internet machine. In
addition to this, the simulating machine must keep a list of all messages
that are transient among the site machines. Thanks to the knowledge
of function β this is possible. For each time t the upgrades of the site
machines at that time are recorded in the machine’s advice. In fact, the
advice contains for each t not only the values of γ(t), but also those of
α(t) and β(i, j, t) for all i, j ∈ α(t). All in all, for each t the advice value
encodes the complete list of all site machines participating at that time
in the internet machine, the description of all their software, and all data
concerning the current transfer times between each pair of site machines.
In [48] one can find a proof of the following theorem:

Theorem 10. For every internet machine I = (α, β, γ) there exists an
interactive Turing machine A with advice that sequentially realizes the
same computation as I does.

The reverse simulation is trivial since, as stated in theorem 8, a single
site machine can simulate any interactive Turing machine with advice.
Thus, it follows that internet machines and interactive Turing machines
with advice have the same computational power. In [48] several further
results are proved concerning time- and space-efficient simulations be-
tween resource-bounded internet machines on the one hand and Turing
machines with advice on the other. The results place internet machines
among the most powerful and efficient computational devices known in
complexity theory.

5.2 Other Systems

We briefly mention some further support to the belief that interactive
Turing machines with advice capture the intuitive notion of computation
by non-uniform interactive systems. Consider evolutionary systems with
a social behavior, such as human society. Cipra [11] recently quoted
mathematicians of the Los Alamos National Laboratory in New Mexico
as saying:

“. . . in a few decades, most complex computer simulations will
predict not physical systems, which tend to obey well-known math-
ematical laws, but social behavior, which doesn’t.”

Can there be suitable computational models for this?
Consider the case of a finite system of intelligent autonomous mobile

agents that move around in some environment and exchange messages
by whatever formalisable means: spoken language, via mobile phones,
via the Internet, by ordinary mail, and so on. Occasionally, new agents
appear and start to interact with their environment. Some agents may
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be killed by accident, some will not work properly, but all will die af-
ter some time. For some unpredictable reasons some agents may even
behave better than any other previous ones. In general all agents are in-
telligent, which means that they are able to learn. In the course of their
education new agents will successively become skilled, start to cooperate
with other agents and perhaps invent new knowledge. The whole society
will develop.

Under suitable assumptions behaviours like this can be seen as ‘com-
putations’ of a dynamic system of interactive Turing machines with ad-
vice. The assumptions are that all agents behave as interactive algo-
rithms (i.e. can be described as interactive Turing machines) and that
their evolutionary upgrades and moving around in the environment as
well as their interaction (their encounters or data concerning message
delivery times) as well as the times of their birth and death are ap-
tured in the respective advice. The similarity with the internet machine
is obvious.

Of course, we are speaking about a possibility in principle. We do not
claim that one will ever be able to do such a simulation of the existing
world. But, on the other hand, what prevents it, theoretically? In the
virtual world modeled in a computer a virtual society could develop as
envisioned above. One could monitor the respective development and
could make non-computable interventions into the underlying process.
No doubt the respective computation would then be equivalent to the
one of an interactive Turing machine with advice, in much the same
sense as described above.

6 The Extended Church-Turing Thesis

In this paper we have explored the frontiers of the notion of computation
as we now know it. Our results do not aim to attack the Church-Turing
thesis. We have merely tried to identify its proper extension to cover
computations that share the following features, which have emerged
in modern computing: non-uniformity of programs, interaction of ma-
chines, and infinity of operation. We have argued that the proper ex-
tension is provided by interactive Turing machines with advice and have
given evidence to support it. We have shown this primarily with the
help of site and internet machine models used in an interactive mode,
mimicing the potentially endless life-cycle of real computers and net-
works, including their unlimited software and hardware upgrades. If the
life-span of these machines is taken to infinity, then the computational
equivalence of the respective machines with interactive Turing machines
with advice is a mathematical consequence. If the life-span of the ma-
chines at hand is bounded, any finite portion of the computation will
remain within the scope of standard Turing machines and the standard
Church-Turing thesis.

Clearly, one cannot expect to prove the extended Church-Turing the-
sis. It can only be disproved by pointing to some kind of computations
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that cannot be described as computations of interactive Turing machine
with advice. In fact, this has happened to the classical thesis which did
not cover the case of computations of advice Turing machines (propo-
sition 5). As long as such computations (of advice Turing machines)
are ‘not observed’ in practice, the thesis is preserved. Once the reality
of non-uniform interactive computation is accepted, the original thesis
is in question. Consequently, the underlying classical Turing paradigm
has to be changed to the paradigm of interactive Turing machines with
advice. Examples such as site machines, internet machines, and evolu-
tionary societies of mobile agents indicate that such systems are within
reach.

The computations of advice Turing machines, interactive or other-
wise, are indeed more powerful than computations of standard Turing
machine without any advice. Do the results in this paper mean that now
we are able to solve some concrete, a priori given undecidable problems
with them? The answer is negative. What we have shown is that some
computational evolutionary processes which by their very definition are
of an interactive and unpredictable nature, can be modeled a posteriori
by interactive Turing machines with advice. In principle, observing such
a running process in sufficient detail we can infer only a posteriori, after
we noted them, all its computational and evolutionary characteristics
(such as the time and the nature of their changes).

In recursion theory and in complexity theory, several computational
models are known that do not obey the Church-Turing thesis. As exam-
ples, oracle Turing machines, non-uniform computational models such as
infinite circuit families [5], models computing with real numbers (such as
the so-called BSS model [7]), certain physical systems [30], and variants
of neural [38] and neuroidal networks [52] can be mentioned. Yet none
of these is seen as violating the Church-Turing thesis. This is because
none of them fits the concept of a finitely describable algorithm that can
be mechanically applied to data of arbitrary and potentially unbounded
size. For instance, in oracle Turing machines the oracle presents the part
of the machine that in general has no finite description. The same holds
for the infinite families of (non-uniform) circuits, for the real numbers
operated on by the BSS machine or analog neural nets. So far no finite
physical device was found that could serve as a source of the respective
potentially unbounded (non-uniform) information [13].

Nevertheless, from this point of view, site and internet machines seem
to present an interesting case: at each point of time they have a finite
description, but when seen in the course of time, they represent infinite
non-uniform sequences of computing devices, similar to non-uniform cir-
cuit families. What makes them non-fitting under the traditional notion
of algorithms is their potentially endless evolution in time. This includes
both interaction and non-uniformity aspects. This gives them the nec-
essary infinite non-uniform dimension that boosts their computational
power beyond that of standard Turing machines.
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The respective results point to the fact that even our personal com-
puters, not speaking about the Internet, offer an example of a real device
that can perform computations that no single interactive Turing machine
(without an oracle) can. We, as individual agents operating and updat-
ing the sites, have only a local influence on what is computed by them.
Our activities, spread over time, result in a unique computation that
cannot be replicated by any finite computing device given a priori.
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