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Abstract

The extraordinary format of spatial data and the fact that there is no straightforward mapping of spatial
objects from the multidimensional space to the 1-dimensional space, stimulated various researchers
during the past two decades to develop multidimensional access methods that facilitate efficient
indexing of spatial objects in large databases. This survey paper tries a classification of existing
multidimensional access methods, according to the types of data they are most suitable for (points or
objects with spatial extent), their structure (hierarchical or flat), and their performance over spatial
queries. Most of this work is based on an excellent survey paper[Gaed97]

1. Introduction
To deal with multidimensional data, it is desirable to design spatial data management systems in which
spatial operations can be performed fast. Towards this task, the database community has devoted
considerable attention to spatial data management. The main motivation originated from an increasing
number of computer applications such as VLSI CAD and cartography.

Multidimensional data include points, line segments, rectangles, polygons, regions, volumes, and
polyhedra in 2D, 3D or Higher.  Spatial databases contain multidimensional data with explicit knowledge
about objects, their extent, and their position in space. The objects are represented in some vector-based
format, and their relative position may be explicit or implicit.

Several Multidimensional Access Methods, some general purpose and some application specific, that
support search operations in spatial databases have been proposed and evolved for about 30 years. In this
paper, we discuss the most prominent data structures and present possible taxonomies of multidimensional
access methods.

The remainder of this paper is organized as follows. Section 2 discusses the basic properties of spatial
data and clarifies the requirements a multidimensional data access method should meet. We also discuss
queries on spatial data, and classify access methods into Point Access Methods and Spatial Access
Methods. Section 3 gives an overview of some traditional, but most prominent spatial data structures; the
grid file and its variants, the quadtree and its variants, the k-d tree and its variants, and the R-trees. We
discuss comparative studies and performance analyses of spatial data structures in Section 4. Finally,
section 5 concludes the paper.

2. Spatial Data

2.1 Characteristics of spatial data

Spatial data are considered as special kind of data, as they have several characteristics that call for non-
standard database management methods for their handling. These characteristics can be summarized as
follows:

a) Spatial objects have complex structure. A single point, or a set of several arbitrarily distributed
polygons can characterize a spatial data object, as well. Relational database tuples with fixed size are
not suitable to store such variety of data formats. As a result, spatial operations (e.g. intersection,
union) are computationally more expensive than standard RDBMS operations.

                                                       
∗ This work was conducted for the purposes of COMP630c, “Spatial, Image and Multimedia Databases,” Oct. 1997
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b) Spatial data is often dynamic. This characteristic of spatial data requires data structures robust to
frequent insertions, deletions and updates of objects.

c) Spatial databases tend to be large. The number of objects in a geographic map, or a VLSI circuit often
demands several gigabytes of storage. The integration of secondary memory in spatial data structures
is therefore a must.

d) There is no standard spatial algebra. No set of standard spatial operators have been defined, as they
usually depend on the application domain of the specific spatial database.

e) Spatial operators are not closed. The intersection of two spatial objects, for instance, may return a set
of points, lines or regions.

Another important characteristic concerning spatial data, is that as they are multidimensional, there exists
no total ordering among spatial objects, that preserves spatial proximity[Gaed97]. That is, there is no way
we can order spatial objects in a linear fashion, so that objects that are spatially close to each other in the
two- or higher-dimensional space, are close to each other in the linear order. This characteristic makes it
very difficult to apply traditional database indexing methods, such as B-trees or linear hashing to index
spatial databases.

2.2 Requirements of spatial data access methods

The spatial data properties mentioned above make the design of efficient spatial data access methods a
laborious and challenging task, that has to meet a variety of requirements, including:

a) Dynamics. As data objects can be inserted and deleted form a spatial database in any given order, data
access methods should continuously keep track on these changes.

b) Secondary/tertiary storage management. Spatial access methods need to integrate efficiently
secondary and tertiary storage.

c) Support of several operations. A broad range of operations on spatial data should be supported.
Spatial data access methods should not focus on the performance over one operation (e.g. searching),
with the cost of slow and ineffective other operations (e.g. deletion).

d) Independence of the input data and insertion sequence. The performance of an access method should
not depend either on the kind of input data, or on the order in which they are inserted.

e) Scalability. Access methods should adapt well to database growth.
f) Time and space efficiency. Spatial access methods should operate fast, with a logarithmic worst-time

performance, given any set of input data. The space indices used should be small and should
guarantee a satisfactory space utilization.

2.3 Queries on spatial data

2.3.1 Spatial selection queries
As noted above, there is no standard spatial algebra, or standard spatial query language. Query languages
for spatial databases heavily depend on the application domain, as many standardization attempts have
failed to cover all potential spatial query requirements. The result a spatial database query is usually a set
of spatial objects that satisfy the properties of the query. Several kinds of queries can be applied on spatial
databases including:

a) Exact Match Query: Find all database objects that have exactly the same spatial extent (i.e. spatial
attributes) as the spatial query object o.

b) Point Query: Find all database objects that overlap the query point p.
c) Window Query or Range Query: Find all database objects that have at least one common point with a

d-dimensional query window w.
d) Intersection Query or Region Query or Overlap Query: Find all database objects that have at least

one common point with a query object o.
e) Enclosure Query: Find all database objects that enclose a query object o. An object a is said to enclose

object b iff any point of a is part of object b.
f) Containment Query: Find all database objects that are enclosed by a query object o.
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g) Adjacency Query: Find all database objects that are adjacent to a query object o. Two objects are said
to be adjacent if they have common boundaries, but the one does enclose the other.

h) Nearest Neighbor Query: Find all database objects that have a minimum distance from a query object
o. Distance between spatial objects is usually defined as the distance between their closest points.

2.3.2 Spatial Joins
Besides spatial selection queries, where a set of objects that satisfy the query criteria are selected from a
database relation, the spatial join is a common and very important operation on a spatial database. A
relational θ-join of two relations R1, R2 on columns i ∈ R1, j ∈ R2, is called spatial join, if the i-th column
of R1 and the j-th column of R2 are spatial attributes and θ is a spatial predicate[Günt93].

The most common spatial join operation is the intersection join, where θ is the intersection operator.
Brinkhoff et al. in [Brin93] define the MBR-spatial-join as an intermediate-filter step to compute the
intersection join between two relations. The MBR-spatial-join is the intersection join of the minimum d-
dimensional rectangles (Minimum Boundary Rectangles) that contain the joined objects. The main idea
on which they base their work is that if the MBRs of two objects do not intersect, they exact objects will
not intersect either. This property can be used to filter out of a spatial join object pairs, by simply testing
their MBRs intersection. Assuming that spatial objects in both joined relation columns are organized in
R*-trees[Beck90], they suggest several heuristic techniques which efficiently compute the MRB-spatial
join, as far as CPU and I/O time costs are concerned.

Relation 1

R*-treeRelation 2

MBR-join

candidate 
pairs

geometric 
filter

Exact 
geometry 
processing

response set

cand. 
pairs

false hits

hits

R*-tree

 Figure 1: Multi-step processing of spatial joins [Brin94]

 In [Brin94] the same research group propose an integrated solution that calculates the intersection
join of two relations in three steps (see figure 1). At first, they apply algorithms from [Brin93] to calculate
the MBR-join of the relations. The next step of the join process is to apply again cheap geometric filters
that identify object pairs that do not definitely intersect (false hits) and object pairs that intersect for sure
(hits), decreasing the number of candidate pairs that need further processing. To identify the false hits, a
more precise convex approximation (e.g. convex hull) is calculated for each object in a candidate set, and
a new intersection test is applied. Hits are filtered by doing the intersection test over the Maximum
Enclosed Rectangles (MER) of objects in each candidate pair. The MER of an object is defined to be the
maximum d-dimensional rectangle that can be enclosed into the object’s spatial extent. If the MERs of
two objects intersect then the objects intersect for sure. After the second step of the process, the remaining
candidate pairs have to processed using expensive geometric algorithms (e.g. plane sweep) that apply on
the exact spatial extent of the objects.

2.4 Classification of access methods

Gaede et al. [Gaed97] classify multidimensional data access methods into Point Access Methods (PAM)
and Spatial Access Methods (SAM). PAM were primarily designed to perform spatial searches on point
databases; databases that store only multidimensional points that do not have spatial extension. On the
other hand SAM manage objects that, apart from their position in space, have spatial characteristics
(shape). Such objects are lines, polygons, or higher-dimensional polyhedra.
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2.4.1 Point Access Methods (PAM)
Point access methods generally organize the point data in buckets, each corresponding to a disk page and
to some sub-space of the universe. The buckets, usually rectilinear, are indexed by either flat or
hierarchical data structures. There exist various classifications of PAM [Gaed97], [Same90b]. These
classifications are necessarily ambiguous, as many PAM are hybrid and cannot be solely arranged to one
group. [Gaed97] report the following categorization for point access methods:

• Multidimensional hashing access methods. These methods use 1-dimensional hashing to index d-
dimensional points. Although there is no total ordering of d-dimensional objects in one dimension,
these methods use heuristic techniques to ensure that two objects that are close to each other in the
multidimensional space, will be indexed the same, or close buckets. Examples of such hashing
methods are the grid file[Niev81] and EXCELL[Tamm82].

• Hierarchical access methods. These methods use hierarchical data structures to manage point data.
PAM that fall in this category are the Quadtree[Fink-Bent74], the k-d-tree[Bent75], and k-d-B-
tree[Robi81]. Access methods such as the Buddy tree[Seeg90] and the BANG file[Free87] can be
considered as hybrid, since they incorporate techniques of both hierarchical and hashing methods.

Multidimensional access methods often make use of the so called space-filling curves to preserve spatial
proximity when ordering multidimensional points in the one-dimensional space. These techniques suggest
a total ordering of spatial objects, ensuring with a high probability that if two objects are located close
together in the original space then they will be close together in the total order. [Same90b] provides a
good overview of space-filling curves for point data.

2.4.2 Spatial Access Methods (SAM)
Point access methods cannot directly be used to manage objects with a spatial extent. Spatial access
methods are often extensions of PAM, used to cover this need. [Gaed97] classify these methods according
to the techniques they use to extend PAM, as follows:

• Object mapping methods. These methods map geometric objects into points in a higher-dimensional
space. For instance, a rectangle in R2 can be viewed as a point in R4. They then use existing PAM to
manage the points. One alternative approach used by such methods is the decomposition of geometric
objects into simple ones (e.g. rectangles) and ordering of the simple objects using space filling
curves.

• Object bounding methods (overlapping regions). Being the most popular SAM, these methods
decompose the space in a hierarchical manner. Objects are stored at the leaves of the hierarchical
structures, and intermediate nodes facilitate efficiency at searching. Nodes at the same level may
overlap each other, so the number of paths that have to be followed in search of an object can vary.
The most promising object bounding methods are the R-tree[Gutt84] and R*-tree[Beck90].

• Clipping methods. These methods use hierarchical data structures, as the object bounding methods
do, but they use clipping of objects to prevent overlapping of intermediate nodes at the same level. In
this way they ensure that only one path of the hierarchical structure will be traversed in search of an
object. Objects are clipped, and stored in several nodes, in order to guarantee this non-overlapping
feature. Example of such access methods is the R+-tree[Sell87]

• Multiple layers. Multiple layers methods partition the space more than one time and each partition is
referred to as a layer. Layers are organized in an hierarchical manner, and partition regions within
the same layer do not overlap. Each layer may use a different algorithm to partition the space. An
object is stored to a region of the lowest possible layer in the hierarchy that can store the object
without clipping it. A characteristic multiple layer access method is the Multi-layer grid file [Six88].

3. Spatial Data Structures
In this section we make a brief description of some of the most important point and spatial access
methods. It is impossible to include descriptions of all access methods that have been proposed, within the
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limitation space of this work, however, we feel that the few methods presented below will give the reader
an idea about the multidimensional access methods’ functionality.

3.1 Hashing access methods

3.1.1 The Grid file and its variants
As a typical representative for an access method based on hashing, we will first discuss is the grid file and
some of its variants [Hinr85, Ouks85, Whan85, Sixw88, Blan90]. The grid file is a variation of the grid
method, which relaxes the requirement that cell division lines should be equidistant. Its goal is to retrieve
records by at most two disk accesses and to efficiently handle range queries. This is done by using a grid
directory consisting of grid blocks that are analogous to the cells of the fixed-grid method. All records in
one grid block are stored in the same bucket. However, several grid blocks can share a bucket as long as
the union of these grid blocks forms a k-dimensional rectangle in the space of records. Although the
regions of the buckets are piecewise disjoint, together they span the space of records. To guarantee that
data items are always found with no more than two disk accesses for exact match queries, the grid itself is
kept in main memory, represented by d one-dimensional arrays called scales.
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Figure 2: Grid File

Figure 2 shows a grid file which has bucket capacity of four data points. The center of the figure shows the
directory with scales on the x- and y-axes. To answer an exact match query, one first uses the scales to
locate the cell containing the search point. If the appropriate grid cell is not in the main memory, one disk
access is necessary, and the loaded cell contains a reference to the page where to find possibly match data.

Merrett and Otoo describe a technique termed multipaging [Merr78, Merr82],  which is similar to the
grid file. It also uses a directory in the form of linear scales called axial arrays. Instead of using a grid
directory, however, multipaging accesses a data page and its potential overflow chain using an address
computed directly from the linear scales. There are two variants of multipaging. In dynamic multipaging
[Merr82], performance is controlled by setting a bound on the probe factor (defined as the average number
of pages accessed in a probe). In static multipaging [Merr78], performance is controlled by setting a
bound in the load factor, or the average page occupancy.

Comparing the grid file and multipaging, we find that the grid file uses multipaging as an index to the
grid directory. Therefore multipaging saves space without requiring a grid directory, but this is at a cost of
requiring bucket overflow areas. This means that multipaging can obtain good average-case performance,
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but it cannot guarantee record retrieval with two disk accesses. In addition, insertion and deletion in
multipaging involves whole rows or columns (in the two dimensional case) of data pages when splitting
or merging buckets, while the grid file can split one page at a time and localize more global operations in
the grid directory.

3.1.2 Other hashing methods
Closely related to the grid file is the EXCELL method (Extendible CELL) proposed by Tamminen
[Tamm82]. It is a bintree together with a directory in the form of an array providing access by address
computation. It can also be viewed as an adaptation of extendible hashing [Fagi79] to multidimensional
point data. In contrast to the grid file, where the partitioning hyperplanes may be spaced arbitrarily, the
EXCELL method decomposes the universe regularly; all grid cells are of equal size. In order to maintain
this property in the presence of insertions, each new split results in the having of all cells and therefore in
the doubling of the directory size. To alleviate this problem, Tamminen [Tamm83] later suggested a
hierarchical method, similar to the multilevel grid file of Whang and Krishnamurthy [Whan85]. Overflow
pages are introduced to limit the depth of the hierarchy.

Another hashing method we consider here is the two-level grid file. The basic idea of it is to use a
second grid file to manage the grid directory. The first of the two levels is called the root directory, which
is a coarsened version of the second level, the actual grid directory. Entries of the root directory contains
pointers to the directory pages of the lower level, which in turn contain pointers to the data pages. By
having a second level, splits are often confined to the subdirectory regions without affecting too much of
their surroundings.

The twin grid file is the other hashing method which tries to increase space utilization compared to the
original grid file by introducing a second grid file. The relationship between these two grid files is not
hierarchical but somewhat more balanced. Both grid files span the whole universe. The distribution of the
data among the two files is performed dynamically. If the number of points in a bucket exceeds the given
limit, the twin grid file tried to redistribute the points among the two grid files. A transfer of points from
the primary file P to the secondary file S may lead to a bucket overflow in S. It may, however, also imply a
bucket underflow in P, which may in turn lead to a bucket merge and therefore to a reduction of buckets
in P. The overall objective of the reshuffling is to minimize the total number of buckets in the two grid
files P and S.

3.2 Quadtrees

Quadtrees are one of the first data structures for higher-dimensional data. They were developed by Finkel
and Bentley in 1974[Fink-Bent74]. Since then, there have been been hundreds of papers dealing with
quadtrees. The surveys and two books by Samet[Same84, Same88, Same90a Same90b] give an extensive
overview of the various types of quadtrees and their applications.

A quadtree is a rooted tree in which every internal node has four children. Every node in the quadtree
corresponds to a square. If a node v has children, then their corresponding squares are the four quadrants
of the square of v  hence the name of the tree. This implies that the squares of the leaves together form
a subdivision of the square of the root. We call this subdivision the quadtree subdivision. Figure 3 gives
an example of a quadtree and the corresponding subdivision. The children of the root are labeled NE,
NW, SW, and SE to indicate to which quadrant they correspond; NE stands for the north-east quadrant,
NW for the north-west quadrant, and so on.

The recursive definition of a quadtree immediately translates into a recursive algorithm: split the
current square into four quadrants partition the input data set accordingly, and recursively construct
quadtrees for each quadrant with its associated input data set.

Quadtrees can be differentiated on the following bases:

a) The type of data they are used to represent
b) The principle guiding the decomposition process
c) The resolution (variable or not)
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Currently they are used for point data, areas, curves, surfaces, and volumes. The decomposition may be
into equal parts on each level (i.e., regular polygons and termed a regular decomposition), or it may be
governed by the input. In computer graphics this distinction is often phrased in terms of image-space
hierarchies versus object-space hierarchies, respectively [Suth 74]. The resolution of the decomposition
(i.e., the number of times that the decomposition process is applied) may be fixed beforehand, or it may be
governed by properties of the input data. For some applications we can also differentiate the data
structures on the basis of whether they specify the boundaries of regions (e.g., curves and surfaces) or
organize their interiors (e.g., areas and volumes).

Figure 3: A quadtree and the corresponding subdivision

3.2.1 Variants of Quadtrees
The first example of a quadtree representation of data is concerned with the representation of two-
dimensional binary region data. The most studied quadtree approach to region representation, called a
region quadtree is based on the successive subdivision of a bounded image array into four-equal sized
quadrants. If the array does not consist entirely of 1s or entirely 0s (i.e., the region does not cover the
entire array), then it is subdivided into quadrants, subquadrants, and so on, until blocks are obtained that
consists entirely of 1s or entirely of 0s; that is, each block is entirely contained in the region or entirely
disjoint from it. The region quadtree can be characterized as a variable resolution data structure.
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As an example of the region quadtree, consider the region shown in Figure 4a represented by the 2323

binary array in Figure 4b.

Quadtree-like data structures can also be used to represent images in three dimensions and higher. The
octree [Hunt78, Meag82] data structure is the three-dimensional analog of the quadtree. It is constructed
in the following manner. We start with an image in the form of a cubical volume and recursively
subdivide it into eight congruent disjoint cubes (calles octants) until blocks are obtained of a uniform color
or a predetermined level of decomposition is reached.

Multidimensional point data can be represented in a variety of ways. The representation ultimately
chosen for a specific task is influenced by the type of operations to be performed on the data. In higher
dimensions (i.e., greater than 3) it is preferable to use the k-d tree [Bent75] as every node has degree 2
since the partitions cycle through the different attributes. PR quadtree [Oren82, Same90b]is based on a
regular decomposition. The PR quadtree is organized in the same way as the region quadtree. The
difference is that leaf nodes are either empty (i.e., white) or contain a data point (i.e., black) and its
coordinates. A quadrant contains, at most, one data point. For example, Figure 5 is the PR quadtree
corresponding to the point quadtree of figure 6 (for more details, see Section 2.6.2 of [Same90b]).
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Figure 5: A point quadtree and the records it represents

The PR quadtree representation can also be adapted to represent a region that consists of a collection of
polygons (termed a polygonal map). The result is a family of representations referred to collectively as a
PM quadtree [Same85]. The PM quadtree family represents regions by specifying their boundaries; this is
in contrast to the region quadtree, which is based on a description of the region’s interior.
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Figure 6 A PR quadtree and the records it represents

As an example of the PM quadtree family, consider the PM1 quadtree. The polygonal map is repeatedly
subdivided into four equal-sized quadrants until we obtain blocks that do not contain more than one line.
To deal with lines that intersect other lines, we say that if a block contains an endpoint p of a line, we
permit it to contain more than one line provided that p is an endpoint of each of the lines it contains. A
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block can never contain more than one endpoint. For example, Figure 7 is the block decomposition of the
PM1 quadtree and its tree representation corresponding to the polygonal map.
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Figure 7 PM1 quadtree and corresponding Tree representation

The PM1 quadtree has also been adapted to three dimensional images. We term the result a PM octree.
The decomposition criteria are such that no node contains more than one face, edge, or vertex unless all
the faces meet at the same vertex or are adjacent to the same edge. For example, Figure 8b is PM octree
decomposition of the object in Figure 8a. This representation is quite useful since its space requirements
for polyhedral objects are significantly smaller than those of a region octree. (For more details, see Section
5.3 of [Same90b].)

a b

Figure 8 Example three-dimensional object and its corresponding PM octree

3.3 The k-d-tree and its variants

One of the most prominent multidimensional data structure is the k-d-tree[Bent75]; a binary search tree
that stores points of the k-dimensional space. At each intermediate node, the k-d-tree divides the k-
dimensional space in two parts by a (k-1)-dimensional hyperplane. The direction of the hyperplane, i.e.
the dimension based on which the division is made, alternates between the k possibilities from one tree
level to the next. Each splitting hyperplane contains at least one point, which is used as the hyperplane’s
representation in the tree.

Figure 9 illustrates a 2-d-tree with some point data in it. Note that we compare x-coordinate values on
the even depths of the tree (the root is considered to be at depth 0), and y-coordinate values at the odd
depths. If a node P has a n-discriminator, then all nodes having their n-coordinate value less than that of P
are located under P’s left son, and all nodes with a n-coordinate value greater than or equal to that of P are
located under P’s right son.

Searching and insertion of new nodes are straightforward. Deletion may cause re-organization of the
tree under the deleted node, thus it can be more complicated.
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 Figure 9: A distribution of points in the plane and the correspondent 2-d-tree

The tree’s structure depends heavily on the insertion order of the points. Another disadvantage of the k-d-
tree is that as the division hyperplanes are defined by the position of the points, they do not divide the
plane at the best possible positions, resulting in an unbalanced tree. An improved version proposed in
[Frie77] is the adaptive k-d-tree. When splitting, the adaptive k-d-tree chooses a hyperplane that divides
the space in two sub-spaces with equal number of points. The hyperplanes are still parallel to axes, but
they do not contain a point, and they do not have to strictly alternate. Interior nodes of the tree contain the
dimension (e.g. x or y), and the coordinate of the respective split. All points are stored in the leaves, and a
leave is can contain up to a fixed number of points, if this number is exceeded, a split takes place.
Intuitively, the k-d-tree is a rather static structure; balance maintenance is difficult if frequent insertions
and deletions occur. It works well when the data is known a-priori, and there are rare updates in the tree.

One thing to be noted for the above structures is that they are main memory data structures. That is,
they do not account for paged secondary memory, and are therefore not suitable for large spatial
databases. The k-d-B-tree [Robi81] combines properties of both the adaptive k-d-tree and the B-tree
[Come79] to face this weakness. It again uses hyperplanes to divide the space; this time arbitrarily more
than one hyperplanes divide a tree node (depending on the tree’s storage utilization) in a corresponding
number of disjoint regions. All nodes of the tree correspond to disk pages. A leaf node stores the data
points that are located in the respective partition the leaf defines. Like the B-tree, the k-d-B-tree is
perfectly balanced, however, it cannot ensure storage utilization.

 Figure 10: A distribution of points in the plane and the correspondent k-d-B-tree

Figure 10 shows how a point distribution can be stored in a k-d-B-tree. The solid lines correspond to the
hyperplanes of the root-level, whereas the dotted lines represent the next level’s hyperplanes.

3.4 R-trees
The R-trees are hierarchical data structures, meant for efficient indexing of multidimensional objects with
spatial extent. R-trees are used to store, instead of the original space objects, their minimum boundary
boxes (MBBs). The MBB of a n-dimensional object is defined to be the minimum n-dimensional rectangle
that contains the original object. Similar to B-trees, the R-trees are balanced and they ensure efficient
storage utilization.

The R-trees manage MBBs and not real objects, thus they cannot fully answer a query, unless the
objects in the database are equal to their MBBs. In general, they are used to efficiently solve the filter step
of a query, that is finding the database objects whose MBB intersects with the MBB of the query object.
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3.4.1 The R-Tree
The R-tree[Gutt84] is the father of all R-tree variants. Each R-tree node corresponds to a disk page and a
n-dimensional rectangle.  Each non-leaf node contains entries of the form (ref, rect), where ref is the
address of a child node and rect is the MBB of all entries in that child node. Leaves contain entries of the
same format, where ref points to a database object, and rect is the MBB of that object.

 Figure 11: An R-tree for a set of 2-d rectangles

The rest of the R-tree properties include:

• Let M be the number of entries that can fit in a node, and let m be the minimum number of
entries per node, 2 ≤ m ≤ M/2. Every node contains between m and M nodes, unless it is the
root. If the number of entries in a node falls under the m bound after an entry deletion, the node
is deleted, and the rest of its entries are distributed among the sibling nodes.

• The root contains at least 2 entries, unless it is a leaf.

• The tree is height-balanced; every leaf node has the same distance from the root. The height of
the tree is at most logmN for n index records (N > 1).

Figure 11 illustrates a set of 2-d objects in the plane, stored in an R-tree. The dotted rectangles are the
MBBs of the root entries,  and the solid rectangles are the MBBs of the objects stored at leaves. Note that
the MBBs of entries at the same node may intersect one another.

Searching in an R-tree is done in a similar way as in a B-tree. For both point and region queries, the
paths where rect intersects with the query object are followed. In contrast to the B-tree, the R-tree does not
guarantee that traversing one path of the tree is enough when searching for an object, as the MBBs of
entries in the same nodes may overlap one another. In the worst case, the search algorithm may have to
visit all index pages, in order to answer a query.

Inserting an object to the R-tree, includes inserting its MBB to the R-tree along with a reference of the
object to the ref field of the new entry. Only one path of the tree is traversed and the new entry is inserted
to a leaf node. If the MBB of the object intersects many entries of an intermediate node, we follow the
child whose MBB is less enlarged after the insertion. In case of a tie, we apply other criteria, such as the
node’s cardinality, or MBB area size. The object is inserted only at one leaf and if it causes the leaf page
to overflow, we split the page in two, again after applying several splitting criteria. The split can be
propagated to the ancestor nodes. If an insertion causes enlargement of the leaf page’s MBB, we adjust it
properly and propagate the change upwards.

Deletion in an R-tree requires an exact match query for the object, at first. If the object is found in a
leaf, it is deleted. Again the deletion may cause a modification in the tree’s structure, as it can cause the
leaf page where from it is deleted, to underflow (the number of entries may fall under m). In the case of an
underflow, the whole node is deleted, and all its entries are stored in a temporary buffer, and reinserted in
the tree. As for insertion, deletion may affect the MBB of the page. In that case, we propagate the change
up along the search path.

Minimizing the overlap between sibling nodes is an important issue, concerning the searching
performance in an R-tree [Rous85]. Guttman [Gutt84] suggests various policies to minimize overlap
during insertion. Roussopoulos et al. [Rous85] introduce a packing technique, which builds optimal R-
tree, provided all inserted data is known a-priori. The variant of R-tree that is considered to best handle
dynamic object insertion is the R*-tree[Beck90], discussed later.
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3.4.2 The R+-Tree
The R+-tree was introduced by Sellis et al.[Sell87] as a way to overcome the problem of inefficient
searching that arises when sibling nodes overlap in the R-tree. As a direct solution to these problems they
use clipping, i.e. there is no overlap between intermediate nodes of the tree at the same level, and objects
that intersect more than one MBB at a specific level are clipped and stored on several different pages. As
a result, point queries on the R+-tree require traversing only one path of the tree. The price to pay is the
increase of storage requirement of the tree. Figure 12 presents a R+-tree for the rectangles of figure 11.
Rectangles G and F are clipped and stored in twice in the tree.

 Figure 12: An R+-tree for a set of 2-d rectangles

Insertion requires following multiple paths of the tree, since the inserted object may intersect more than
one intermediate node, and its clipping parts should be inserted in leaves under all such nodes. As the
insertion of an object’s part may enlarge the MBB of the page, the insertion algorithm has to prevent
possible overlapping between sibling pages. In some cases overlapping is inevitable, and we should
consider removing and re-inserting several objects to properly reorganize the structure of the tree. Node
splits are done in a similar way as in R-trees case. One important difference is that here a split may
propagate to the children of the node, apart from its parent. This, because a split to a parent node may
introduce a space partition that affect the children nodes.

Object deletion is succeeded by first finding the pages that contain fragments of the object and then
removing the fragments. If underflow occurs, we try to merge the node with its siblings. Sometimes this is
not possible without losing the disjoining property of the tree, therefore the R+-tree cannot guarantee a
minimum storage utilization.

3.4.3 The R*-Tree
Several weaknesses of the original R-tree insertion algorithms stimulated Beckmann et al. [Beck90] to
work on an improved version of the R-tree, the R*-tree. This version introduces a new insertion policy,
that crucially improves the performance of the tree. The main objective of this policy is to minimize the
overlap region between sibling nodes in the tree. A straightforward advantage of this is the minimization
of the tree paths that are traversed at an object search. The advantages of the new insertion algorithm over
its R-tree respective can be summarized as follows:

• While traversing the insertion path, the insertion algorithm follows the nodes, whose MBB has the
minimum increase of overlap. Thus, the search performance is improved [Rous85].

• Whenever a new entry has to be stored into a full node, the node is not necessarily split, but some
entries are deleted, and re-inserted to sibling nodes. The entries for re-insertion are chosen to be those
with maximum distance from the center of the node’s MBB. This feature of the algorithm increases
storage utilization, and improves the quality of the partition, making it almost independent of the
sequence of insertions.

• The algorithm for splitting a node is totally different from its R-tree equivalent. First, the algorithm
decides the axis with respect to which the split will take place. Then, the projections of the MBBs
over the split-axis are sorted according to the value of their left end point. This sequence can be
divided to two sub-sequences, in M-2m+1 ways. Among these splits, the algorithm chooses the one
that results in a minimum overlap between the MBBs. This algorithm is proved to achieve better
quality of the MBBs partition over the tree.
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3.4.4 Using R-trees to process spatial joins
In section 2.3.2 we briefly described a multi-step technique for processing spatial joins proposed in
[Brin94]. In this section we will focus on the first step of the technique, that is computing the MBR-Join
of two spatial relations.

Brinkoff et al. in [Brin93] extensively analyzed the problem of MBR-spatial join and developed a
series of techniques that efficiently solve it. For their techniques they have made the assumption that the
spatial relations to be joined are indexed by a pair R,S of R*-trees. The first join approach, that takes
advantage of the R*-tree structure, is based on the following fact: if two directory entries ER∈R and ES∈S
do not intersect, there will be no pair (rectR, rectS) of rectangles that intersect, where rectR, rectS are under
the sub-trees of ER and ES, respectively. The corresponding algorithm for this approach is illustrated in
figure 13. This algorithm assumes that both trees have the same depth. It can be easily extended to the
general case by observing that if we reach the leaf-level of one tree, the rectangle comparison at this level
can be replaced by a range query to the subtrees of the other tree at the same level.

Figure 13: A simple MBR-join algorithm using R*-trees

The above algorithm implements exhaustive comparisons between all possible pairs of the entries at the
same level. It can be improved by using two techniques; restricting the search space, and applying a plane
sweep algorithm that improves the computation cost of calculating which pairs from two sets of rectangles
intersect. The use of both these techniques is illustrated in figure 14. The first technique prunes the search
space by considering only those rectangles that intersect the intersection of the MBRs of the pages where
they are contained; if a rectangle does not intersect this area, there is no way it will be in any answer pair
at this level. The second technique sweeps a line across the x-axis, by adding/removing rectangles whose
x-projection intersects with the sweep line. Each time 2 x-projections of rectangles are found to intersect
each other, their corresponding y-projections are tested and if they intersect too, the pair is reported to the
output set.

Figure 14: CPU-time tuning: (a) restricting the search space (b) plane sweep algorithm

Another improvement of the MBR-join algorithm concerns finding the best sequence of pairs of pages
required for computing the join at the next level of the R*-trees. This order is important as far as I/O-time
tuning is concerned; we are interested to access one disk page as few times as possible, in order to
minimize the I/O time of the algorithm. Hence, when we have a set of pairs of pages to be processed, we
apply a “pinning” technique, that is we count how many times each page is contained in a pair and we
consider processing first those pairs, which contain the page which is contained in most pairs. By using
this technique, a frequently used page will remain “pinned” in main memory, until it needs no further
processing.

SpatialJoin1 (R,S: R_Node)
FOR (all ES ∈ S) DO

FOR (all ER ∈ R with ER.rect ∩ ES.rect ≠ ∅) DO
IF (R is a leaf page) THEN (*S is also a leaf page*)

output (ER, ES)
ELSE

ReadPage(ER.ref); ReadPage(ES.ref);
SpatialJoin1(ER.ref, ES.ref);

r1

s1

r2

s2

r3

s3Y

Xsweep
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4. Comparative studies of multidimensional access methods
We have already examined various multidimensional access methods. In this section we try to compare
them with their performance and make some observations.  The performance of a particular data structure
depends on many factors and parameters.  For example, a spatial access method that performs reasonably
well for data rectangles, may fail for data line segments.

There are factors of unpredictable impact, including the hardware used, the settings of the operating
system, buffer size, page size and the data sets.  The parameters that affect the performance include if the
data distribution is non-uniform or not, if there is a suitable modeling or not to show the behavior of
spatial access method, the amount of data, the density in the data space, and the degree of clustering.
Furthermore, the performance is usually measured in terms of number of disk accesses, the search time,
the deletion time, etc.

There were comments by researchers that at present no access method has proven itself to be much
superior to all its methods.  Although if there is one experimental result declares one structure as the
definite winner, another experimental result may prove the same structure as inferior.  The reasons why
this makes such comparisons so difficult, it is because there are many different criteria to define
optimality, and so many parameters that determine performance.

As a result, the following experimental results in tabular form will just show you an overview of
performance done by researchers on a variety of spatial data structures.  In addition, the following
multidimensional access methods were commented to be among the best performing ones in general,
without any ranking presented.

• Buddy (hash) tree [Seeg90]
• Cell tree with oversize shelves [Gunt97]
• Hilbert R-tree [Kame94]
• KD2B-tree [Oost90]
• PMR-quadtree [Nels87]
• R+-tree [Sell87]
• R*-tree [Beck90]

The performance results are shown as follows in tabular form for your easy reference :

Legend: “>” means “the performance is better than”
“=” means “the performance is about the same”

Reference Result/Observations                                       Conditions                                                  

[Pelo94] (R+-tree, a quadtree variant) > R*-tree Used polygons rather than line segments
as test data.  Based on point queries.
Physical clustering must be provided,
otherwise, reading a single index page
may induce several page faults.

[Gree89] R+-tree > R-tree > k-d-B-tree When less overlap between data
rectangles

[Beck90] R*-tree > Variants of the R-tree
R*-tree has best storage utilization and
insertion times.

For all data list and queries, only number
of disk accesses is measured.

[Kame94] Hilbert R-tree slightly better than R*-tree

Hilbert R-tree has better search result,
while updates take about the same as for
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the R*-tree.
Hilbert codes can therefore be used for
bulk insertion into dynamic R*-tree.

[Ooi90] skd-tree > R-tree
skd-tree requires more space than R-tree.

skd-tree > extended k-d-tree with
overflow pages

For large page size, the performance is in
term of number of page accesses per
search operation.

[Gunt91] Cell tree > R-tree and R+-tree

Cell tree requires up to 2 times more
space.

The average page accesses per search is
less.

[Gaed97] Cell tree with oversize shelves > R*-tree,
and hB-tree

Oversize shelves lead to great
improvements for access methods
clipping.

[Oost90] KD2B-tree (a variant of k-d-tree) > R-tree When compared with the query times.
[Hoel92] PMR-quadtree = R*-tree = R+-tree

R+-tree shows the best insertion
performance
R*-tree occupies the least space and is
more compact in term of the data
structure itself.

When use line segments as test data for
indexing.

[Krie90] (Buddy tree, BANG file) > (hB-tree, 2-
level grid file)

(Buddy tree, BANG file) > R-tree

For cluster data & a query range of size
10% of the data, no performance different
between buddy and BANG.
If the query range drops to about size
0.1%, buddy performs about twice as fast.

For all data distributions in terms of
measuring the number of page accesses.

[Seeg91] Buddy tree with transformation > R-tree

Supports fast insertions with low storage
utilization.

Buddy tree with overlapping regions >
Buddy tree with transformation > R*-tree

Techniques (Clipping [object
duplication], Overlapping regions [object
bounding], & Transformation [object
mapping]) implemented on top of buddy
tree.
For queries on intersection &
containment, but NOT for large query
regions.

[Seeg91] Buddy tree with clipping is better When the data set contains uniformly
distributed rectangles of varying size.
But it failed completely for certain
distributions, since they produced
unmanageably large files.

[Hutf90] R-file > R-tree
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R-file has a 10-20% performance
advantage over the R-tree on a data set
with a high degree of overlap.

[Hutf88] R-tree with splitting strategy > R-tree

R-tree with an improved variant of z-
hashing needs very less seek operations
than R-tree, and the average storage
utilization is higher.

[Smit90] Compare the performance on insertion,
deletion & search operation for the
zkdB+-tree, grid file, the R-tree, and the
R*-tree.

R and R+-tree are fairly good on insertions
& deletions, but superior in search
operation.

R+-tree is not good for general purpose
applications, due to its poor space
utilization.

Table 1: Comparative studies reported by various researchers

5. Conclusions
In this paper we focused on giving  the reader a general overview of the various multidimensional access
methods developed during the past two decades. From the variety of data structures and their experimental
performances, we can have ideas on their pros and cons.  But still this survey did not try to resolve which
spatial access methods are more reliable and superior than the others.

When these methods come to be used in applications, vendors of commercial products usually select
access methods that are easy to understand and implement.  Performance seems to be a good reference for
the selection.  This is quite understandable, because vendors try to take a structure that is simple and
robust, and to optimize its performance by a highly tuned implementation.  One way to optimize their
performance is to implement several access methods and a code optimizer. The optimizer applies the
appropriated access method to answer to different type of queries.

In addition, the performance results of access methods are essential as they often discover deficiencies
and problems that are not obvious from a theoretical model. Future work can be extended to set up a
standardized testbed for benchmarking and comparing access methods under different conditions.  Also it
is essential to provide platform-independent access to the implementations of a board variety of access
methods.  Until then, most performance benchmarks will have significant effects in determining which
access method can provide the best fit for different type of applications.
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