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Foreword

This volume contains the preliminary proceedings of the 2001 ACM SIGPLAN Haskell Work-
shop, which was held on 2nd September 2001 in Firenze, Italy. The final proceedings will
published by Elsevier Science as an issue of Electronic Notes in Theoretical Computer Science
(Volume 59).

The Haskell Workshop was sponsored by ACM SIGPLAN and formed part of the PLI 2001
colloquium on Principles, Logics, and Implementations of high-level programming languages,
which comprised the ICFP/PPDP conferences and associated workshops. Previous Haskell
Workshops have been held in La Jolla (1995), Amsterdam (1997), Paris (1999), and Montréal
(2000).

The purpose of the Haskell Workshop was to discuss experience with Haskell, and possible
future developments for the language. The scope of the workshop included all aspects of the
design, semantics, theory, application, implementation, and teaching of Haskell. Submissions
that discussed limitations of Haskell at present and/or proposed new ideas for future versions
of Haskell were particularly encouraged. Adopting an idea from ICFP 2000, the workshop also
solicited two special classes of submissions, application letters and functional pearls, described
below.

Application Letters An application letter describes experience using Haskell to solve real-
world problems. Such a paper may be shorter than a regular paper (but need not be), and
and may be judged by interest of the application and novel use of Haskell.

Functional Pearls A functional pearl presents — using Haskell as a vehicle — an idea
that is small, rounded, and glows with its own light. Such a paper may be shorter than a
regular paper (but need not be), and may be judged by elegance of development and clarity
of expression.

The workshop received a total of 23 submissions and after careful consideration the pro-
gramme committee accepted 10 papers for presentation (6 regular, 4 functional pearls, and
no application letters). Each programme committee member reviewed ten papers, possibly
with the aid of an outside expert. Each paper was assigned to at least three reviewers. Fi-
nal decisions were made during a virtual programme committee meeting. The selection was
competitive: several good papers had to be rejected.

Ralf Hinze, Organizer and Chair
Utrecht, August 2001

http://www.elsevier.nl/locate/entcs
http://music.dsi.unifi.it/pli01/
http://cristal.inria.fr/ICFP2001
http://music.dsi.unifi.it/pli01/ppdp/
http://www.cs.yale.edu/haskell/haskell-workshop.html
http://www.cse.ogi.edu/~jl/ACM/Haskell.html
http://www.haskell.org/HaskellWorkshop.html
http://www.cs.nott.ac.uk/~gmh/hw00.html
http://www.haskell.org
http://diwww.epfl.ch/~odersky/icfp2000/
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Functional Pearl

Derivation of a Carry Lookahead
Addition Circuit

John O’Donnell 1,2

Computing Science Department
University of Glasgow

Glasgow, United Kingdom

Gudula Rünger 3

Fakultät für Informatik
Technische Universität Chemnitz

Chemnitz, Germany

Abstract

Using Haskell as a digital circuit description language, we transform a ripple carry
adder that requires O(n) time to add two n-bit words into an efficient carry looka-
head adder that requires O(log n) time. The gain in speed relies on the use of parallel
scan to calculate the propagation of carry bits efficiently. The main difficulty is that
this scan cannot be parallelised directly since it is applied to a non-associative func-
tion. Several additional techniques are needed to circumvent the problem, including
partial evaluation and symbolic function representation. The derivation given here
provides a formal correctness proof, yet it also makes the solution more intuitive by
bringing out explicitly each of the ideas underlying the carry lookahead adder.

1 Introduction

In this paper we use Haskell as a digital circuit description language in order
to solve an important problem in hardware design: the transformation of a
ripple carry adder that requires O(n) time to add two n-bit words into a carry

1 This work was supported in part by the British Council and the Deutsche Akademische
Austauschdienst under the Academic Research Collaboration program.
2 Email: jtod@dcs.gla.ac.uk Web: www.dcs.gla.ac.uk/∼jtod/
3 Email: ruenger@informatik.tu-chemnitz.de

Web: www.tu-chemnitz.de/informatik/HomePages/PI/index.html
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lookahead adder, which needs only O(log n) time. This problem has great
practical importance, since the clock speed of synchronous digital circuits is
determined by the critical path depth, and an adder lies on the critical path
in typical processor datapath architectures. In other words, by speeding up
just an adder, which accounts for a few hundred logic gates, the speed of an
entire chip with millions of gates can be improved.

The circuit that we design here is not new; it is related to (though different
from) a circuit by Ladner and Fischer [7] (1980), and the particular variation
that we develop is essentially the same as the one presented in the well known
textbook on algorithms by Cormen, Leiserson and Rivest [3]. The original
contributions of this paper include the formal specification, the correctness
proof, and the derivation:

• Our derivation produces a precise specification of the circuit, which can be
simulated or fabricated automatically. The earlier presentations give only
examples of the circuit at particular word sizes, relying on the reader to
figure out other cases. This can be surprisingly difficult, and is unsuitable
for modern integrated circuit design, which is highly automated.

• The derivation produces a general solution that works on word size n for
every natural number n.

• The carry lookahead adder is usually presented as a large and very compli-
cated circuit, which is quite difficult to understand. In contrast, we explain
it by going through a sequence of transformation steps. At each stage there
is a specific technical problem to overcome and a clear strategy for solving
it. This leads to a better understanding than contemplation of the final
design, where several quite distinct ideas are mixed together and buried in
a large network of logic gates.

• The derivation in this paper provides a correctness proof for the adder.

Although we do not claim the circuit derived here to be new, there is a sense
in which it actually is new. The adders presented before operate only on
fixed size words, but we derive a family of adders defined for every wordsize
n ∈ Nat . For example, the adder described in [3] takes two 8-bit words and
produces an 8-bit sum. It does not work at all for any other word size. Its time
complexity is O(1); indeed, it is meaningless to attribute a time complexity
of O(log n) to an algorithm that lacks a parameter n.

Clearly the authors of the previous papers could have designed an adder
at a different fixed word size, say 16. What they did not do was to design
a general adder at size n, and there is a good reason: they did not use a
formalism capable of expressing families of parameterised circuits.

In this paper, we use Hydra [10], a computer hardware description language
(CHDL) embedded in Haskell. Two advantages of Hydra are central to the
paper: it allows circuit patterns to be defined, allowing n-bit circuits, and it
allows formal equational reasoning to be used in transforming circuits. The
reader is assumed to be familiar with Haskell but not with Hydra, and the
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essential methods of functional hardware specification will be explained below.
Links to further information on Hydra can be found on the web page for this
paper:

http://www.dcs.gla.ac.uk/∼jtod/papers/2001 Adder/

A huge benefit of CHDLs is their ability to define families of related cir-
cuits. Most CHDLs are based on imperative programming, but functional
languages work far better for this application domain. In particular, this pa-
per relies on three characteristic features of functional languages: (1) higher
order functions express circuit patterns; (2) referential transparency supports
equational reasoning; (3) strong typing allows the circuit types to be defined
naturally, and also supports the wide variety of software tools provided by Hy-
dra. Nonstrict semantics (lazy evaluation) is also essential to Hydra, although
it happens not to be needed for the adder.

Even in a formal derivation, examples are helpful, and the reader is encour-
aged to experiment with a Haskell 98 program containing all the definitions in
this paper. The program contains test drivers that run a number of examples,
as well as comments explaining how to run it, and can be downloaded from
the web page mentioned above.

A theme running through this paper is the distinction between specification
and implementation. For a number of auxiliary definitions, as well as for the
main result, the paper will begin with a clear specification and proceed to
derive an efficient implementation. There is no need for the specification to
be efficient, or for the implementation to be clear.

A related point is the distinction between circuit specifications and com-
puter programs. The Hydra language is intended specifically for circuit design,
and it is restricted to forms that correspond directly to circuits. The imple-
mentation of Hydra provides tools that will convert a circuit specification
(including all the adders defined in this paper) into netlists. Hydra is imple-
mented by embedding it in Haskell, so circuit specifications have the same
syntax as Haskell. However, Hydra is not identical to Haskell, and a designer
who forgets this may write a Haskell program that does not specify a digi-
tal circuit at all. This form of confusion has nothing to do with the design
of Hydra or Haskell; similar problems arise with imperative CHDLs such as
VHDL.

Section 2 defines precisely the problem to be solved, giving a formal specifi-
cation of a binary addition circuit and also explaining how we will use Haskell
to describe circuits. Section 3 introduces the combinators that will be used to
specify circuit patterns, and Section 4 presents the standard ripple carry adder
in this style, using a scan combinator to handle the carry propagation. The
essential technique for speeding up the adder is parallel scan, which is derived
formally in Section 5. However, it turns out that the particular scan used in
the ripple carry adder cannot be implemented by the parallel scan algorithm
because it uses a non-associative function. Section 6 solves that problem us-
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ing partial evaluation. However, this introduces a new difficulty: the “circuit”
now operates on functions as well as signals, and is no longer a circuit at all.
Section 7 introduces a symbolic function representation, Section 8 introduces
parallelism into the adder, Section 9 takes care of the final hardware details,
and Section 10 concludes.

2 The Problem

A signal is a bit in a digital circuit; for the purposes of this paper a signal can
be thought of as a value of type Bool. The function bit :: Signal a ⇒ a → Nat
converts a bit value to its natural value, either 0 or 1.

A binary number is represented as a list of signals [x0, . . . , xn−1] that con-
stitute an n-bit word, where x0 is the most significant bit and xn−1 the least
significant. The value represented by this word is bin xs =

∑n−1
i=0 xi2

n−1−i.

It is assumed throughout this paper that all lists have finite length. Some
of the results need to be refined to handle infinite data structures, but issues
of strictness are irrelevant to the derivation of the adder.

A binary adder takes a pair of n-bit words xs and ys and a carry input
bit c, and it produces their sum, represented as a carry output bit c′ and an
n-bit sum ss. Instead of giving the adder two separate words xs and ys, it
will receive a word zs :: Signal a ⇒ [(a, a)] of pairs. The binary input words
are then map fst zs and map snd zs. There are two reasons for choosing this
organisation: it avoids the need for stating side conditions that xs and ys have
the same length, and it simplifies the circuits we will define later. But we are
not cheating—it is a standard technique in hardware design (called “bit slice”
organisation) to zip the two words together in this way, because of exactly the
same simplification to the design.

An adder is now defined to be any circuit with the right type that produces
the right answer for arbitrary inputs.

Definition 2.1 (Adder) Let a be a signal type. An adder is a function add
such that

add :: Signal a ⇒ a → [(a, a)] → (a, [a]),

∀c :: a, zs :: [(a, a)] .

2n · bit c′ + bin ss = bin (map fst zs) + bin (map snd zs) + bit c

where

(c′, ss) = add c zs

n = length zs = length ss.

Circuits will be specified in this paper using Hydra [10], a digital circuit
specification language embedded within Haskell. Signals are defined as a type
class that provides basic operations, such as the constant values zero and
one and basic logic gates, including the inverter inv, the two and three input
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logical and-gates and2, and3, etc. Components are wired together by applying
a circuit to its input signals. The values of signals will be denoted 0 and 1,
although their internal representations may be different (e.g. False and True).

The majority and parity circuits provide simple examples of Hydra spec-
ifications, and they will be useful later for computing sums and carries. The
majority3 circuit takes three input signals, and returns logic 1 if two or more
of the inputs are 1. The parity3 circuit returns 1 if an odd number of the
inputs are 1.

majority3 , parity3 :: Signal a ⇒ a → a → a → a

majority3 a b c = or3 (and2 a b) (and2 a c) (and2 b c)

parity3 a b c =

or2 (and2 (inv a) (xor2 b c))

(and2 a (inv (xor2 b c)))

Another standard circuit is the multiplexor, which takes a control (or ad-
dress) bit a, and uses it to select data inputs, which is then output. We can
specify the behaviour of the 1-bit multiplexor as

mux1 a x y = if a = zero then x else y

This specification is easy to understand, but it isn’t a circuit, since if-then-else
expressions are not logic gates. A central problem in circuit design is finding
a way to make the available components meet a specification, and there are
methodical techniques for doing this. It is straightforward to verify that the
following circuit satisfies the specification of the multiplexor:

mux1 :: Signal a ⇒ a → a → a → a

mux1 a x y = or2 (and2 (inv a) x) (and2 a y)

Two mux1 circuits can be used to define mux2, which uses two address bits
to select one of four data inputs. This is a typical example of the hierarchical
design style used in Hydra. The mux2 will be needed in Section 9.

mux2 :: Signal a ⇒ (a, a) → a → a → a → a → a

mux2 (a, b) w x y z = mux1 a (mux1 b w x) (mux1 b y z)

Many basic definitions and lemmas from functional programming will be
used later in the paper; some of them are summarised in Table 1.

3 Map, Fold, and Scan

The circuits we will be developing have a regular structure well suited for
VLSI layout. It is best to avoid a style of specification where each component
is mentioned explicitly—that would lead to a verbose design valid for only one
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drop 0 xs = xs (1)

drop (i + 1) (x : xs) = drop i xs (2)

[e | [ ]] = [ ] (3)

[f i | i ← x : xs] = fx : [fi | i ← xs] (4)

[ f i | i ← [a . . b]] = [f (i + k) | i ← [a− k . . b− k]] (5)

[ f i | i ← [a . . c] = [f i | i ← [a . . b] ++ [fi | i ← [b . . c] (6)

[x] = [y] ⇔ x = y (7)

Table 1
Basic Lemmas

word size, but we are seeking a concise yet generic adder specification that
works for all word sizes. Furthermore, experience shows that mentioning all
the bits explicitly with indices leads to cumbersome notation that is poorly
suited for circuit transformation and optimisation.

The best approach is to use a higher order function—a combinator—to
express the pattern by which the building blocks are composed into the full
circuit. This paper uses a variety of combinators that fall into four families:
map, fold, scan, and sweep. This section discusses the first three, and sweep
is presented in Section 5.2.

The standard function map describes a circuit consisting of a row of iden-
tical components.

map :: (a → b) → [a] → [b]

map f [ ] = [ ] (8)

map f (x : xs) = f x : map f xs (9)

Each component f takes an input xi and produces an output yi = f xi. The
entire circuit map f takes a word xs and produces an output word ys = map
f xs. Normally, when f is viewed as a digital circuit, every application of f
takes the same time, regardless of the input value, so map f takes time O(1)
for an n-bit word. If the component circuit f takes two inputs, then the circuit
is expressed by zipWith.

The carry propagation across a sequence of bit positions is expressed by
the standard foldr function:

foldr :: (b → a → a) → a → [b] → a

foldr f a [ ] = a (10)

foldr f a (x : xs) = f x (foldr f a xs) (11)

A related function that will be needed later is foldr1, which omits the
accumulator parameter a, so it is defined only if the list argument is nonempty.

6
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The following equation states a useful relationship between foldr and foldr1 :

foldr1 f (xs++[a]) = foldr f a xs (12)

However, it isn’t enough just to compute the carry output from one bit
position—in order to compute the sum bits, we need the carry inputs to all the
positions. Therefore the circuit really needs to compute the carry propagation
across all possible subfields, starting from the right.

The indices function builds a list of indices of elements of the list.

indices :: Int → [a] → [Int ]

indices i [ ] = [ ]

indices i (x : xs) = i : indices (i + 1) xs

The wscanr combinator (word scan from the right) computes a list of all
the partial folds. It is specified using a list comprehension showing the form
of each element of the list; this form makes clear that a scan is a list of folds,
and it is well suited for derivations and proofs using equational reasoning.

wscanr f a xs = (13)

[foldr f a (drop (i + 1) xs) | i ← indices xs ]

Since all the list arguments to fold and scan are assumed to be finite in
this paper, indices xs = [0 . . length xs −1] and an explicit enumeration can
be used to generate the list of element indices:

wscanr f a xs =

[foldr f a (drop (i + 1) xs) | i ← [0 . . length xs− 1]] (14)

The wscanr function produces the list of partial folds, so the rightmost
element of its result is the singleton input a, and the leftmost element of the
argument list is not used at all in the result. A wscanr over a singleton list
[x] returns the list [a].

wscanr f a [x]

= [foldr f a (drop (i + 1) [x]) | i ← [0 . . 0]] 〈13 〉
= [foldr f a (drop 1 [x])]

= [foldr f a ( )] 〈1,2 〉
= [a] 〈10 〉 (15)

Practical applications often need both the complete fold and the list of
partial folds, so it is convenient also to define a function that delivers both:

ascanr :: (b → a → a) → a → [b] → (a, [a])

ascanr f a xs = (foldr f a xs, wscanr f a xs) (16)

7
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These functions differ from the scanr defined in the Haskell Prelude. In par-
ticular, wscanr returns a result list with the same length as the argument list,
unlike scanr. Furthermore, ascanr produces a pair containing both the fold
and the scan, while scanr attaches the fold to the scan list and returns a re-
sult longer than the argument. The wscanr and ascanr functions have better
properties for hardware design, and will be used throughout this paper.

Although the specification of wscanr takes quadratic time if executed
naively as a computer program, it specifies a digital circuit that requires only
linear time. It is useful to distinguish specifications from implementations.
The role of a specification is to ease the process of reasoning about algorithms,
and the remainder of this paper shows that wscanr does this effectively. The
specification is easy to reason with because it expresses clearly and directly
the value that is computed.

The clear specification can also be transformed formally into an efficient
sequential linear time implementation. This is done by a method we will
call form & solution: (1) write an equation that expresses the form of the
definition, and (2) use algebra to derive the unknown parts of the equation.
The form & solution technique is central to the parallelisation of scan in
Section 5, and the derivation of linear time scan provides a good introduction
to it. We begin by writing down the general form of the expected solution.
Since we seek a linear time implementation, it is natural to try an accumulator-
style definition:

ascanr :: (b → a → a) → a → [b] → (a, [a])

ascanr f a [ ] = · · · ? · · · (17)

ascanr f a (x : xs) = · · · ? · · · (18)

The next step is to use equational reasoning to solve for the unknown expres-
sions, beginning with eq. (17).

Base case.

ascanr f a [ ]

= (foldr f a [ ], wscanr f a [ ]) 〈16 〉
= (a, [foldr f a (drop (i + 1) [ ] | i ← [0 . . − 1]]) 〈10,13 〉
= (a, [ ]) 〈3 〉 (19)

Induction case. The inductive hypothesis is

ascanr f a xs = (foldr f a xs , wscanr f a xs) (20)

8
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It is convenient to define names for the components of this pair:

a′ = foldr f a xs (21)

xs ′ = wscanr f a xs (22)

Then

(a′, xs ′)
= (foldr f a xs , wscanr f a xs) 〈21,22 〉
= ascanr f a xs 〈20 〉 (23)

Now the right hand side of (18) is calculated using equational reasoning.

ascanr f a (x : xs)

= (foldr f a (x : xs), wscanr f a (x : xs)) 〈16 〉
= (foldr f a (x : xs), 〈16 〉

[foldr f a (drop (i + 1) (x : xs))

| i ← [0 . . length (x : xs)− 1])

= (f x (foldr f a xs), 〈11 〉
foldr f a (drop 1 (x : xs)) : 〈4 〉

[foldr f a (drop (i + 1) (x : xs))

| i ← [1 . . length xs ]])

= (f x a′, foldr f a xs : 〈21,1,2 〉
[foldr f a (drop i xs) | i ← [1 . . length xs ]]) 〈2 〉

= (f x a′, foldr f a xs : [foldr f a (drop (i + 1) xs) 〈5 〉
| i ← [0 . . length xs − 1]])

= (f x a′, foldr f a xs : wscanr f a xs) 〈14 〉
= (f x a′, a′ : xs ′) 〈21,22 〉 (24)

The calculation is finished by bringing together the unknown parts of the
conjecture. This results in a mathematical statement about the ascanr func-
tion which also serves as an efficient linear time implementation.

Theorem 3.1

ascanr :: (b → a → a) → a → [b] → (a, [a])

ascanr f a [ ] = (a, [ ]) 〈19 〉
ascanr f a (x : xs) =

let (a′, xs ′) = ascanr f a xs 〈23 〉
in (f x a′, a′ : xs ′) 〈24 〉

The proof was not given before the statement of the theorem merely for
rhetorical effect. The point is that we have calculated the content of the the-
orem while proving it: formal methods were used to help construct a program,
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not just to prove its correctness after the fact. The theorem is an efficient exe-
cutable Haskell program, but it is also a mathematical statement of a property
of ascanr, which was specified abstractly by equation (16).

4 Ripple Carry Addition

It is an interesting exercise to start with Definition 2.1 and derive an addition
circuit from first principles. We will skip that step here, and begin with a
specification of the standard and well known ripple carry adder.

The inputs to the adder are a carry input bit c and a word zs = [(x0, y0),
. . . , (xn−1, yn−1)] of n bit pairs. The outputs are a pair (c, ss) where c′ is the
carry output, and ss = [s0, . . . , sn−1] is the word of n sum bits.

Within bit position i, for 0 ≤ i < n, the adder calculates the local sum bit
si = bsum (xi, yi) ci+1. The carry input to position i is ci+1, and the carry
output ci = bcarry (xi, yi) ci+1. The carry input cn to the least significant
bit is defined to be the carry input c to the entire word adder, and the carry
output c′ from the entire adder is defined to be the carry output c0 from the
most significant bit.

A ripple carry adder contains a building block for each bit position that
which takes the data bits (x, y) and a carry input and produces a sum bit s
and carry output c′. This building block is traditionally called a ‘full adder’:

fullAdd :: Signal a ⇒ (a, a) → a → (a, a).

However, the crux of the derivation that follows is in handling the carry propa-
gation, and it will simplify the notation slightly to separate the calculations of
the sum and carry bits into two functions, bsum and bcarry. These correspond
to standard 3-input logic gates called majority and parity.

bsum, bcarry :: Signal a ⇒ (a, a) → a → a

bcarry (x, y) c = majority3 x y c

bsum (x, y) c = parity3 x y c

The following equation states the relationship between these functions and a
full adder:

fullAdd (x, y) c = (bcarry (x, y) c, bsum (x, y) c)

The ripple carry adder uses ascanr to calculate all the carry bits, followed
by a map (in the form of zipWith that calculates the sum bits. The circuit
requires O(n) time, and it contains O(n) logic gates. Figure 1 shows the
structure of the ripple carry adder for 4-bit words. It is important to note that
the figure is only an example at a fixed wordsize, while the Hydra definition
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Fig. 1. Circuit diagram of add1

add1 is a general specification valid for all sizes n ≥ 0.

add1 :: Signal a ⇒ a → [(a, a)] → (a, [a])

add1 c zs =

let (c′, cs) = ascanr bcarry c zs

ss = zipWith bsum zs cs

in (c′, ss)

5 Parallel Scan

Since the time required by the ripple carry adder is dominated by the scan,
we need to find a faster scan in order to speed up the circuit. This section
derives a parallel scan algorithm that requires only O(log n) time, but which
can be used only when the function being scanned is associative.

This section presents the parallel scan algorithm in detail. The material
that follows is similar to the results in [11], but the full derivation is presented
in order to make this paper self-contained and to give an excellent example of
the power of the form & solution technique. Furthermore, the adder requires
wscanr but [11] presented wscanl, and it may not be obvious how to convert
the wscanl into wscanr.

The parallel scan algorithm uses a divide and conquer strategy to perform
a scan in log time on a tree circuit, assuming that the function being scanned
is associative. (The time is actually proportional to the height of the tree, and
the algorithm works correctly even if the tree is not balanced.)

5.1 Fold and Scan Decomposition

The essence of the divide and conquer strategy is a collection of decomposition
theorems that show how folds and scans over long lists can be broken into
subproblems to be solved independently. Throughout this section we will
assume that the lists are of finite length and that the functions are strict.

The fold decomposition theorem splits a long fold in the form xs++ys into
two shorter folds over xs and ys , with a final application of f to combine the
results. This theorem does not require f to be associative, but it also does not
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introduce parallelism, since there is a data dependency requiring the result of
the fold over ys in order to calculate the fold over xs .

Theorem 5.1 (Fold decomposition)

foldr f a (xs++ys) = foldr f (foldr f a ys) xs (25)

The next theorem provides a useful connection between foldr and foldr1.

Theorem 5.2 (foldr/foldr1) If xs is nonempty, then

foldr f a xs = f (foldr1 f xs) a (26)

The associative fold decomposition theorem introduces potential paral-
lelism, since it breaks a long fold into two shorter folds that can be calculated
independently. However, this rearrangement of the order of operations will
produce a different value if the function f is not associative.

Theorem 5.3 (Associative fold decomposition) If f is associative, then

foldr1 f (xs++ys) = f (foldr1 f xs) (foldr1 f ys) (27)

A scan decomposition theorem will also be needed. Since this theorem is
less familiar than fold decomposition, we will calculate it using the form &
solution method. The aim is to find a theorem in the form

wscanr f a (xs++ys) = wscanr f ? xs ++ wscanr f ? ys (28)

This time the theorem can be calculated directly—no induction is needed.

wscanr f a (xs ++ ys)

= [foldr f a (drop (i + 1) (xs ++ ys)) 〈13 〉
| i ← [0 . . length (xs ++ ys)− 1]]

= [foldr f a (drop (i + 1) (xs ++ ys)) 〈6 〉
| i ← [0 . . length xs − 1]]

++ [foldr f a (drop (i + 1) (xs ++ ys))

| i ← [length xs . . length (xs ++ ys)− 1]]

= [foldr f (foldr f a ys) (drop (i + 1) xs) 〈25 〉
| i ← [0 . . length xs − 1]]

++ [foldr f a (drop (i + 1) ys) 〈5,2 〉
| i ← [0 . . length ys − 1]]

= wscanr f (foldr f a ys) xs ++ wscanr f a ys 〈13 〉
Theorem 5.4

wscanr f a (xs++ys)

= wscanr f (foldr f a ys) xs ++ wscanr f a ys (29)

12
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5.2 Parallel Tree Machine

The decomposition theorems express potential parallelism, but we need to turn
this into actual parallelism. This requires a model of parallelism that can be
used to produce digital circuits. The structure of the decomposition theorems
suggests a parallel machine with a tree structure. This can be specified as an
algebraic data type, with a suitable parallel machine operation.

The algebraic data type Tree is used to represent the structure of the
circuit:

data Tree a = Leaf a | Node (Tree a) (Tree a)

The conversion function treeWord returns the word of values held in the leaves
of a tree. This function is not part of the adder circuit, but it serves a vital
role in the formal derivation of parallel scan: the specification is written in
terms of lists, yet the parallel algorithm uses a tree machine, and we need
a formal way to convert between them. A minor additional benefit is that
treeWord is convenient for building software testing tools.

treeWord :: Tree a → [a]

treeWord (Leaf x) = [x] (30)

treeWord (Node x y) = treeWord x ++ treeWord y (31)

Two further functions are mkTree, which builds a reasonably balanced tree
shape of a given size, and wordTree, which builds a tree representing a list,
following the shape of an existing tree. Only the types are given here; the full
definitions appear in the program (see Section 1).

mkTree :: Nat → Tree ()

wordTree :: Tree b → [a] → Tree a

Now we need a specification of a parallel computation on the tree. The
sweep combinator specifies the behaviour of a general tree circuit constructed
from two building blocks: a node circuit and a leaf circuit. The behaviours of
these circuits are specified by the epynomous functions.

sweep

:: (a → d → (b, u)) — leaf function

→ (d → u → u → (u, d, d)) — node function

→ d — root input

→ Tree a — leaf inputs

→ (u, Tree b) — (root output, leaf outputs)

The leaf circuits all have a state of type a, and they provide upward-moving
values of type u which they pass up the tree. Eventually the leaves will receive
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a downward-moving value of type d, which they can then use to update their
state.

sweep leaf node a (Leaf x) = (32)

let (x′, a′) = leaf x a

in (a′, Leaf x′)

Each node (see Figure 2) receives two upward messages p′ and q′ from its
subtrees, and a downward message a from its parent. It uses these values to
calculate an output a′ to be sent up, and p and q to be sent down to the
subtrees.

sweep leaf node a (Node x y) = (33)

let (a′, p, q) = node a p′ q′ (34)

(p′, x′) = sweep leaf node p x (35)

(q′, y′) = sweep leaf node q y (36)

in (a′, Node x′ y′) (37)

Thus the sweep combinator specifies a general tree circuit, where each
component sends and receives on each of its ports. Naturally, it is possible
to deadlock such a general tree if the leaf and node circuits are not defined
properly. Most algorithms implemented with tree circuits execute with an
upsweep followed by a downsweep, and the parallel scan algorithm is a typical
example.

5.3 Derivation of Parallel Scan

The next step is to find—if possible—functions leaf and node that will cause
the tree machine to compute an ascanr. This will be accomplished by conjec-
turing formally that it is actually possible; the conjecture will provide a set of
equations stating properties that the solution must satisfy. The solution will
then be found by solving the equations algebraically. The starting point is the
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following predicate:

Parallel scanr (f, leaf , node, a, t) ≡
a′ = foldr1 f (treeWord t) (38)

∧ treeWord t′ = wscanr f a (treeWord t) (39)

where (a′, t′) = sweep leaf node a t (40)

No we can state a conjecture that there is a solution to the problem.

Conjecture 5.5 Let f :: a → a → a be associative. Then

∃ leaf :: a → d → (b, u), node :: d → u → u → (u, d, d) .

∀a :: a, t :: Tree a .

Parallel scanr (f, leaf , node, a, t)

The conjecture and predicate provide a formal specification to the problem,
and we can now begin a calculation to find the solution. The calculation
has two possible outcomes: if we find values of leaf and node that satisfy
the equations, then the conjecture is established and we have a program (or
circuit) that solves the problem. If the calculation fails to produce a result,
then no conclusion can be drawn. (Fortunately that will not happen in this
case!)

Base case. Let t = Leaf x and t′ = Leaf x′. The aim is to satisfy

a′ = foldr1 f (treeWord t) 〈38 〉 (41)

treeWord t′ = wscanr f a (treeWord t) 〈39 〉 (42)

(a′, Leaf x′) = sweep leaf node a (Leaf x) (43)

Now, in order to define the leaf function, the values of a′ and x′ need to be
calculated.

(a′, Leaf x′)
= sweep leaf node a (Leaf x) 〈40 〉
= let (x′, a′) = leaf x a (44)

in (a′, Leaf x′) 〈32 〉 (45)

a′

= foldr1 f (treeWord (Leaf x)) 〈41 〉
= foldr1 f [x] 〈30 〉
= x 〈10,11 〉 (46)

treeWord (Leaf x′)
= [x′] 〈30 〉 (47)

treeWord (Leaf x′)
= wscanr f a (treeWord (Leaf x)) 〈42 〉
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= wscanr f a [x′] 〈30 〉
= [a] 〈15 〉 (48)

[x′] = [a] 〈47,48 〉 (49)

x′ = a 〈49,7 〉 (50)

These results can be gathered into a definition of leaf.

leaf x a

= (x′, a′) 〈44 〉
= (a, x) 〈50,46 〉 (51)

Induction case. Let t = Node x y and t′ = Node x′ y′. There are two
inductive hypotheses, one for each subtree:

Parallel scanr (f, leaf , node, p′, x) (52)

Parallel scanr (f, leaf , node, q′, y) (53)

The aim is to find a value of the node function that calculates t′ = Node x′ y′

while satisfying the following predicate:

Parallel scanr (f, leaf , node, a, Node x y), (54)

which denotes

a′ = foldr1 f (treeWord t) 〈54 〉 (55)

treeWord t′ = wscanr f a (treeWord t) 〈54 〉 (56)

(a′, t′) = sweep leaf node a t 〈54 〉 (57)

The inductive hypotheses denote the following equations:

p′ = foldr1 f (treeWord x) 〈52 〉 (58)

treeWord x′ = wscanr f p (treeWord x) 〈52 〉 (59)

(p′, x′) = sweep leaf node p x 〈52 〉 (60)

q′ = foldr1 f (treeWord y) 〈53 〉 (61)

treeWord y′ = wscanr f q (treeWord y) 〈53 〉 (62)

(q′, y′) = sweep leaf node q y 〈53 〉 (63)

Now the values of the variables need to be calculated; this will enable the
definition of node.

(a′, t′)
= sweep leaf node a (Node x y) 〈57 〉
= let (a′, p, q) = node a p′ q′ 〈33 〉 (64)
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(p′, x′) = sweep leaf node p x (65)

(q′, y′) = sweep leaf node q y (66)

in (a′, Node x′ y′) (67)

The root output a′ is calculated by rewriting it in the form of the goal, applying
the associative fold decomposition theorem, and then using the two inductive
hypotheses to simplify the folds over the subtrees.

a′

= foldr1 f (treeWord (Node x y)) 〈55 〉
= foldr1 f (treeWord x ++ treeWord y) 〈31 〉
= f (foldr1 f (treeWord x)) (foldr1 f (treeWord y))〈27 〉
= f p′ q′ 〈58,61 〉 (68)

The scan is calculated using the scan decomposition theorem.

treeWord (Node x′ y′)
= wscanr f a (treeWord (Node x y)) 〈56 〉
= wscanr f a (treeWord x ++ treeWord y) 〈31 〉
= wscanr f (foldr f a (treeWord y)) (treeWord x) 〈29 〉

++ wscanr f a (treeWord y)

= wscanr f (f (foldr1 f (treeWord y)) a) 〈26 〉
++ wscanr f a (treeWord y)

= wscanr f (f q a) (treeWord x) 〈61 〉 (69)

++ wscanr f a (treeWord y)

Next the root inputs p and q to the subtrees are calculated.

treeWord (Node x′ y′)
= treeWord x′ ++ treeWord y′ 〈31 〉
= wscanr f p (treeWord x) 〈59 〉

++ wscanr f q (treeWord y) 〈62 〉 (70)

treeWord (Node x′ y′)
= wscanr f (f q′ a) (treeWord x) 〈61 〉

++wscanr f a (treeWord y) (71)

These equations can be satisfied by choosing the following definitions of p and
q:

p = f q′ a 〈70,71 〉 (72)

q = a 〈70,71 〉 (73)
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The results of these calculations now enable the node function to be defined.

node a p′ q′

= (a′, p, q) 〈64 〉
= (f p′ q′, f q′ a, a) 〈68,72,73) 〉 (74)

The results can now be combined to define the log-time parallel tscanr
algorithm and to establish its correctness.

Theorem 5.6 (Parallel scan)

tscanr :: (a → a → a) → a → Tree a → (a, Tree a)

tscanr f a =

letleaf x a = (a, x) 〈51 〉
node a p′ q′ = (f p′ q′, f q′ a, a) 〈74 〉

in sweep leaf node a t

Once again, we have used calculation by equational reasoning to derive the
definition of a circuit along with its correctness proof. The tscanr circuit is
perfectly well defined for any function f of the required type, but it computes
the same result as ascanr only if f is associative.

Theorem 5.7 Let (a′, t′) = tscanr f a t. If f is associative, then

a′ = foldr1 f (treeWord t) (75)

treeWord t′ = wscanr f a (treeWord t) (76)

The tscanr circuit derived above is essentially the same definition that
appears in [11], except that paper implemented scanl rather than scanr.

Figure 4 gives an example execution of tscanr. This diagram may help
the reader to see what is going on in parallel scan, but the real intuitions
are captured by the decomposition theorems. Diagrams and examples can
supplement the formalism, but they should not supplant it.
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Fig. 4. Example: calculation of tscanr f a [x0, x1, x2, x3]

6 Making the Scan Associative

The time required by the ripple carry adder is dominated by the ascanr. The
previous section has introduced a faster parallel scan, and our strategy for
improving the adder is to use this to calculate the carries in log time.

Unfortunately there is an immediate stumbling block. The parallel scan
algorithm requires f to be associative in order to compute ascanr f a xs in log
time, but the ripple carry adder applies ascanr to the bcarry circuit, which is
not associative. Indeed, an associative function must have type a → a → a,
so bcarry :: (a, a) → a → a doesn’t even have a suitable type.

6.1 Partial Evaluation of Scan

A useful principle in program derivation is to transform a specification to
bring it as close as possible to the goal, even if the goal itself is not directly
reachable. The reason is that the intermediate transformation might cause a
different approach to become applicable.

Partial evaluation is a systematic method for applying this principle. The
arguments to a function are partitioned into static arguments that are known
in advance and dynamic arguments that will become known later. This tech-
nique is typically used in compilers: the usual idea is to have the compiler
apply the functions in a program just to the static arguments that are known
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at compile time, in the hope that the resulting partial applications can be
simplified, producing more efficient object code. In this section, we apply the
same idea to the problem of carry propagation in hardware design.

Ideally, we would like the circuitry for bit position i to calculate the appli-
cation bcarry (xi, yi) ci+1 in unit time. This is impossible, since the value of
ci+1 must itself be computed, and it takes time for the carry propagation to
ripple across the adder. However, if we think of this as a problem of higher or-
der functional programming as well as hardware design, it becomes clear that
at least the partial applications bcarry (xi, yi) can be calculated in parallel:

ps = map bcarry zs.

The partial application pi = bcarry (xi, yi) is a function pi :: Signal a ⇒ a → a
that can be used to produce the carry output in position i once the carry input
is known. Meanwhile, we can go ahead and exploit the knowledge pi has of
the values of xi and yi, even before the carry input ci+1 is available.

At this stage there is nothing useful to which the pi functions can be
applied, but another idea is to compose them instead of applying them. Just
as each bit position has a carry propagation function, so does a sequence of
adjacent positions i . . . j, for 0 ≤ i ≤ j < n. Since we are interested in the
carry input at bit position i (in order to compute the sum bit there), we define
the sequence carry propagation function Cj

i as

Cj
i = pi+1 ◦ pi+2 ◦ · · · ◦ pj for −1 ≤ i < j

Ci
i = id

This function takes the carry input cj+1 to the least significant position of
the sequence and produces the carry input ci to the most significant position.
(Note that Cj

−1 is the carry output from the most significant bit.) The func-
tion can be calculated by folding the list of p functions with the composition
operator, using the identity function as the unit:

Cj
i = foldr (◦) id [pi+1, . . . , pj],

for 0 ≤ i ≤ j < n. In particular,

Cn−1
i = foldr (◦) id [pi+1, . . . , pn−1].

The adder circuit requires the carry input to each bit position in order to
compute the corresponding sum bit, and it also needs the carry output from
position 0 since this is an output of the entire circuit. Although we do not yet
know the values of these carry bits, we can calculate their carry propagation
functions:
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(
Cn−1
−1 , [Cn−1

i | i ← [0 . . n− 1]]
)

=
(
foldr (◦) id ps,

[foldr (◦) id (drop (i + 1) ps) | i ← [0 . . n− 1]]
)

= ascanr (◦) id ps

Now we are in a much better position: this entire set of functions can be
calculated in log time using parallelism because now the argument to ascanr
is the associative operator (◦). Our original problem was that ascanr was
applied to a non-associative function. Furthermore, once the sequence carry
propagation functions have been calculated, all of the actual carry bits that
are needed can be calculated in O(1) time simply by applying all of those
functions to cn = c, which is the one carry bit that we already have, since it
is an input to the circuit!

This transformation can be expressed formally as two partial evaluation
theorems, one each for foldr and scanr. This is a generally useful technique,
and similar theorems exist for the other fold and scan functions. Theorem 6.1
has been used by Harrison [5], and Maessen has stated a weaker version of it
[8]. Fischer and Ghuloum [4] described a technique for parallelising scans.

Theorem 6.1 (Partial evaluation of fold)

foldr f a xs = (foldr (◦) id (map f xs)) a (77)

Proof. Structural induction over xs. For the base case,

foldr f a [ ]

= a

= id a

= (foldr (◦) id []) a

= (foldr (◦) id (map f [ ])) a

Inductive case: the hypothesis is foldr f a xs = (foldr (◦) id (map f xs)) a.

foldr f a (x : xs)

= f x (foldr f a xs)

= f x (foldr (◦) id (map f xs) a)

= (f x ◦ foldr (◦) id (map f xs)) a

= (foldr (◦) id (f x : map f xs)) a

= (foldr (◦) id (map f (x : xs))) a

2
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The partial evaluation of scan requires an explicit application function:

apply f x = f x (78)

(79)

Theorem 6.2 (Partial evaluation of scan)

wscanr f a xs = (80)

map apply (zip (wscanr (◦) (map f id) xs) (repeat a)) (81)

Proof. The left hand side is transformed directly into the right hand side.
Let n = length xs. Then

wscanr f a xs

= [foldr f a (drop (i + 1) xs) | i ← [0 . . n− 1]]

= [foldr (◦) id (map f (drop (i + 1) xs)) a | i ← [0 . . n− 1]]

= [foldr (◦) id (drop (i + 1) (map f xs)) a | i ← [0 . . n− 1]]

= map apply [(foldr (◦) id (drop (i + 1) (map f xs)), a)

| i ← [0 . . n− 1]]

= map apply (zip [foldr (◦) id (drop (i + 1) (map f xs))

| i ← [0 . . n− 1]] (repeat a)

2

6.2 Associative Scan Adder

Using Theorem 6.2, we can now transform the ripple carry adder into add2.
The structure of the circuit is shown in Figure 5.

add2 :: Signal a ⇒ a → [(a, a)] → (a, [a])

add2 c zs =

let ps = map bcarry zs

(cf , cfs) = ascanr (◦) id ps

cs = zipWith apply cfs (repeat c)

c′ = cf c

ss = zipWith bsum zs cs

in (c′, ss)

7 Symbolic Function Representation

In solving one problem we have created another. The adder now applies scan
to an associative function, so the parallel scan method has become applicable.
However, the adder now contains signals that are carry propagation functions,
not carry bits. Ultimately every digital circuit must be constructed from the
primitive logic components, and those operate only on bits. Before proceeding
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Fig. 5. Circuit diagram of add2

to the parallel scan, we should determine whether it will be possible to get
around this difficulty—otherwise the parallelisation would be fruitless.

A function f :: A → B can be represented as a set of pairs {(a, f a) |
f a ∈ A}; this is called the graph of f . We haven’t decided yet whether to use
function graphs within the adder, but the graphs still provide useful insight
into the problem. Two crucial questions arise in the context of the adder:

(i) How can we compute the graphs of new carry propagation functions dur-
ing the course of an addition?

(ii) How large can the function graphs become, and how can they be repre-
sented?

A partial application bcarry (x, y) has four possible values, since x and y are
both signals restricted to 0 or 1. The complete set of partial applications can
be enumerated as follows, using f1, . . . , f4 as names for the resulting functions:

bcarry (0, 0) = f1

bcarry (0, 1) = f2

bcarry (1, 0) = f3

bcarry (1, 1) = f4
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It is straightforward to check that f2 = f3, because

∀c ∈ {0, 1}. bcarry (0, 1) c = bcarry (1, 0) c.

There are traditional names for these functions [9]: f1 is called K because
it “kills” the carry (it returns 0 regardless of its carry argument); f2 and f3

are called P because they are the identity function, “propagating” the carry
input to the output; f4 is called G because it “generates” a carry output of
1 regardless of its argument. An arbitrary partial application of bcarry is
representable using a finite alphabet of symbols:

data Sym = K | P | G (82)

Each partial application of bcarry can be replaced by a full application of
bcarrySym, which achieves the goal of getting rid of higher order functions as
signals in the circuit. The definition of bcarrySym is slightly unusual, since it
has a mixed type with signal arguments but a symbolic output. Because of
this, a multiplexor cannot be used to define it, and we must resort instead to
explicit testing of the input signal values. Thus bcarrySym is a halfway house:
it operates on first order values, but its outputs are not digital circuit signals.

bcarrySym :: Signal a ⇒ (a, a) → Sym

bcarrySym (x, y)
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| is0 x ∧ is0 y = K

| is0 x ∧ is1 y = P

| is1 x ∧ is0 y = P

| is1 x ∧ is1 y = G

(83)

Now that the higher order functions inside the adder have been replaced by
symbolic signals, we can no longer use (◦) and id to compose carry propagation
functions. Therefore an explicit composition function that operates on Sym-
represented functions needs to be defined. It is straightforward to calculate
the value of this new composition operator, by considering all nine possible
cases. A simpler calculation is based on the observation that K (or G) will
kill (or generate) its carry output regardless of the value of its input, while
P is just the identity function. The result of this calculation is the following
definition:

composeSym :: Sym → Sym → Sym

composeSym K f = K

composeSym P f = f

composeSym G f = G

Finally, a new operation is needed to apply a symbolic carry function to a
carry bit, getting us back into the world of signals:

applySym :: Signal a ⇒ Sym → a → a

applySym K x = zero

applySym P x = x

applySym G x = one

The adder can now be transformed into add3, using the Sym representation
instead of partial applications. The Haskell definition and the circuit diagram
(6) have exactly the same structure as add2.

add3 :: Signal a ⇒ a → [(a, a)] → (a, [a])

add3 c zs =

let ps = map bcarrySym zs

(cf , cfs) = ascanr composeSym P ps

cs = zipWith applySym cfs (repeat c)

c′ = applySym cf c

ss = zipWith bsum zs cs

in (c′, ss)
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8 Parallel Scan Adder

The adder is now transformed to use the log time tscanr in place of the linear
time ascanr. This is possible because the function scanned is the associative
composeSym. Some additional wiring rearrangements need to be introduced.
The word ps of carry propagation functions needs to be converted by wordTree
from a list representation to a set of tree leaves, and the result of the tree scan
is cft, a tree-structured word that is converted by treeWord back to a list.
These “impedance matching” conversions are only required to make the types
match, but they have absolutely no impact on the circuit—they introduce no
extra components or wires.

add4 :: Signala ⇒ a → [(a, a)] → (a, [a])

add4 c zs =

let ps = map bcarrySym zs

ps ′ = wordTree (mkTree (length zs)) ps

(cf , cft) = tscanr composeSym P ps ′

cfs = treeWord cft

cs = zipWith applySym cfs (repeat c)

c′ = applySym cf c

ss = zipWith bsum zs cs

in (c′, ss)

9 Back into Hardware

The derivation is almost finished; the only remaining tasks are to replace the
symbolic propagation function representations with actual digital signals, and
to make the corresponding changes to the circuit components. These steps
are straightforward, and could in principle be automated.

Since the Bsym type has three possible values, two bits are required to
represent it. The circuits we are about to define will contain a lot of signals,
and it will keep the definitions more readable to replace Sym by a type alias
BSym a, where a is the hardware signal type. The signal representations of K,
P and G are then defined as constant bit pairs. The actual values chosen to
represent them are arbitrary, subject only to the constraint that we keep the
values of the three symbols distinct. It simplifies the hardware slightly to allow
both (zero, one) and (one, zero) to represent P , and we choose arbitrarily to
define repP = (zero, one).

type BSym a = (a, a)

repK , repP , repG :: Signal a ⇒ BSym a

repK = (zero, zero)
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Fig. 7. Circuit diagram of add4

repP = (zero, one)

repG = (one, one)

The symbolic circuits can now be replaced by digital implementations. The
bcarryBSym circuit takes a pair of (x, y) of bits from the words being added
and outputs the corresponding two-bit representation of the carry propagation
function. In general, a circuit that implements partial applications might
have to do something substantive: for example, if the number of bits in the
symbolic representation is smaller than the number of input bits. In this case,
however, we can choose to represent bcarry (x, y) by the pair (x, y). Thus K
is represented by (0, 0), P is represented by both (0, 1) and (1, 0), and G is
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represented by (1, 1). This leads to a particularly simple definition.

bcarryBSym :: Signal a ⇒ (a, a) → BSym a

bcarryBSym = id

The remaining circuits can now be defined, but the definitions must work for
both representations of P :

composeBSym :: Signal a ⇒ BSym a → BSym a → BSym a

composeBSym f g =

let (g0, g1) = g

in (mux2 f zero g0 g0 one,

mux2 f zero g1 g1 one)

applyBSym :: Signal a ⇒ BSym a → a → a

applyBSym f x = mux2 f zero x x one

The goal has been attained: add5 is a digital circuit that calculates the
sum of two n-bit words in O(log n) time.

add5 :: Signal a ⇒ a → [(a, a)] → (a, [a])

add5 c zs =

let ps = map bcarryBSym zs

ps ′ = wordTree (mkTree (length zs)) ps

(cf , cft) = tscanr composeBSym repP ps ′

cfs = treeWord cft

cs = zipWith applyBSym cfs (repeat c)

c′ = applyBSym cf c

ss = zipWith bsum zs cs

in (c′, ss)

10 Conclusion

We have transformed a linear time ripple carry adder into a log time parallel
adder. The transformation proceeded in a sequence of steps, introducing the
essential techniques one by one, with each change to the circuit enabling the
next step to be made: partial evaluation was used to convert an inherently
sequential scan into a scan over the associative composition function; a sym-
bolic representation was introduced in order to make all the signal values first
order; the tree combinator was used to implement a parallel scan; the symbolic
functions were replaced by digital components.

Carry lookahead adders are often presented using an asymmetric parallel
prefix network that allows only right-to-left communication, from less sig-
nificant bit positions to more significant ones. This is adequate for binary
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addition, but not for a general processor arithmetic unit, since other ALU
operations (such as comparison) require left to right communication. The
structure of our circuit, consisting of a sequence of stages including a tree
network, is well suited for general processor ALU design.

The circuit specification derived here is both precise and general. All
necessary details are present, and the circuit can simulated using Haskell.
The specification works on word size n, for every natural number n. Typical
presentations of the carry lookahead adder lack this degree of precision and
generality.

We have presented the derivation in a direct narrative, from the specifi-
cation to the final result. This improves the elegance of the exposition, but
in reality nothing goes so smoothly. Just as in ordinary programming, formal
derivations sometimes become convoluted because an arbitrary choice made
earlier is suboptimal, and in practice it may be necessary to make some adjust-
ments to earlier stages in order to make the next transformation go through
smoothly. For example, one might have chosen at the outset to give bcarry
the type a → (a, a) → a, but the partial evaluation is cleaner when it has type
(a, a) → a → a.

When such decisions have not been made optimally, the transformations
still go through, but the notation is unnecessarily clumsy. It is then useful
to go through a cleanup process, where the definitions are adjusted so that
everything works out as elegantly as possible, but this can also give the mis-
leading impression that formal transformations are more straightforward than
is really the case. However, it is not true that one needs to be lucky with
the original definitions in order to make progress; a more accurate conclusion
is that periodic improvements to notational conventions can make the details
look better.

Traditional circuit design was based on schematic diagrams, which work
well for simple circuits but fail badly on large, complex designs. For this rea-
son, computer hardware description languages (CHDLs) have become increas-
ingly popular. CHDLs are generally based on existing programming languages,
such as Ada. Other work is based on relational and functional languages; see
for example [6]. In this paper we used Hydra, a CHDL based on Haskell, and
concrete benefits were obtained from the use of equational reasoning, referen-
tial transparency, higher order functions, and algebraic data types.

Lava [1] is a very similar functional hardware description language; it is
essentially a clone of the 1992 version of Hydra. However, there is one major
difference: in its netlist generation algorithm, Lava clones the 1987 version
of Hydra rather than the 1992. This is crucial, since that algorithm relies
on the ability to compare pointers rather than values. This requires impure
functional programming and violates referential transparency.

One can design a circuit, simulate it and transform it in Lava just as in
Hydra. The problem is that when a netlist is generated for a circuit specifi-
cation written in Lava (or Hydra’87), there is no guarantee that the circuit
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which is generated is the same as the circuit whose behaviour was verified.
In other words, you can simulate a circuit with Lava and find that it works
correctly, but then when you fabricate it, Lava is free to produce a different
circuit. Correctness proofs are worthless in such an environment. For precisely
this reason, a better method was introduced in Hydra ’92 and all subsequent
versions.

In practice this problem is not too severe, since Lava is used only for
specifying circuits to be verified with conventional batch tools (such as model
checkers) that come into play only after the design is finished. By that time
there is no longer a problem, since a circuit will be fabricated using the same
netlist that was used to verify it. However, Lava is unsuitable for situations
where the designer wishes to use formal methods to assist during the design
process. Hydra does not suffer from these problems, and Lava gains no advan-
tage over Hydra through its use of the older algorithm. The loss of equational
reasoning in Lava is unmitigated.

The results in this paper demonstrate how valuable formal methods can be
during the design process. Formal reasoning can help the designer to create
the circuit, as well as to improve its efficiency and to prove its correctness—and
this paper has demonstrated all three of those activities applied to a nontrivial
problem. In contrast, batch tools like model checkers give no assistance in
designing a circuit, and they give little assistance in debugging it in the event
that they announce the presence of an error.

Hawk [2] is another recent hardware description language similar to Hy-
dra. It is not a clone; in particular, Hawk uses a monadic style that essentially
requires the designer to write a program to construct circuits, instead of spec-
ifying circuits directly (as in Hydra and Lava). In the original Hawk, speci-
fications had a strongly imperative flavour, since the monads performed side
effects that had to occur in the right order. This problem was overcome by a
complex extension to Haskell, allowing for mutual recursion among monadic
actions. The kind of equational reasoning used in this paper cannot be used
in Hawk. Methods for reasoning formally about imperative programs could
be adapted for Hawk, but this would still leave Hawk specifications harder
to use than Hydra specifications. Hawk gains no advantage over Hydra to
compensate for its problems with monads.

The adder presented in this paper can be generalised to a complete ALU
(arithmetic and logic unit). The tree structure derived in Section 5 for parallel
scan can implement all three major variants of scan: wscanl (from left), wscanr
(from right), and wscan (bidirectional). The adder requires only the from-right
scanr function, but a full ALU requires all three. The circuit of Ladner and
Fischer [7] uses a pattern called “recursive doubling”, which is less general
than the tree and which does not support all the operations required in an
ALU.
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FUNCTIONAL PEARL

Inverting the Burrows-Wheeler Transform
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Programming Research Group, Oxford University
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

Abstract

The objective of this pearl is to derive the inverse of the Burrows-Wheeler transform
from its specification, using simple equational reasoning. In fact, we derive the
inverse of a more general version of the transform, proposed by Schindler.

1 Introduction

The Burrows-Wheeler Transform [1] is a method for permuting a string with
the aim of bringing repeated characters together. As a consequence, the per-
muted string can be compressed effectively using simple techniques such as
move-to-front or run-length encoding. In [4], the article that brought the
BWT to the world’s attention, it was shown that the resulting compression
algorithm could outperform many commercial programs available at the time.
The BWT has now been integrated into a high-performance utility bzip2,
available from [6].

Clearly the best way of bringing repeated characters together is just to sort
the string. But this idea has a fatal flaw as a preliminary to compression: there
is no way to recover the original string unless the complete sorting permutation
is produced as part of the output. Instead, the BWT achieves a more modest
permutation, one that aims to bring some but not all repeated characters into
adjacent positions. Moreover, the transform can be inverted using a single
additional piece of information, namely an integer k in the range 0 ≤ k < n,
where n is the length of the output (or input) string.

It often puzzles people, at least on a first encounter, as to exactly why
the BWT is invertible and how the inversion is actually carried out. Our
objective in this pearl is to derive the inverse transform from its specification

1 Thanks to Ian Bayley, Jeremy Gibbons, Geraint Jones, and Barney Stratford for con-
structive criticism of earlier drafts of this paper.
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by equational reasoning. In fact, we will derive the inverse of a more general
version of the BWT transform, first proposed by [5].

2 Defining the BWT

The BWT is specified by two functions: bwp :: String → String , which per-
mutes the string and bwn :: String → Int , which computes the supplementary
integer. The restriction to strings is not essential to the transform, and we can
take bwp to have the Haskell type Ord a ⇒ [a] → [a], so lists of any type will
do provided there is a total ordering relation on the elements. The function
bwp is defined by

bwp = map last · lexsort · rots(1)

The function lexsort :: Ord a ⇒ [[a]] → [[a]] sorts a list of lists into lexico-
graphic order and is considered in greater detail in the following section. The
function rots returns the rotations of a list and is defined by

rots :: [a] → [[a]]

rots xs = take (length xs) (iterate lrot xs)

where lrot xs = tail xs ++ [head xs ], so lrot performs a single left rotation. The
definition of bwp is constructive, but we won’t go into details – at least, not
in this pearl – as to how the program can be made more efficient.

The function bwn is specified by

posn (bwn xs) (lexsort (rots xs)) = xs(2)

where posn k applied to a list returns the element in position k . It is slightly
more convenient in what follows to number positions from 1 rather than 0, so
posn (k + 1) = (!!k) in Haskell-speak. In words, bwn xs returns some position
at which xs occurs in the sorted list of rotations of xs . If xs is a repeated
string, then rots xs will contain duplicates, so bwn xs is not defined uniquely
by (2).

As an illustration, consider the string yokohama. The rotations and the
lexicographically sorted rotations are as follows:

1 y o k o h a m a 6 a m a y o k o h

2 o k o h a m a y 8 a y o k o h a m

3 k o h a m a y o 5 h a m a y o k o

4 o h a m a y o k 3 k o h a m a y o

5 h a m a y o k o 7 m a y o k o h a

6 a m a y o k o h 4 o h a m a y o k

7 m a y o k o h a 2 o k o h a m a y

8 a y o k o h a m 1 y o k o h a m a

The output of bwp is the string hmooakya, the last column of the second
matrix, and bwn "yokohama" = 8 because row number 8 in the sorted rotations
is the input string.
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That the BWT helps compression depends on the probability of repetitions
in the input. To give a brief illustration, an English text may contain many
occurrences of words such as “this”, “the”, “that” and some occurrences of
“where”, “when”, “she”, “ he” (with a space), etc. Consequently, many of
the rotations beginning with “h” will end with a “t”, some with a “w”, an
“s” or a space. The chance is smaller that it would end in a “x”, a “q”, or
an “u”, etc. Thus the BWT brings together a smaller subset of alphabets,
say, those “t”s, “w”s and “s”s. A move-to-front encoding phase is then able to
convert the characters into a series of small-numbered indexes, which improves
the effectiveness of entropy-based compression techniques such as Huffman-
encoding. For a fuller picture of the role of the BWT in data compression,
consult [1,4].

The inverse transform unbwt :: Int → [a] → [a] is specified by

unbwt (bwn xs) (bwp xs) = xs(3)

To compute unbwt we have to show how the lexicographically sorted rotations
of a list, or at least its tth row where t = bwn xs , can be recreated solely from
the knowledge of its last column. To do so we need to examine lexicographic
sorting in more detail.

3 Lexicographic sorting

Let (≤) :: a → a → Bool be a linear ordering on a. Define (≤k) :: [a] →
[a] → Bool inductively by

xs ≤0 ys = True

(x : xs)≤k+1 (y : ys) = x < y ∨ (x = y ∧ xs ≤k ys)

The value xs ≤k ys is defined whenever the lengths of xs and ys are equal and
no smaller than k .

Now, let sort (≤k) :: [[a]] → [[a]] be a stable sorting algorithm that sorts
an n × n matrix, given as a list of lists, according to the ordering ≤k . Thus
sort (≤k), which we henceforth abbreviate to sort k , sorts a matrix on its first
k columns. Stability means that rows with the same first k elements appear
in their original order in the output matrix. By definition, lexsort = sort n.

Define cols j = map (take j ), so cols j returns the first j columns of a
matrix. Our aim in this section is to establish the following fundamental
relationship: provided 1 ≤ j ≤ k we have

cols j · sort k · rots = sort 1 · cols j ·map rrot · sort k · rots(4)

This looks daunting, but take j = n (so cols j is the identity), and k = n (so
sort k is a complete lexicographic sorting). Then (4) states that the following
transformation on the sorted rotations is the identity: move the last column
to the front and resort the rows on the new first column. As we will see, this
implies that the (stable) permutation that produces the first column from the
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last column is the same as that which produces the second from the first, and
so on.

To prove (4) we will need some basic properties of rotations and sorting.
For rotations, one identity suffices:

map rrot · rots = rrot · rots(5)

where rrot denotes a single right rotation. More generally, applying a rotation
to the columns of a matrix of rotations has the same effect as applying the
same rotation to the rows.

For sorting we will need

sort k ·map rrotk = (sort 1 ·map rrot)k(6)

where f k is the composition of f with itself k times. This identity formalises
the fact that one can sort a matrix on its first k columns by first rotating the
matrix to bring these columns into the last k positions, and then repeating
k times the process of rotating the last column into first position and stable
sorting according to the first column only. Since map rrotn = id , the initial
processing is omitted in the case k = n, and we have the standard definition
of radix sort. In this context see [2] which deals with the derivation of radix
sorting in a more general setting.

It follows quite easily from (6) that

sort (k + 1) ·map rrot = sort 1 ·map rrot · sort k(7)

Finally, we will need the following properties of columns. Firstly, for arbitrary
j and k :

cols j · sort k = cols j · sort (j min k) = sort (j min k) · cols j(8)

In particular, cols j · sort k = cols j · sort j whenever j ≤ k . Since sort j · cols j
is a complete sorting algorithm that does not depend on the order of the rows,
we have

sort j · cols k · perm = sort j · cols k(9)

whenever j ≤ k and perm is any function that permutes its argument.

With 1 ≤ j ≤ k we can now calculate:

sort 1 · cols j ·map rrot · sort k · rots

= {identity (8)}

cols j · sort 1 ·map rrot · sort k · rots

= {identity (7)}

cols j · sort (k + 1) ·map rrot · rots

= {identity (8)}

cols j · sort k ·map rrot · rots
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= {identity (5)}

cols j · sort k · rrot · rots

= {identity (9)}

cols j · sort k · rots

Thus, (4) is established.

4 The derivation

First observe that for 1 ≤ j

cols j ·map rrot = join · fork (map last , cols (j − 1))

where join (xs , xss) is the matrix xss with xs adjoined as a new first column,
and fork (f , g) x = (f x , g x ). Hence

cols j · sort k · rots

= {(4)}

sort 1 · cols j ·map rrot · sort k · rots

= {above}

sort 1 · join · fork (map last , cols (j − 1)) · sort k · rots

= {since fork (f , g) · h = fork (f · h, g · h)}

sort 1 · join · fork (map last · sort k · rots , cols (j − 1) · sort k · rots)

= {definition of bwp}

sort 1 · join · fork (bwp, cols (j − 1) · sort k · rots)

Setting recreate j = cols j · sort k · rots , we therefore have

recreate 0 = map (take 0)

recreate (j + 1) = sort 1 · join · fork (id , recreate j )

The last equation is valid only for j + 1 ≤ k . The Haskell code for recreate is
given in Figure 1. The function sortby :: Ord a ⇒ (a → a → Bool) → [a] →
[a] is a stable variant of the standard function sortBy .

In particular, taking k = n we have unbwt t = posn t · recreate n. This
implementation of unbwt involves computing sort 1 a total of n times. To
avoid repeated sorting, observe that recreate 1 ys = sort (≤) ys , where sort (≤)
sorts a list rather than a matrix of one column. Furthermore, for some suitable
permutation function sp we have
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> recreate :: Ord a => Int -> [a] -> [[a]]

> recreate 0 ys = map (take 0) ys

> recreate (k+1) ys = sortby leq (join ys (recreate k ys))

> where leq us vs = head us <= head vs

> join xs xss = [y:ys | (y,ys) <- zip xs xss]

Fig. 1. Computation of recreate

> unbwt :: Ord a => Int -> [a] -> [a]

> unbwt t ys = take (length ys) (thread (spl t))

> where thread (x,j) = x:thread (spl j)

> spl = lookup (zip [1..] (sortby (<=) (zip ys [1..])))

Fig. 2. Computation of unbwt

sort (≤) ys = apply sp ys

where apply :: (Int → Int) → [a] → [a] applies a permutation to a list:

apply p [x1, . . . , xn ] = [xp(1), . . . , xp(n)]

It follows that

recreate (j + 1) ys = join (apply sp ys , apply sp (recreate j ys))

Equivalently,

recreate n ys = transpose (take n (iterate1 (apply sp) ys))

where transpose :: [[a]] → [[a]] is the standard library function for transposing
a matrix and iterate1 = tail · iterate. The tth row of a matrix is the tth
column of the transposed matrix, ie. posn t · transpose = map (posn t), so we
can use the naturality of take n to obtain

unbwt t ys = take n (map (posn t) (iterate1 (apply sp) ys))

Suppose we define spl :: Ord a ⇒ [a] → Int → (a, Int) by

spl ys = lookup (zip [1..] (sort (≤) (zip ys [1..])))

where lookup :: Eq a ⇒ [(a, b)] → (a → b) is a standard function and sort (≤)
sorts a list of pairs. Then

spl ys j = (posn (sp j ) ys , sp j )

Hence

map (posn k) (iterate1 (apply sp) ys) = thread (spl ys k)

where thread (x , j ) = x : thread (spl ys j ).

The final algorithm, written as a Haskell program, is given in Figure 2.
If we use arrays with constant-time lookup, the time to compute unbwt is
dominated by the sorting in spl .
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> unbwt :: Ord a => Int -> Int -> [a] -> [a]

> unbwt k t ys = us ++ reverse (take (length ys - k) vs)

> where us = posn t yss

> yss = recreate k ys

> vs = u:search k (reverse (zip yss ys)) (take k (u:us))

> u = posn t ys

> search :: Eq a => Int -> [([a],a)] -> [a] -> [a]

> search k table xs = x:search k table’ (take k (x:xs))

> where (x,table’) = dlookup table xs

> dlookup :: Eq a => [(a,b)] -> a -> (b,[(a,b)])

> dlookup ((a,b):abs) x = if a==x then (b,abs)

> else (c,(a,b):cds)

> where (c,cds) = dlookup abs x

Fig. 3. Computation of Schindler’s variation

5 Schindler’s variation

The main variation of BWT is to exploit the general form of (4) rather than
the special case k = n. Suppose we define

bwp k = map last · sort k · rots

This version, which sorts only on the first k columns of the rotations of a list,
was considered in [5]. The derivation of the previous section shows how we
can recreate the first k columns of the sorted rotations from ys = bwp k xs ,
namely by computing recreate k ys . Although we cannot compute the remain-
ing columns, we can reconstruct the tth row, where t = bwn k xs and

posn (bwn k xs) (sort k (rots xs)) = xs

The first k elements of xs are given by posn t (recreate k ys), and the last
element of xs is posn t ys . So certainly we know

take k (rrot xs) = [xn , x1, . . . , xk−1]

This list begins the last row of the unsorted matrix, and consequently, since
sorting is stable, will be the last occurrence of the list in recreate k ys . If this
occurrence is at position p, then posn p ys = xn−1. Having discovered xn−1, we
know take k (rrot2 xs). This list begins the penultimate row of the unsorted
matrix, and will be either the last occurrence of the list in the sorted matrix,
or the penultimate one if it is equal to the previous list. We can continue
this process to discover all of [xk+1, . . . , xn ] in reverse order. Efficient im-
plementation of this phase of the algorithm requires building an appropriate
data structure for repeatedly looking up elements in reverse order in the list
zip (recreate k ys) ys and removing them when found. A simple implementa-
tion is given in Figure 3
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6 Conclusions

We have shown how the inverse Burrows-Wheeler transform can be derived by
equational reasoning, and also considered the more general version proposed
by Schindler. One interesting topic not touched upon is whether proposed
improvements to the original BWT can also be derived in a similar style. The
BWT can be modified to sort all the tails of a list rather than rotations, and
in [3] it is shown how to do this in O(n log n) steps using suffix arrays. How
fast it can be done in a functional setting remains unanswered, though we
conjecture that O(n(log n)2) step is the best possible.
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Abstract

Fruit is a new graphical user interface library for Haskell based on a formal model
of user interfaces. The model identifies signals (continuous time-varying values) and
signal transformers (pure functions mapping signals to signals) as core abstractions,
and defines GUIs compositionally as signal transformers. In this paper, we describe
why we think a formal denotational model of user interfaces is useful, present our
model and prototype library implementation, and show some example programs
that demonstrate novel features of our library.

1 Introduction

Over the years, there have been numerous Graphical User Interface (GUI)
libraries for Haskell, presenting a broad range of different programming in-
terfaces. Some libraries, such as TkGofer [26], provide direct access to GUI
facilities through the IO monad, and therefore have a rather imperative feel.
Others, such as Fudgets [4] and FranTk [23], present qualitatively more high-
level programming interfaces, so have a more declarative, functional feel.

1 This material is based upon work supported in part by a National Science Foundation
Graduate Research Fellowship. Any opinions, findings, conclusions or recommendations
expressed in this publication are those of the author and do not necessarily reflect the views
of the National Science Foundation.
2 Email: antony@apocalypse.org
3 Email: conal@microsoft.com
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But what does it mean for one library to be more “high level” or “low
level” or “functional” than another? On what basis should we make such
comparisons? A pithy answer is given by Perlis [18]:

A programming language is low level when its programs require attention
to the irrelevant.
–Alan Perlis

But how should we decide what is relevant?

Within the functional programming community, there is a strong historical
connection between functional programming and formal modeling [1,24,25,12].
Many authors have expressed the view that functional programming languages
are “high level” because they allow programs to be written in terms of an
abstract conceptual model of the problem domain, without undue concern for
implementation details.

Of course, although functional languages can be used in this “high level”
way, this is neither a requirement nor a guarantee. It is very easy to write
programs and libraries in pure Haskell that are littered with implementation
details and bear little or no resemblance to any abstract conceptual model of
the problem they were written to solve.

So if we wish to design a high-level interface for implementing GUIs in
Haskell, it seems clear that we must first ask:

What is an abstract conceptual model of a graphical user interface?

and then embed this model in Haskell, so that there is a direct mapping from
the types and functions in our library to their counterparts in the conceptual
model. As far as we are aware, all previous GUI libraries for Haskell define the
conceptual model of a GUI only informally, or defer to some external system
(such as X Windows, Tk, Gtk, etc.) for many of the details.

In this paper, we present Fruit, a Functional Reactive User Interface Toolkit,
based on a formal model of graphical user interfaces. The Fruit model is is
based on AFRP, an adaptation of ideas from Functional Reactive Animation
(Fran) [9,7] and Functional Reactive Programming (FRP) [14,27] to the ar-
rows framework recently proposed by Hughes [15]. AFRP is based on two
ideas: signals, which are functions from real-valued time to values, and sig-
nal transformers, which are functions from signals to signals. Using only the
AFRP model and simple mouse, keyboard and picture types, we define GUIs
compositionally as signal transformers.

We believe that developing a simple, precise denotational model of graph-
ical user interfaces is valuable for a number of reasons:

• It provides a starting point for proving properties of programs with graphical
interfaces, and for developing related notions of program equivalence.

• We can reformulate the question of whether one library is more “high level”
than another in precise, objective terms, by comparing the semantic models
of the libraries, and asking whether one semantic model is more abstract
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than another [22].

• By clarifying our understanding of the abstract conceptual model of graph-
ical interfaces, we may gain fresh insight into how to extend the model to
new interaction paradigms or see systematic solutions to problems that were
previously solved in an ad hoc manner.

We present examples of this final point later in the paper, when we show how
continuous spatial scaling (zooming) and multiple views can be accomodated
within the Fruit model.

The remainder of this paper is organized as follows. In section 2 we for-
mally define the AFRP programming model, show how the model is embedded
in Haskell, and give simple but precise definitions for some useful combina-
tors and primitives. In section 3 we define GUIs within the AFRP model.
In section 4, we develop a basic application in Fruit, and show two examples
(adding continuous spatial scaling and multiple views) that demonstrate the
benefits of our approach. Section 5 discusses related work. Sections 6 and 7
summarize the status of the implementation and present our conclusions.

2 AFRP Programming Model

Like Fran and FRP, the AFRP programming model is implemented as a
domain-specific language embedded in Haskell [13]. In order to focus on our
new language constructs, we simply assume the existence of a denotational
semantics for Haskell in which Haskell functions denote (partial) functions.
We define our language extensions by giving denotational definitions for our
language constructs that extend this (hypothetical) Haskell semantics.

2.1 Concepts

The Fruit programming model is built around two central concepts: signals
and signal transformers.

Signals

A signal is a function from time to a value:

Signal α = Time → α

We represent Time as a non-negative real number. An example of a signal
is the mouse’s current (x, y) position. If Point is the type of two-dimensional
points, we can model the time-varying mouse position as a Signal Point.

Signal Transformers

A signal transformer is a function from Signal to Signal:

ST α β = Signal α → Signal β
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Informally, we can think of a signal transformer as a box with an “input port”
and an “output port”. If we connect the box’s input port to a Signal α value,
we can observe a Signal β value on the output port.

A simple example of a signal transformer is the identity signal transformer.
At every point in time, the identity signal transformer’s output signal has
the same value as its input signal. Slightly more interesting examples of
signal transformers are lifted functions (the output signal is the point-wise
application of f to the input signal), and integral (the output signal is
the integration of the input signal over time). Note that the identity signal
transformer can be defined as a lifted function, where f is the function id.

2.2 Abstract Types

Conceptually, signals are functions of continuous time, and signal transformers
are functions from signals to signals. As has been argued elsewhere [9,7], a
continuous model can be simpler and more natural than a discrete one when
modeling animation or user interaction. However, in order to guarantee an
efficient implementation on a discrete computer, signal transformers are not
written directly as Haskell functions. Instead, we introduce an abstract type
constructor, ST. A value of type ST a b denotes a signal transformer:

newtype ST a b = ...

The implementation provides a number of primitive signal transformers, and
a set of combinators (the arrow combinators) for assembling new signal trans-
formers from existing ones. Internally, the implementation uses discrete sam-
pling and synchronous streams to approximate the continuous time model. It
has been shown that, as the time between samples approaches zero, the dis-
crete implementation converges to the continuous semantics in the limit [27].

Since ST is a Haskell type constructor, signal transformers are first-class
values: we can pass them as arguments, return them as results, store them in
data structures or variables, etc. In contrast, signals are not first-class values.
This marks a significant departure from Fran’s programming model. Fran’s
Behavior type denotes a signal in the Fruit model, and Fran uses Haskell
functions to obtain the equivalent of our signal transformers.

We outlaw signals as first-class values for two reasons. First, signals alone
are inherently non-modular: while we can apply point-wise transformations
to the observable output of a signal, first-class signal values do not have an
input signal. In contrast, signal transformers have both an input signal and
an output signal, thus enabling us to transform both aspects of an ST value.
In other words, only providing ST as first-class values guarantees that every
signal in the program is always relative to some input signal.

Second, experience implementing Fran [6] and FRP [14] taught us that
allowing signals as first class values inevitably leads to “space-time leaks” [6]
in the implementation. A “space-time leak” occurs when the implementation
needs the complete time-history of a signal to compute one sample value.
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Defining ST as a newtype and only providing a fixed set of primitives and
combinators allows us to prove that the implementation is free of space-time
leaks by simple structural induction on the ST type.

2.3 Arrows

Recently, Hughes proposed arrows as a basis for building combinator libraries [15].
Concretely, Arrow is a Haskell type class that denotes a computation from
some input type to some result type. In his introduction to arrows [15], Hughes
presents a number of examples of arrow instances, including Haskell’s built-in
function type constructor (->) and stream processors, and gives many exam-
ples that demonstrate the utility of arrows for organizing combinator libraries.

The Arrow type class is defined as:

class Arrow a where

arr :: (b -> c) -> a b c

(>>>) :: a b c -> a c d -> a b d

first :: a b c -> a (b,d) (c,d)

In the remainder of this section, we give both informal and formal defini-
tions of each of the arrow operators for the ST type constructor in terms of
our model.

Lifting

One of the most common and useful kinds of signal transformers is a lifted
function, produced by the arr operator. The arr operator for signal trans-
formers has type:

arr :: (b -> c) -> ST b c

Given any Haskell function f of type (b -> c) (i.e. a function mapping b
values to c values), arr f denotes a signal transformer that maps a Signal b
to a Signal c by applying f point-wise to the input signal.

For example, given the function

sin :: Floating a => a -> a

from the standard Prelude, arr sin is a signal transformer whose output
signal at time t is sin applied to the signal transformer’s input signal at time
t.

Formally, we define arr f for signal transformers as follows:

[[arr f]] = λs : Signal α . λt : Time . [[f]](s(t))

Serial Composition

The arrow infix operator (>>>) composes two arrows. For signal trans-
formers, if we have:

fa :: ST b c
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ga :: ST c d

then fa >>> ga has type ST b d and denotes the signal transformer that feeds
its input signal to fa, uses fa’s output signal as ga’s input signal, and uses
ga’s output signal as the resulting output signal.

Formally, we define serial composition for signal transformers as reverse
function composition:

[[fa >>> ga]] = ([[ga]] ◦ [[fa]])

Widening

Given an arrow from b to c, the first operator widens it to be an arrow
from (b,d) to (c,d), for all types d. For signal transformers, the first

operator has type:

first :: ST b c -> ST (b,d) (c,d)

Informally, (first fa) denotes a signal transformer that feeds the first half
of its input signal (a signal of b values) to fa to produce a signal of c values,
and pairs this with the second half of the original input signal (a signal of d
values) to produce the output signal.

Formally, we can define first as:

[[first fa]] =

λs : Signal(β × γ) . pairZ ([[fa]] (fstZ s)) (sndZ s)

where fstZ, sndZ and pairZ are the obvious projection and pairing func-
tions for signals of pairs.

ArrowLoop

The names “signal” and “signal transformer” in our model suggest analo-
gies to analog and digital signal processing and computer hardware. In those
domains, feedback cycles are used in conjunction with the inherent propaga-
tion delay of wires to implement many interesting circuits such as flip-flops or
latches. In a feedback cycle, some portion of the output signal is fed back as
an input signal. Feedback cycles are also useful in Fruit, and are defined using
the loop combinator [16]. The loop combinator is defined in the ArrowLoop

type class:

class Arrow a => ArrowLoop a where

loop :: a (b,d) (c,d) -> a b c

For signal transformers, if fa has type ST (b,d) (c,d), then loop fa

denotes a signal transformer that instantiates fa, and pairs the second half of
fa’s output signal with an external input signal to form fa’s input signal.

Formally, we define loop for signal transformers as:

[[loop fa]] =

λs : Signal β. fstZ(Y(λr.[[fa]](pairZ s (sndZ r))))
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where Y is the standard least fixed point operator.

Discrete Events

In modeling reactive systems in general (and user interfaces in particu-
lar), we often need to model event sources that produce event occurrences at
discrete points in time. For example, the left mouse button being pressed is
naturally modeled as an event that occurs at some point in time. For now, we
define event sources in our conceptual model as signals of Maybe values: 4

EventSource α = Signal (Maybe α)

= Time → (Maybe α)

If the value of an event source at time t is Nothing, then we say that
the event source does not occur at time t. Conversely, if the value of an event
source at time t is Just v, then we say that the event source has an occurrence
at time t that carries value v.

As with Signal, EventSource lives in the conceptual model, and does not
appear directly in our API. However, Maybe types appear as arguments to the
ST type constructor when event sources are needed. We will see an example
of this shortly.

2.4 Primitive Signal Transformers

Fruit defines a number of primitive signal transformers. Each such primitive
has a denotational definition in terms of our formal model. The denotational
definitions of these primitives are derived directly from their counterparts in
Fran and FRP. We define a couple of these primitives here to give a taste of
the semantics. The interested reader is referred to the denotational definitions
of Fran and FRP semantics for a more complete account [9,7,27].

Piecewise Constant Signals

Given an event source, it is often useful to derive a continuous signal whose
value is constant between event occurrences. This is sometimes called a “sam-
ple and hold” or “zero-order hold” circuit in the signal processing literature.
The primitive stepper is provided for this purpose:

stepper :: a -> ST (Maybe a) a

Informally, stepper x0 denotes a signal transformer that transforms an
EventSource α to a Signal α. Initially, the output signal of stepper x0

has value x0. When an event carrying value x1 occurs on its input signal,

4 This representation of events as continuous signals of Maybe values raises some thorny
theoretical issues because it allows for dense event sources (ones that have infinitely many
occurrences in a finite interval of time). We have explored some possible solutions to this
problem [27], but a detailed exploration of this issue is outside the scope of this paper.
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the value of the stepper’s output signal becomes x1. The value of the output
signal remains x1 until the next event occurrence (carrying, say, x2), at which
point the value of the output signal becomes x2, and so on.

Formally, we define stepper as follows:

[[stepper x]] =

λs.λt.





a ∃a.∃ta ∈ (0, t).((s ta) = Just a))

∧ 6 ∃tb ∈ (ta, t).((s tb) = Just b)

x otherwise

Integration

The primitive signal transformer integral has type:

integral :: Floating a => ST a a

The output signal of integral is the integration of its input signal over time.
Formally:

[[integral]] = λs.λt.

t∫

0

s(t)dt

3 Fruit: A Compositional User Interface Library

We define an interactive graphical user interface (GUI) as:

type GUI a b = ST (GUIInput, a) (Picture, b)

A GUI a b is a signal transformer that takes a graphical input signal (GUIInput)
paired with an auxiliary semantic input signal (a) and produces a graphical
output signal (Picture) paired with an auxiliary semantic output signal (b).

In the Fruit model, every interactive component is a value of type GUI a b

(for some types a and b). This differs from conventional toolkits in which there
are distinct types for “applications”, “containers” and “components”. We
consider this flat type structure a feature, as it leads to a compositional model
of user interfaces. Any two GUI values can be composed using our layout
combinators to form a composite GUI in which the two child GUIs appear
adjacent to one another. The result returned from the layout combinator is
itself a GUI, and so can also be used in a layout combinator, displayed in a
top-level window, etc.

The GUIInput and Picture signals allow the application to feed time-
varying keyboard and mouse information into the GUI, and get back time-
varying visual information (pictures to display). The auxiliary input and out-
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put signals allow a GUI to observe and emit extra (time-varying) information
for use in the rest of the program. For example, a GUI representing a button
component might provide an event source output signal that has occurrences
when the button is pressed.

The Picture type is an abstract type that denotes a static picture that can
be rendered on screen. Our prototype implementation uses a scalable vector
graphics library based loosely on the graphics library defined in “The Haskell
School of Expression” (SOE) [14], but any picture type that supports basic
geometric primitives, bounds calculations and affine transforms would work.

3.1 The GUIInput Type

The GUIInput type represents the part of the input to a GUI specifically
related to its visual interactive characteristics. GUIInput is essentially just a
pair of records:

data Mouse = {mpos :: Point,

lbDown :: Bool,

rbDown :: Bool }

data Kbd = { keyDown :: [Char] }

type GUIInput = (Maybe Kbd, Maybe Mouse)

The Kbd and Mouse types are wrapped in Maybe types to account for the
focus model. In modern window systems, there is always a foreground appli-
cation that receives the keyboard and mouse input from the window system
to the exclusion of all other applications running in the background. The
window system typically provides a lightweight gesture (such as mouse-over
or click-to-type) that allows the user to shift the focus to another application.
This concept of focus model is equally applicable within a window, as we can
view moving the mouse between two different visible components of a window
as shifting the mouse focus from one component to the other. Keyboard focus
traversal within a window (using the TAB key, for example) can be modeled
analogously.

Each of the Maybe values in the GUIInput signal to a GUI are Nothing

when the GUI does not have focus, and Just x (for some x) when the compo-
nent has the focus. Note that, although the types of these signals are the same
as a discrete event source, they are, conceptually, not discrete event sources.
As it turns out, however, many of the event source combinators also have
useful interpretations for such continuous Maybe signals. We will see several
examples of this.

3.2 Composing GUIs

These definitions, combined with the arrow combinators and primitive be-
haviors from the previous section, form the basis of our GUI library. Even
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without any additional definitions, we can define many useful and interesting
richly interactive user interfaces.

For example, we can define mouseST as a signal transformer that takes a
GUIInput input signal and produces a Point output signal that is the mouse’s
current position if the GUI has the focus, or “remembers” the last position
that had focus otherwise:

mouseST :: ST GUIInput G.Point

mouseST = arr snd >>> arr (fmap mpos)

>>> stepper G.origin2

The G refers to the qualified import of the graphics library; G.origin2

is the Cartesian origin. Note that we are feeding the Maybe Mouse signal to
the stepper event source combinator. The result is a continuous signal that
maintains the last position of the mouse when the GUI loses mouse focus.

Using this definition, here is a definition for a GUI that draws a red ball
that follows the mouse:

-- from the graphics library:

move :: Picture -> Point -> Picture

ballPic :: Picture

ballPic = (circle ‘withColor‘ red)

ballGUI :: GUI () ()

ballGUI = first (mouseST >>> arr (move ballPic))

In the above definition, ballGUI is given type GUI () () because it neither
observes nor produces any semantic signals other than its GUIInput input
signal and its Picture output signal. The subexpression (mouseST >>> arr

(move ballPic)) has type ST GUIInput Picture. By using the first op-
erator, we widen this ST value to one of type ST (GUIInput,a) (Picture,a)

for all types a, and this generalized type is of course equivalent to GUI a a.

3.3 Running a GUI

A GUI is brought to life with the runGUI action, which runs a GUI in a
top-level window: 5

runGUI :: Unit a => GUI a b -> IO ()

The implementation of runGUI handles all low-level (imperative) communi-
cation with the graphics library to read primitive window events and draw
pictures on the screen. The window displayed by the action runGUI ballGUI

5 For convenience, we define a type class Unit with an instance for () and all products
of Unit, such as (), ((),()), etc. This will be convenient for simple GUIs composed with
layout combinators, as we shall see later.
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Fig. 1. Running ballGUI

is shown in figure 1.

3.4 Brief Aside: Arrows Syntactic Sugar

When defining signal transformers using the arrow combinators, we must write
definitions in a point-free style. In the context of Fruit, this means that the
names in our program refer to signal transformers, but we cannot name signals
explicitly.

The arrows syntactic sugar is a proposal by Ross Paterson [16] with an
existing implementation as a preprocessor. The arrows syntactic sugar allows
arrows to be defined using a new syntactic form, introduced by the keyword
proc. The proc form acts as a kind of abstraction for arrows, analogous to
Haskell’s built-in lambda abstraction. Within the body of a proc, the arrows
syntactic sugar allows us to explicitly name the signals, and specify how the
signals are connected within a signal transformer.

As with lambda abstraction, proc takes a pattern that will be matched
point-wise over the points of the arrow. The identifiers used in the pattern
may then be used within the body of the arrow. For example, we could have
defined mouseST using the arrows syntactic sugar as:

mouseST :: ST GUIInput G.Point

mouseST = proc (_, mbm) -> do

... -- not shown (yet)

In this definition, the pattern ( ,mbm) is matched against the input type (
GUIInput here).

Informally, the body of an arrow definition consists of a sequence of arrow
applications of the form:
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pat1
st1←−−−−≺ exp1

pat2
st2←−−−−≺ exp2

...

patn−1

stn−1←−−−−≺ expn−1

stn−−−−−−≺ expn

Each such arrow application feeds the signal described by expi to the signal
transformer sti. Each pati is matched against the output type of sti, and
introduces new arrow-bound variables for use in the arrow applications that
follow. The final such application (which does not include a pattern) defines
the output signal of the entire proc. Note that, in the conversion to the ASCII

character set,
st←−−−−≺ is written as <- st -<. Our complete definitions for

mouseST and ballGUI using the arrows syntactic sugar are thus:

mouseST = proc (_, mbm) -> do

stepper G.origin2 -< fmap mpos mbm

ballGUI :: GUI () ()

ballGUI = proc (gin,_) -> do

mouse <- mouseST -< gin

returnA -< (move ballPic mouse,())

where returnA is defined as arr id in the arrows library.

The subset of the arrows syntactic sugar used in this paper is defined
formally by the following translation:

proc p -> do { e1 -< e2 } =

arr (\p -> e2) >>> e1

proc p -> do { p’ <- e1 -< e2; A } =

returnA &&& arr (\p -> e2) >>> second e1 >>>

proc (p,p’) -> do {A}

proc p -> do { let p’ = e; A } =

returnA &&& arr (\p -> e) >>> proc (p,p’) -> do {A}

proc p -> do { rec {A}; B } =

returnA &&& loop proc (p,pA) -> do

{ A; returnA -< (pB,pA)} >>> proc (p,pB) -> do { B }
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3.5 Simple Components

A GUI’s auxiliary semantic input and output signals convey semantic signals
to and from the GUI not directly related to the GUI’s visual behavior, and
enable the GUI to be connected to the rest of the program. The Fruit library
defines a number of GUI components that use these auxiliary signals.

Labels

The simplest components are labels, defined as:

flabel :: GUI LabelConf ()

ltext :: String -> LabelConf

A label is a GUI whose picture displays a text string from its auxiliary input
signal, and produces no semantic output signal.

We use a trick from Fudgets [4] to specify configuration options. LabelConf,
ButtonConf, etc. are simple State → State functions. These functions are
very similar to the update functions generated by using Haskell’s labeled field
syntax, in that they will update one component of the state, but leave all
others unchanged. This gives us a simple mechanism for composing property
definitions (using the function composition operator ’.’) and for assigning de-
fault values for component properties. We will see an example of this shortly.

Buttons

A Fruit button (fbutton) is a GUI that implements a standard button
control. The declaration of fbutton is:

fbutton :: GUI ButtonConf (Maybe ())

btext :: String -> ButtonConf

enabled :: Bool -> ButtonConf

This declares fbutton as a GUI that, in addition to its visual input and output
signals, takes an input signal of configuration options specifying properties of
the button such as the label to display in the button, whether the button
is enabled, etc. The button produces an output event source that has an
occurence when the button is pressed by the user. Each event occurence on
the output signal carries no information other than the fact of its occurence,
hence the type Maybe (). Here is an example of a GUI that uses an fbutton:

butTest :: GUI () (Maybe ())

butTest = proc (inpS,_) -> do

fbutton -< (inpS,btext "press me!")

The display produced by runGUI butTest is shown in figure 2. Note that the
above example did not need to explicitly specify the button’s enabled property
(which is True by default).
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Fig. 2. A simple button

Fig. 3. Using besideGUI

3.6 Basic Layout Combinators

To be able to build more interesting interfaces, we need a mechanism to com-
pose multiple GUIs into a larger GUI. We provide two basic layout combinators
for this purpose:

aboveGUI :: GUI b c -> GUI d e -> GUI (b,d) (c,e)

besideGUI :: GUI b c -> GUI d e -> GUI (b,d) (c,e)

The layout combinators produce a combined GUI that behaves as the two
child GUIs arranged adjacent to one another. Here is a small example that
illustrates the use of besideGUI:

hello :: GUI () (Maybe (),())

hello = proc (inpS,_) -> do

(fbutton ‘besideGUI‘ flabel) -<

(inpS, (btext "press me",

ltext " PLEASE! "))

The result of running this GUI in a top-level window with runGUI is shown
in figure 3. A translation transformation has been applied to the second
argument GUI to position it beside the first argument. The implementation
of spatial transformation for GUIs will be described in detail in section 4.4.1.

In addition to transforming the second argument, the layout combinators
must demultiplex the input signal into two disjoint signals to be passed to each
child. This is achieved by clipping the GUIInput signal based on the mouse
position: The GUI under the mouse receives the (appropriately transformed)
keyboard and mouse signals, while its sibling receives Nothing values for the
keyboard and mouse to indicate that it does not have focus. 6

As this example illustrates, the composed GUI has auxiliary semantic in-
put and output signals whose types are the product of the corresponding types

6 Our current implementation of focus is based solely on mouse position. This is slightly
simplistic, as modern user interface guidelines stipulate a keyboard focus cycle that is
independent of the mouse focus. Extending our implementation to support such a split
focus model is straightforward.
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from the child GUIs. This has substantial syntactic consequenses. Programs
can become complicated rather quickly, because the types of the composed
GUI grow in proportion to the nesting depth of the layout. We have written
numerous small example programs using our layout combinators without the
arrows syntactic sugar, and have found the resulting programs to be a hope-
lessly unreadable mess of lifted tupling and untupling. We were exploring
possible GUI-specific syntactic extensions when we encountered the arrows
syntactic sugar proposal. We have been pleasantly surprised by just how well
the syntactic sugar works for a specific problem domain (GUIs) for which it
wasn’t specifically designed.

4 Composing Applications

In this section, we demonstrate Fruit by developing a basic application. The
application (a “Paddleball” game with a button for restarting the game) is
small enough to allow us to study it in detail, but substantial enough to
capture some of the essential issues that arise in building larger applications.

4.1 Paddleball as a GUI

Hudak [14] develops an implementation of a simple Fran-like reactive anima-
tion language, and implements “Paddleball in Twenty Lines” as a demon-
stration of the power and elegance of functional reactive programming. Since
the Fruit model subsumes the functional reactive model on which which it
is based, it was a simple matter to re-implement paddleball as a GUI. The
complete source code is shown in figure 4.

A couple of combinators used in pball that we have not yet explained are:

-- An accumulating stepper: On every event occurence,

-- function carried with the occurence is applied to

-- the state.

stepAccum :: a -> ST (Maybe (a -> a)) a

-- replaces the value in an event occurence with

-- a new value:

ebind :: a -> Maybe b -> Maybe a

ebind = fmap . const

Essentially, the code for pball does the following:

• Sets up the ball. The ball’s x and y position (xpos and ypos) are defined
as the integral of velocity (xvel and yvel, respectively). The velocities are
defined as piece-wise constant signals using stepAccum; both start at vel

(the game velocity given as an argument to pball), but flip sign (negate)
when a bounce event occurs. Note that these definitions are mutually re-
cursive: xpos is defined in terms of xvel, which is in turn defined in terms
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paddle :: Double -> G.Rectangle2DDouble

paddle xpos = G.rectangle (xpos - 25) 200 50 10

-- The paddleball game, capable of playing one game

-- Output signal is an Event Source that occurs

-- when the game ends.

pball :: Double -> GUI () (Maybe ())

pball vel = proc (inpS,_) -> do

rec xi <- integral -< xvel

let xpos = 30 + xi

yi <- integral -< yvel

let ypos = 30 + yi

let ballS = ell (xpos-12.5) (ypos-12.5) 25 25

let ballPicS = G.shapePic ballS ‘G.withColor‘

G.yellow

xbounce <- when -< ((xpos > 175) || (xpos < 30))

ybounce <- when -< ((ypos < 30) || hitPaddle)

let hitPaddle = intersects ballS paddleS

xvel <- stepAccum vel -< ebind negate xbounce

yvel <- stepAccum vel -< ebind negate ybounce

mpos <- mouseST -< inpS

let paddleS = paddle (G.pointX mpos)

let paddlePicS = G.shapePic paddleS ‘G.withColor‘

G.green

gameOver <- when -< ypos > 200

let gamePic = G.box

(walls ‘G.over‘ paddlePicS ‘G.over‘

ballPicS) gameBox

returnA -< (gamePic,gameOver)

Fig. 4. Paddleball GUI source code

of xbounce, defined in terms of xpos. The do rec ... form of the arrows
syntactic sugar takes care of setting up the appropriate connections by using
the loop combinator (from ArrowLoop), and the fact that the integral of
a signal at time t depends on the values of the input signal up to (but not
including) time t ensures that the feedback cycle is well-defined.

• Sets up the Paddle: This is just a rectangle shape (paddle), whose x position
is determined by the mouse position.

• Performs Collision Detection: This is handled by the definitions of xbounce,
ybounce and hitPaddle. hitPaddle is defined by a call to the graphics
library to check for the intersection of the ball (ballS) with the paddle
(paddleS). xbounce and ybounce are defined using the when combinator:

when :: ST Bool (Maybe ())

56



Courtney and Elliott

Fig. 5. Paddleball with a Restart Button

The when combinator converts a continuous Boolean signal to an event
source. The output event occurs when a rising edge is observed on the
input signal.

By implementing the Paddleball game as a GUI we obtain spatial mod-
ularity (relative to Fran and FRP), and this, in turn, enables reuse: we can
use the layout combinators to compose pball with other GUIs to form more
interesting composite GUIs, and we can have as many Paddleball games active
in our GUI as we wish.

4.2 Adding a “Start Over” Button.

Paddleball is a fun game, but, as defined here, it only plays one game. Our
first refinement to the game is to add a restart button that allows us to play
again, as show in figure 5. We define rpball0 (“restartable” paddle ball) as
follows: 7

-- pbgame is a version of pball that

-- restarts the game when its input

7 We have omitted the code for pbgame here to save space. It is easily derived from pball
using the FRP switch combinator, which in AFRP has the signature:
switch :: ST b c -> ST (b,Maybe (ST b c)) c
See [27] for a detailed discussion of the semantics of switch.
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-- event source has an occurrence:

pbgame :: Double -> GUI (Maybe ()) (Maybe ())

-- paddle ball with a reset button:

rpball0 :: Double -> GUI () ()

rpball0 vel = proc (inpS,_) -> do

rec (picS,(pressES,_)) <-

(fbutton ‘aboveGUI‘ (pbgame vel)) -<

(inpS,(btext "Play Again!", pressES))

returnA -< (picS,())

The definition of rpball0 uses the do rec... form of the arrows syntactic
sugar to feed the output event source from the reset button (pressES) back
as an input event source to pbgame.

4.3 Selectively Enabling the Reset Button

When implementing GUIs, we frequently need to dynamically disable certain
components of the user interface based on the program’s state. Components
that are disabled are typically rendered with a “grayed out” appearance to
give the user a visual cue that the corresponding action is invalid.

We demonstrate this kind of programming in Fruit by disabling the reset
button while a game is in progress:

-- like rpball0, but selectively disable

-- the restart button:

rpball1 :: Double -> GUI () ()

rpball1 vel = proc (inpS,_) -> do

rec (picS,(restart,gameEnds)) <-

(fbutton ‘aboveGUI‘ (pbgame vel)) -<

(inpS,(bprops,restart))

let bprops = (btext "Play Again!"

. enabled allowRestart)

let gameDone = (ebind True gameEnds)

‘emerge‘ (ebind False restart)

allowRestart <- stepper False -< gameDone

returnA -< (picS,())

The enabled property of the button is controlled by the allowRestart signal,
which is False initially, set to True when a game ends, and set to False again
when the restart button is pressed. As mentioned in section 3.5, the function
composition operator (.) is used to combine button properties in the definition
of bprops.
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4.4 Exploring Modularity

Thus far our discussion has simply explored how we can implement user in-
terfaces in a purely functional way. This is certainly an interesting academic
exercise, and carries with it (we hope) the benefits of increased reasoning
power that we expect from purely functional programming models. But we
might be tempted to ask if there are any other purely pragmatic advantages to
a purely functional approach? In this section, we explore two such advantages:
continuous spatial scaling and multiple views.

4.4.1 Transforming GUIs

One difference between Fruit and every other production user interface toolkit
we are aware of (for either imperative or functional languages) is that Fruit
provides a uniform model and programming interface for both “low-level” in-
teractive graphics and “high level” user interface components such as buttons.
Moreover, since GUIs are first class values that denote pure functions, we can
use higher-order operators to manipulate GUIs in useful ways.

One of the most basic higher-order functions is the function composition
operator (.); we use >>> instead, but the denotation is equivalent. (Recall that
(>>>) is reverse composition, so f >>> g = g . f for the function space
arrow.) Armed with just this operator, we can define spatial transformation
of a GUI. We will define a generalized transformGUI operator that applies an
(affine) spatial transform to a GUI to produce a new GUI:

transformGUI :: G.Transform ->

GUI b c -> GUI b c

Assuming that we have a basic understanding of spatial transformation for
pictures, how shall we define spatial transformation of a GUI?

First, let’s quickly review spatial transform for pictures. When we apply a
spatial transform to a picture, it changes the size, position, or orientation of the
picture. Consider translation of a picture by a displacement vector (∆x, ∆y).
In general, this translation maps every (x, y) position in the original image to
an (x′, y′) position in the new image by:

(x′, y′) = (x + ∆x, y + ∆y)

or, more generally, if tf represents the transformation, and (%$) is the apply-
transform operator:

(x′, y′) = tf %$ (x, y)

Note that %$ is defined as part of the Transformable type class, so instance
declarations may be given for any type that supports spatial transformation.

Since a GUI’s visual output is a signal of Picture, and our graphics library
supports applying affine transforms to Picture values, we can transform a
GUI’s output by point-wise application of the transform to the picture output
signal. But what about input?

If g is a GUI, point-wise transformation of g’s picture signal will map every
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(x, y) position in g’s coordinate system to (x′, y′). In order to give an accurate
input signal to g, transformGUI must map every (x′, y′) mouse position back
to its corresponding (x, y) position in g. This suggests a general principle
for transforming functions: To transform a function (in time or in space),
apply the transform point-wise to the output, and apply the inverse transform
point-wise to the input. This idea corresponds exactly to Pan’s spatial “hyper-
filters” [8], i.e., spatial transformations of Image → Image functions.

The implementation of transformGUI is then simply:

transformGUI tf g = proc (inp, b) ->

(pic, c) <- g -< (inverse tf %$ inp, b)

returnA -< (tf %$ pic, c)

This model for transforming GUIs is used in the implementation of the
layout combinators to reposition their second argument GUI. The transform to
apply to the second argument is determined dynamically by applying a bounds

operation point-wise to the Picture signal produced by the first argument
GUI.

4.4.2 Spatial Scalability

While our basic layout combinators only use basic horizontal and vertical
translations, the transformGUI operator can apply any affine transform to a
GUI. For example, here is a version of Paddleball that runs in a window 1/2
the size of the original:

-- uniform scaling transform (from Graphics library):

uscale :: Double -> Transform

minipb :: Double -> GUI () (Maybe ())

minipb vel =

transformGUI (uscale 0.5) (pball vel)

When run, minipb displays a fully functional version of Paddleball shrunk
down to postage stamp size. This type of zooming capability is obviously ex-
tremely useful for implementing vector or bitmap graphics editors, document
previewers, etc. where zooming is a natural operation. But recent work in
the Human/Computer Interaction (HCI) community has proposed continu-
ous zooming can be a useful abstraction in its own right for many applica-
tions [17] [2]. Providing continuous zoom allows graphical interfaces to be
designed so that users can “zoom out” for an overview of the data and “zoom
in” for more detail. Pad [17] and Jazz [2] are two recent research projects
that augment the widget set of a traditional imperative GUI toolkit with the
abstraction of a continuously zoomable drawing surface.

The starting points for Pad and Jazz were the toolkits Tk and Swing,
respectively. Because the Tk and Swing programming interfaces hide their
connection with the graphics subsystem, Pad and Jazz are essentially new
GUI toolkits, and require that existing applications be rewritten from scratch
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to take advantage of the zooming capabilities. In contrast, Fruit makes the
connection to the interactive graphics subsystem seamless and explicit in the
type of GUI. As minipb demonstrates, this explicit connection to interactive
graphics allows us to incorporate novel ideas (such as continuous zooming)
without a major restructuring of the library or completely rewriting applica-
tions.

4.5 Adding Multiple Views

Many GUI-based applications need multiple views on to the same underlying
data set. For example, an icon editor might allow the user to open two views
of the icon, one showing an editable, highly zoomed-in view where each pixel
is a large square, and the other showing a preview of the icon at normal size.
As the icon is edited in the zoomed view, the preview view should be updated.

We can really distinguish two kinds of views: passive and active. A passive
view observes the underlying data set, but does not provide any means for
interacting directly with the data set. The preview window of the icon editor
just described is an example of such a passive view. In contrast, an active
view is interactive: user actions in either view are reflected in other views and
the underlying data set.

The requirement for multiple views is so common in user interfaces that
the Model-View-Controller (MVC) design pattern has emerged as a way to
structure imperative object-oriented programs to support multiple views when
using imperative GUI toolkits [11].

For many practical applications (such as icon editors, illustration pro-
grams, etc.), the multiple views provided by the application are views of the
same underlying (time-varying) picture, with different affine transformations
applied to produce the view. For example, a zoomed-in view of an icon is a
view of the same picture as a zoomed-out view; the pictures differ only by a
scaling transformation. For simple cases such as this, multiple views may be
added in Fruit to any GUI, without any pre-meditation on the part of the
original GUI programmer.

Passive Views

A view can be though of as “a GUI with no mind of its own”, as shown
in figure 6. A view obtains its Picture signal from some external source and
delivers its GUIInput signal to some external source. Concretely, a view is
a GUI that takes a Picture signal as its auxiliary semantic signal, and uses
this signal as its own Picture signal. Similarly, it delivers its GUIInput signal
as its auxiliary output signal. This describes a simple crossover configuration
that leads to the following definition:

view :: GUI G.Picture GUIInput

view = arr swap
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Fig. 6. Implementation of a view

Fig. 7. Multiple Views

Given this definition, we can implement a version of Paddleball that has two
views next to each other, as shown in figure 7:

pbview :: Double -> GUI () ()

pbview vel = proc (inpS,_) -> do

rec (picS,(activeIn,_)) <-

(view ‘besideGUI‘ view) -<

(inpS,(gamePic,gamePic))

(gamePic,_) <- (rpball1 vel) -<

(activeIn,Nothing)
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returnA -< (picS,())

In this implementation, there are two views adjacent to each other. The view
on the left is an active view, as its auxiliary input signal (activeIn) is fed as
the input signal to the actual rpball1 GUI. The view on the right is passive:
Its picture signal is the same (gamePic) signal as the active view on the left,
but its GUIInput signal is not connected to anything.

Multiple Active Views

Adding passive views to a GUI is certainly useful for many applications.
But it is much more interesting, useful and symmetric to provide multiple
active views, so that the user can interact with any view.

Recall from section 3.1 that we defined GUIInput to account for a focus
model : At every point in time, the visual input signal to a GUI is either
(Nothing, Nothing) (when the component does not have focus), or (Just

kbd,Just mouse) when the GUI has mouse focus. Further, as described in
section 4.4.1, the layout combinators perform clipping as well as transforma-
tion to ensure that only the GUI under the mouse receives (a transformed view
of) the GUIInput signal. Recall, too, that our programming model includes a
set of event source combinators that operate on signals of Maybe values.

Armed with this knowledge, we can now consider how to implement ac-
tive views. In the implementation of pbview, each view is passed to the
besideGUI layout combinator. The besideGUI combinator uses clipping and
transformation to demultiplex its input signal into two signals, one for each
child. At every point in time, one child’s input signal is (Just kbd, Just

mouse) while the other’s is (Nothing, Nothing)). Regardless of which GUI

has focus, the input signal will be transformed into the child’s local coordinate
system. Given this knowledge, it is a simple matter to define a mergeGUIInput

combinator that will merge two disjoint GUIInput signals back in to a single
signal by favoring the Just values and discarding the Nothing values. We
define mvpball (“multi-view paddleball”) as:

-- event merge, left-biased (from AFRP library):

emerge :: Maybe a -> Maybe a -> Maybe a

emerge mbeL mbeR = maybe mbeR id mbeL

mergeGUIInput :: GUIInput -> GUIInput ->

GUIInput

mergeGUIInput (mbkA,mbmA) (mbkB,mbmB) =

(mbkA ‘emerge‘ mbkB,

mbmA ‘emerge‘ mbmB)

mvpball :: Double -> GUI () ()

mvpball vel = proc (inpS,_) -> do

rec (combinedPic,(leftIn,rightIn)) <-
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Fig. 8. Dynamic Labels Example

(view ‘besideGUI‘ view) -<

(inpS,(masterPic,masterPic))

let mergedIn = mergeGUIInput leftIn rightIn

(masterPic,_) <- (rpball1 vel) -<

(mergedIn,())

returnA -< (combinedPic,())

In this version of Paddleball, both views are treated symmetrically: The user
can play or press the restart button in either view, and the action is reflected
in both views.

Fruit is the only toolkit we are aware of that provides multiple active
views “for free”, without requiring any extra forethought or planning by the
programmer of the original GUI.

4.6 Dynamic Interfaces

Thus far, all of the GUIs we have defined have been essentially static in the
sense that the set of interface components visible on screen is fixed over the
lifetime of the program. To support realistic user interfaces, it must be possible
to dynamically add or remove components from the interface at runtime.

To demonstrate Fruit’s support for dynamic interfaces, we implement an
application (dynLabels) that dynamically adds new labels to an interface in
response to a button press. The application is shown in figure 8. Every time
the button is pressed, a new label is added to the interface (at the right edge
of the current GUI) that display a count of how many times the button has
been pressed in the program thus far. The screenshot shows the program after
the button has been pressed six times. 8

Since GUIs are first class values, we can maintain the current GUI that
appears on-screen (using, say, stepAccum or some other accumulating signal
transformer), and add to this GUI by using a layout combinator. Using such an
accumulator in conjunction with switch allows us to switch from displaying
one GUI to displaying the updated GUI. This pattern is so common and useful
that we provide an accumST combinator to support it:

accumST :: (ST b c -> d -> ST b c)

8 This example only adds components to the interface and does not remove them. Extend-
ing to allow removal as well as addition is straightforward.
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-> ST b c -> ST (b,Maybe d) c

The accumST f st0 -< (iS,eS) will behave initially as (st0 -< iS). When
an event occurs on eS, accumST passes the current signal transformer and the
event occurrence value to f to obtain a new signal transformer. The accumST

will then switch in to the signal transformer returned, which becomes the
“current” signal transformer. The code for dynLabels is:

-- A set of counting labels:

countLabels :: GUI (Maybe ()) ()

countLabels =

let addLabel :: GUI () () ->

Int -> GUI () ()

addLabel labels n = labels

‘besideGUI_‘ (mkLabel n)

in proc (inpS,es) -> do

lblNumE <- countE -< es

(picS,_) <- accumST addLabel (mkLabel 0)

-< ((inpS,()),lblNumE)

returnA -< (picS, ())

dynLabels :: GUI () ()

dynLabels = proc (inpS,_) -> do

rec (picS,(pressES,_)) <-

(fbutton ‘besideGUI‘ countLabels) -<

(inpS,(btext "press me!", pressES))

returnA -< (picS,())

5 Related Work

There have been many, many GUI toolkits implemented for Haskell, including
Haggis [10], TkGofer [5], FranTk [23], and Fudgets [4]. These toolkits cover
the spectrum from the mostly imperative (Haggis) to the mostly functional
(Fudgets).

FranTk is similar to Fruit in the sense that it too uses the Fran reactive pro-
gramming model (and its combinators) to specify the connections between user
interface components. However, FranTk uses an imperative model for creat-
ing widgets, maintaining program state (with mutable variables or “MVars”),
and wiring of cyclic connections (which occur in most GUIs, including the
examples in this paper).

The closest relative to our work is Fudgets. Fudgets are implemented as
stream processors, where each Fudget has high level and low level input and
output streams. The high-level streams in Fudgets serve a role similar to the
auxiliary semantic signals in our GUI type. The programming interface to
Fudgets is very similar to that of Fruit, although Fudgets is based on discrete,
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asynchronous streams, whereas Fruit is based on continuous, synchronous sig-
nals.

Another difference is that Fruit is based on an abstract conceptual model
of GUIs, whereas Fudgets is based on augmenting Haskell’s stream-based I/O
system with request and response types for the X Window system. Since we
have not seen a formal definition of X windows, it is not clear to us what the
denotational model of a Fudget is, beyond saying that it is a stream processor
that emits and consumes X protocol requests. We believe that Fruit’s model
enables more precise reasoning about Fruit programs.

However, the Fruit programming interface is not without cost. Because
any Fudget can emit an I/O request, a Fudget to perform file or network I/O
can be added to a Fudget program just as easily as adding a graphical Fudget.
In contrast, adding such features to Fruit would require explicit threading of
the I/O actions through the Fruit program.

Finally, our work is similar to (and partially inspired by) Pike’s pioneer-
ing work on Mux [20] [19], implemented in the language Newsqueak [21], a
successor to Cardelli and Pike’s language Squeak [3]. In Mux, every applica-
tion is a process that communicates with the window system using CSP-style
synchronous channels. The interface to each process has two input channels
for keyboard and mouse input, and an output channel for producing pictures.
The Mux window system itself is such a process that does simple multiplexing
and demultiplexing to route messages between its input and output channels
and those of its children. Thinking about composition of independent windows
as multiplexing and demultiplexing is similar to our layout combinators.

The Fruit programming model owes much to its ancestors Fran and FRP.
The most recent implementation of SOE FRP includes input types in the def-
inition of Behavior, and an Arrow instance declaration for Behavior. The
SOE FRP combinators are defined as ordinary Haskell functions, and the in-
terface includes a primitive combinator, runningIn, that enables a signal to
masquerade as a Behavior. In contrast, our interface defines every combina-
tor as a signal transformer whose inputs are specified explicitly in its input
type, and we use the arrow combinators for composition and application. Our
programming interface thus gains modularity (as we can interpose functions
such as spatial transformation on an ST’s input signal), and emphasizes the
distinction between signal transformers and signals. However, we depend on
the arrows syntactic sugar to make our model viable for writing real programs.

6 Current Status

We have implemented a working prototype of Fruit that is capable of run-
ning all of the examples presented here. The prototype includes a basic
subset of the FRP combinators (implemented as synchronized stream pro-
cessors). For visual display, Fruit uses a new vector graphics library, Haven,
that we developed for this project. The interface to Haven is purely functional
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and implementation-independent, but our reference implementation uses the
Java2D rendering engine. The low-level calls to Java2D are handled using
another tool, Elijah, that provides a connection to the Java Native Interface
via GreenCard, also implemented as a side project specifically for use in Fruit.
We plan to release both Haven and Elijah as independent projects.

We refer to Fruit as a “prototype” only because it does not yet include a
complete set of user interface components. Our focus thus far has been on
figuring out the right abstract conceptual model and demonstrating that this
model is viable and practical.

7 Conclusions and Future Work

In this paper, we presented a GUI toolkit for Haskell based on a formal model
of graphical user interfaces. We showed how this model could be embedded in
Haskell, and how the library could be used to construct a plausible example
application. We also demonstrated some of the benefits of our approach, by
showing how continuous spatial scaling and multiple views could be easily
accomodated within the model.

Our results so far are very preliminary but encouraging. Building a library
based on a formal model appears to be practical and provides some useful
additional benefits, but we need to explore both of these areas in more depth.

In the short term, we plan to replace our low-level stream-based FRP im-
plementation with a much more efficient data-driven implementation, add a
complete and realistic set of widgets, and add support for efficient dynamic
collections. In addition to this implementation work, we plan to further ex-
plore how we can incorporate modern user interface techniques into the model,
as suggested in Section 4.4.1. And, of course, we plan to implement some real
applications in Fruit, to further explore the benefits and limitations of our
approach.

8 Acknowledgements

Special thanks are due to Henrik Nilsson for many patient, thoughtful dis-
cussions on the issues presented in this paper. We are also very grateful to
members of the FRP research group at Yale (Paul Hudak, Liwen Huang, John
Peterson, Walid Taha, Valery Trifonov and Zhanyong Wan) for their work on
SOE FRP, many constructive discussions on semantics and implementation,
and for reviewing earlier drafts of this paper. We would also like to thank
to Magnus Carlsson, Christopher League, Ross Paterson and anonymous re-
viewers who read an earlier draft of this paper and provided very constructive
feedback. Finally, thanks to John Hughes and Ross Paterson for their work on
arrows and the arrows syntactic sugar. Without that framework, Fruit would
be an interesting theoretical model with no viable implementation.

67



Courtney and Elliott

References

[1] Backus, J., Can programming be liberated from the von Neumann style? A
functional style and its algebra of programs, Communications of the ACM 21
(1978), pp. 613–641.

[2] Bederson, B., J. Meyer and L. Good, Jazz: An extensible zoomable user interface
graphics toolkit in java, in: Proceedings of the ACM SIGGRAPH Symposium on
User Interface Software and Technology (UIST), ACM, 2000, pp. 171–180.

[3] Cardelli, L. and R. Pike, Squeak: A language for communicating with mice, in:
B. A. Barsky, editor, Computer Graphics (SIGGRAPH ’85 Proceedings), 1985,
pp. 199–204.

[4] Carlsson, M. and T. Hallgren, “Fudgets - Purely Functional Processes with
applications to Graphical User Interfaces,” Ph.D. thesis, Chalmers University
of Technology (1998).

[5] Claessen, K., T. Vullinghs and E. Meijer, Structuring graphical paradigms in
TkGofer, in: Proceedings of the ACM SIGPLAN International Conference on
Functional Programming (ICFP ’97), 1997, pp. 251–262.
URL citeseer.nj.nec.com/claessen97structuring.html

[6] Elliott, C., Functional implementations of continuous modelled animation, in:
Proceedings of PLILP/ALP ’98 (1998).

[7] Elliott, C., An embedded modeling language approach to interactive 3D and
multimedia animation, IEEE Transactions on Software Engineering 25 (1999),
pp. 291–308, special Section: Domain-Specific Languages (DSL).

[8] Elliott, C., Functional images, (to appear) Journal of Functional Programming
(JFP) (2001).
URL http:
//www.research.microsoft.com/~conal/papers/functional-images/

[9] Elliott, C. and P. Hudak, Functional reactive animation, in: International
Conference on Functional Programming, 1997, pp. 163–173.

[10] Finne, S. and S. P. Jones, Composing the user interface with Haggis, Lecture
Notes in Computer Science 1129 (1996).
URL http://citeseer.nj.nec.com/finne96composing.html

[11] Gamma, E., R. Helm, R. Johnson and J. Vlissides, “Design Patterns: Elements
of Reusable Object-Oriented Software,” Addison Wesley, Massachusetts, 1994.

[12] Henderson, P., Functional programming, formal specification and rapid
prototyping, IEEE Transactions on Software Engineering 12 (1986), pp. 241–
250.

[13] Hudak, P., Modular domain specific languages and tools, in: Proceedings of Fifth
International Conference on Software Reuse, 1998, pp. 134–142.

68



Courtney and Elliott

[14] Hudak, P., “The Haskell School of Expression – Learning Functional
Programming through Multimedia,” Cambridge University Press, Cambridge,
UK, 2000.

[15] Hughes, J., Generalising monads to arrows, Science of Computer Programming
(2000), pp. 67–111.

[16] Paterson, R., A new notation for arrows, in: Proceedings of the ACM SIGPLAN
International Conference on Functional Programming (ICFP 2001), 2001.

[17] Perlin, K. and D. Fox, Pad: An alternative approach to the computer interface,
Computer Graphics 27 (1993), pp. 57–72.

[18] Perlis, A., Epigrams on programming, ACM SIGPLAN Notices 17 (1982).
URL http://www.cs.yale.edu/homes/perlis-alan/quotes.html

[19] Pike, R., Window systems should be transparent, Computing Systems 1 (1988),
pp. 279–296.
URL http://citeseer.nj.nec.com/pike88window.html

[20] Pike, R., A concurrent window system, Computing Systems 2 (1989), pp. 133–
153.
URL http://citeseer.nj.nec.com/pike89concurrent.html

[21] Pike, R., Newsqueak: A language for communicating with mice (1989).

[22] Reynolds, J., “Theories of Programming Languages,” Cambridge University
Press, 1998.

[23] Sage, M., Frantk: A declarative gui system for haskell, in: Proceedings of the
ACM SIGPLAN International Conference on Functional Programming (ICFP
2000), 2000.
URL http://www.haskell.org/FranTk/userman.pdf

[24] Stoy, J. E., Some mathematical aspects of functional programming, in:
J. Darlington, P. Henderson and D. A. Turner, editors, Functional Programming
and its Applications, Cambridge University Press, 1982 pp. 217–252.

[25] Turner, D. A., Functional programs as executable specifications, Philosophical
Transactions of the Royal Society of London A312 (1984), pp. 363–388.

[26] Vullinghs, T., D. Tuinman and W. Schulte, Lightweight GUIs for functional
programming, in: PLILP, 1995, pp. 341–356.
URL citeseer.nj.nec.com/vullinghs95lightweight.html

[27] Wan, Z. and P. Hudak, Functional reactive programming from first principles,
in: Proc. ACM SIGPLAN’00 Conference on Programming Language Design and
Implementation (PLDI’00), 2000.

69



***



Named Instances for Haskell Type Classes

Wolfram Kahl 1

Federal Armed Forces University Munich
Department of Computer Science, Institute for Software Technology

85577 Neubiberg, Germany

Jan Scheffczyk 2

Federal Armed Forces University Munich
Werner-Heisenberg-Weg 102, App. 404

85579 Neubiberg, Germany

Abstract

Although the functional programming language Haskell has a powerful type class
system, users frequently run into situations where they would like to be able to
define or adapt instances of type classes only after the remainder of a component
has been produced. However, Haskell’s type class system essentially only allows
late binding of type class constraints on free type variables, and not on uses of type
class members at variable-free types.

In the current paper we propose a language extension that enhances the late
binding capabilities of Haskell type classes, and provides more flexible means for
type class instantiation. The latter is achieved via named instances that do not
participate in automatic context reduction, but can only be used for late binding.
By combining this capability with the automatic aspects of the Haskell type class
system, we arrive at an essentially conservative extension that greatly improves
flexibility of programming using type classes and opens up new structuring principles
for Haskell library design.

We exemplify our extension through the sketch of some applications and show
how our approach could be used to explain or subsume other language features as
for example implicit parameters. We present a typed λ-calculus for our extension
and provide a working prototype type checker on the basis of Mark Jones’ “Typing
Haskell in Haskell”.
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1 Introduction

One of the major success stories of Haskell is its type class system. Haskell’s
type classes allow a certain kind of ad-hoc polymorphism, and also enhance
parameterisation of programs by allowing late binding of their members. In
terms of implementations, this means that the dictionary that contains all the
members of a certain instance of a class is supplied as a parameter in a late
stage. However, this is not always possible, and so we find in the standard
library pairs of functions like the following:

nub :: (Eq a) => [a] -> [a]

nubBy :: (a -> a -> Bool) -> [a] -> [a]

sort :: (Ord a) => [a] -> [a]

sortBy :: (a -> a -> Ordering) -> [a] -> [a]

The motivation of this design is that currently Haskell allows only one instance
of a given class for a given type, and provides quite a few standard instances,
so it is not possible to have, for example,

• an instance Eq Integer that considers two integers as equal if they are
equivalent modulo the 38th Mersenne prime,

• an instance Ord String that ignores case, or,

• given an expression type Expr with instance Show Expr producing plain
text output, an additional instance Show Expr producing TEX output.

Therefore, case-insensitive sorting of strings (that one does not want to wrap
in a newtype constructor 3 ) has to resort to the function sortBy. In such
simple cases, this may not be a serious problem. But frequently one designs
a component around larger classes, only to notice later that the ad-hoc poly-
morphism provided by type classes does not easily allow ad-hoc instantiations,
and the component has to be re-factored along the lines of the -By pattern.

In this paper we propose a language extension that allows such ad-hoc in-
stantiations. The central idea is to allow named instances besides the anony-
mous instances of current standard Haskell, and to provide a mechanism for
explicit instance supply. For example, TEX output of expressions might be
provided for via the following instance of Show for Expr:

instance ExprShowTeX :: Show Expr where

show (Power e1 e2) = ’{’ : show e1 ++ "}^{" ++ show e2 ++ "}"

...

3 With the definitions
newtype CIString = CI {unCI :: String}
instance Eq CIString where compare = caseInsensitiveEqual
instance Ord CIString where compare = caseInsensitiveCompare
one would have sortBy caseInsensitiveCompare = map unCI . sort . map CI.
The wrappers between the newtype isomorphisms and the application are in this case simple
maps. In general, these wrappers can be harder to produce on the fly.
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To preserve late binding possibilities, we have to suppress “context reduction”
even in the presence of anonymous standard instances, so an application built
on Expr might now have the following type:

calculator :: Show Expr => IO ()

For instantiation, we now have two possibilities: Since the type of main has
an empty context, we can force context reduction via the following definition:

main = calculator

In this case, the anonymous Show Expr instance will be used for all occur-
rences of show :: Show Expr ⇒ Expr → String, and expressions are out-
put (presumably) in their plain text format.

With our preliminary syntax for explicit instance supply we can force ex-
pressions to be output in their TEX format instead:

main = calculator # ExprShowTeX

In short, our extension unites the following features:

• the (dynamic) semantics of the current type class and instance system is
preserved,

• some inferred types have larger contexts, and

• “later” binding of class members via explicit instance supply is possible.

One understanding of our extension is that we make some of the power of the
target language of dictionary translations available to users, without burden-
ing them significantly more with technical details than conventional Haskell
classes do.

Another understanding also provides valuable guidance to our design. It is
folklore that the Haskell type class system may be explained as an extremely
restricted subset of ML module systems like the generative module system of
SML [15,14], and Leroy’s applicative module system [12] with manifest types
[11], implemented in OCaml. In his proposal of parameterised signatures [6],
Jones presents a nice overview of the differences between the SML and OCaml
module systems, and also shows how parameterised signatures are closer to
OCaml’s system — the most relevant differences being the following:

• Parameterised signatures and the structures typed with parameterised sig-
natures do not contain type components except as parameters.

• Parameterised signatures can be understood as easily producing polymor-
phic modules, which OCaml does not support.

• The ML module system issues of sharing and generativity are bypassed by
relegating them to type checking.

• structures in the parameterised signature context are first-class values.

The system we propose in this paper is rather close to Jones’ parameterised
signatures, but does not go all the way to accept structures as first-class
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citizens. Instead, we preserve compatibility with the automatic aspects of the
Haskell 98 type class system.

Let us briefly list the parallels between our understanding of Haskell type
classes on the one hand, and the OCaml module system and parameterised
signatures on the other hand.

• Simple Haskell 98 classes correspond to OCaml signatures, containing the
class members as value entries, and the argument type variable as an ab-
stract type entry. (Haskell 98 modules in addition feature non-abstract
type entries.)

Abstract type entries in OCaml module types have two kinds of appli-
cation: The first is for hiding implementations and occurs in the construct
ConcreteModule : AbstractModuleType, which produces a module with
a hidden implementation for the abstract type entry; in Haskell, this has
a parallel only in the conventional module system in the shape of abstract
naming of algebraic datatypes in export lists.

The second application is for opening up instantiation possibilities via
the with-clause of the OCaml module language (which introduces “mod-
ule constraints”), as in AbstractModuleType with t = int; this instanti-
ation corresponds to the instantiation of class argument type variables via
instance declarations.

• Haskell instance declarations without type class constraints 4 declare struc-
tures for the signature corresponding to the associated class, but where
the type entry corresponding to the class parameter has been turned, via
a with-clause, into a manifest type according to its instantiation by the
instance declaration.

• Haskell classes with superclasses correspond to signature inclusion.

• Multiple abstract type entries in an OCaml module type correspond to the
parameters of a multiparameter class in Haskell — these are no problem
per se, only for automatic type inference of overloaded functions.

• Haskell instance declarations with type class constraints declare functors
for which the argument types are induced by the constraints and the result
type is the signature corresponding to the instantiated class, but where the
type entries corresponding to the class parameters have been turned into
manifest types according to their instantiation by the instance declaration.

But, since a class may be instantiated only once for a particular type, in
Haskell 98 there can be only one module in scope for every instantiation
of a declared module type. (The “overlapping instances” allowed in some
implementations do not significantly improve the situation with respect to
ad-hoc instantiation.)

4 in the Haskell 98 report, and in large part of the literature, type class constraints are
called “contexts” — to avoid confusion with other kinds of contexts we are going to use the
term constraint throughout.
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According to these analogies, there are several choices for nomenclature.
Talking about dictionaries and dictionary types seems to us too much imple-
mentation oriented, and introduces additional difficulties when talking about
types representing functions between dictionaries. In OCaml, the name mod-
ule type is used both for signatures, that is, “dictionary types”, and for functor
types, that is “types representing functions between dictionaries”, therefore we
shall use the term module type with the same meaning. The third module type
constructor of OCaml, the with clause introducing module type constraints,
is reflected by instantiation of “signature parameters”, i.e., class arguments.

OCaml also uses the term “module” both for structures and for functors,
so we feel that this is most appropriate in this paper, too. In this way, ev-
erything that has a module type is a module. For non-functorial modules
we may use the term structure; this corresponds to its usage in the context
of parameterised signatures. In addition, we may subsume both instances
and conventional Haskell modules under the term “structure” — conventional
Haskell modules with appropriate elements can also be used for instance sup-
ply, see Sect. 3.

The named instances we introduce in this paper can then be considered as
lightweight modules, and Haskell constraints indicate parameterisation that
can be put to use by explicitly supplying appropriate parameter instances.
Therefore, our extension eliminates the constraint that there can be at most
one module for every module type; we also introduce explicit functor appli-
cation and even higher-order functors. The most important aspects of the
OCaml module system not covered by our extension include the following:

• Opaque types in interfaces, where not only the implementation of a type,
but even its identity are hidden, can, as in parameterised signatures, be
mimicked only via free type variables as class constraint arguments that
occur only once, see [6, Sect. 2.1] for details.

• We did not consider nested modules at all. Very limited forms arise nat-
urally, just by virtue of the fact that Haskell instances have to be defined
inside traditional Haskell modules, but we do not consider module types
specifying module entries in signatures.

Since we strive for maximal compatibility with Haskell (98), we also inherit a
Haskell feature that cannot be found in ML: a Haskell function that carries a
constraint in its type may be considered as an anonymous one-element func-
tor. This feature poses quite a few difficulties for a coherent module-system-
inspired extension of Haskell’s type class system, but it also gives additional
power to applications of such a system. Therefore, a coherent treatment of
these module type constraints is the main challenge in any effort to extend
the use of the Haskell class system towards what amounts to module system
capabilities that cannot be found in Haskell’s traditional module system.

Our current solution, which is driven by the desire to change the current
language design of Haskell as little as possible, is therefore the main contri-

75



Kahl, Scheffczyk

bution of this paper. To better express our points, we use some new syntax;
however, since throughout our extensions in this paper, we give proximity to
Haskell 98 syntax higher priority than other considerations, we consider the
concrete syntax of our extensions still open.

Through the desire to maximise compatibility and harmonious interac-
tion with the Haskell 98 class system, we end up with a system that includes
some rather complicated technical details, although its basic ideas are in fact
simple. Therefore, we give ample space to introducing the features of our pro-
posed extension and the motivations behind our design decisions in an informal
manner. We start with introducing the simplest aspect, named instances, in
Sections 2 and 3. The next level are functors, discussed in Sect. 4. Module
type constraints as type qualifications are discussed in some detail in Sect. 5,
and it turns out that rather fine-grained distinctions are necessary. Since our
extensions give users more control over the satisfaction of constraints than the
one-instance-per-type approach of Haskell 98, this means that we have to do
less constraint reduction (Sect. 6). We then discuss aspects of how subclass
relationships might translate into “module subtyping” in Sect. 7.

An interesting side-effect of our view of constraints is that the implicit pa-
rameters of Lewis et al. [13] are partly subsumed as “anonymous one-element
functors with one-element structures as arguments”; we show this in Sect. 8.

In Sect. 9, we sketch a typed λ-calculus featuring module type constraints,
and in Sect. 10 we briefly describe a prototype implementation of the type-
inference aspects, based on Jones’ “Typing Haskell in Haskell” [7].

2 Named Instances

As seen in the introduction, the first step towards enabling really late binding
of class members even at types for which there are predefined instances is the
ability to define and name non-standard instances for later reuse. Therefore, in
our extended Haskell, we may provide names for instances, and, following the
module analogy, understand these named instance declarations as declaring
structures of the module type defined by the associated class declaration.
For syntactic convenience, we let these names share the name space of Haskell
module names, thus named instances must not use names that are also used as
conventional module names. (This decision also opens up additional flexibility
that will be exemplified in the next section.)

Let us now have a closer look at the named instance declaration from the
introduction.

instance ExprShowTeX :: Show Expr where

show (Power e1 e2) = ’{’ : show e1 ++ "}^{" ++ show e2 ++ "}"

...

It brings the module name “ExprShowTeX” into scope, and binds it to the
structure determined by the body of the instance declaration (together with
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default definitions from the class — for sake of simplicity we shall completely
ignore the question of such default definitions in the sequel).

Since “ExprShowTeX” is a module name, we may use the qualified identifier
ExprShowTeX.show, which has the type Expr → String. The module name
ExprShowTeX itself is considered to have the module type Show Expr, which
we write “ExprShowTeX :: Show Expr”.

Note that such a named instance declaration does not introduce a “real”
instance for the class Show that would be available for automatic insertion
wherever show is used at the type Expr → String.

The class member show still has type (Show a) ⇒ a → String, contain-
ing the constraint “(Show a)”. This means it is parameterised over possible
instances for Show, or, more precisely, over structures of module type Show a.
In Haskell 98, there is no way to explicitly instantiate such parameters: it all
happens implicitly, via anonymous instances and constraint reduction.

With named instances, we can have more than one instance in scope for
the same type, and we introduce a possibility to explicitly supply instances
as parameters. We use the infix operator “#” as application to instance pa-
rameters, or, as we shall say from now on, to module parameters. Therefore,
“#” is the elimination form for types constructed with “⇒”, in the same way
as standard application is the elimination form for types constructed with
“→”. So we may write “show # ExprShowTeX”, and this has type Expr →
String. Essentially, this means that “#” corresponds to dictionary applica-
tion. However, in dictionary translations it is necessary to make all references
to dictionaries explicit, while in our system, much of the implicit character of
the Haskell class system is preserved.

Let us now turn to another very simple example which hints at possible
uses of named instances for structuring algebraic libraries, and which, at the
same time, also illustrates some further effects. Consider the following class
declaration for monoids:

class Monoid m where

unit :: m

comp :: m -> m -> m

Imagine further a complex body of utilities built around this class, including,
as a simple example:

complist :: Monoid m => [m] -> m

complist = foldl comp unit

Desiring to use all this in integers, the user of this class in standard Haskell
now faces the problem of indicating which of the two well-known monoids
on integers to use for defining the instance of Monoid for Integer. For the
other monoid, the standard escape route is newtype, which allows to define a
different instance for the same class on a different type which, however, has
the same implementation. Jones perceives the use of newtype declarations to
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“clutter up programs” [8]; this stems from the fact that they lead to artificial
distinctions on essentially the same type.

With named instances, this problem is easily solved. We just define:

instance AddMonInt :: Monoid Integer where

unit = 0

comp = (+)

instance MultMonInt :: Monoid Integer where

unit = 1

comp = (*)

A complex application wishing to mix both views on integers just needs to
supply the respective instances to different library function invocations:

foo :: [[Integer]] -> Integer

foo = (complist # AddMonInt) . map (complist # MultMonInt)

Compare this with the Haskell 98 type inferred for the function

bar i x = complist $ map complist $

replicate i $ replicate i $ (x :: Integer)

which is (Monoid Integer) ⇒ Int → Integer → Integer with only one
constraint (the application bar # AddMonInt will use addition on both levels
of lists). Since both instances provided above are named, we assume that there
is no anonymous instance of type Monoid Integer in scope, so the constraint
would be locally unresolvable.

Even apart from the monomorphism restriction, such unresolvable con-
straints involving non-variable types are illegal in standard Haskell. In our
setting however, admitting such constraints makes sense. The delayed con-
straint may be satisfied at a later stage, for example via the explicit module
parameter supply bar # MultMonInt.

In contrast with anonymous instances, automatic export does not make
sense for named instances. Since they share the module name space, they may
be exported with module entries in export lists. They will be imported in the
same way as other module entries — then the instance name is available as
an argument to “#”-application, and members may be accessed as qualified
identifiers. Indeed, there is no reason to forbid using conventional modules
as arguments for “#”-application, provided they contain appropriately named
members — we show an example for this in the next section.

3 Named Instances for Multi-Parameter Classes

Multi-parameter classes are recognised as extremely useful, but it is not yet
clear how the design choices involving context reduction and type inference
should be resolved [16]. With named instances, it is possible to use multi-
parameter classes without ever defining anonymous instances for them, so
problems of context reduction and type inference can essentially be avoided.
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In the following, we therefore allow named instances and forbid anonymous
instances for multi-parameter classes, thus reaping a significant portion of the
benefits of multi-parameter classes without incurring the usual costs.

Let the following module defining a collection class be given:

module Coll where

class Collection c e where

empty :: c e

insert :: e -> c e -> c e

fold :: (e -> r -> r) -> r -> c e -> r

Let us furthermore assume a stand-alone module that implements sets using
some tricky balanced tree implementation and demands the constraint Ord on
element types:

module SetColl(Set(),empty,insert,fold)where

data Set a = EmptySet | TrickyBalancedTree ... a ...

empty :: Ord a => Set a

empty = EmptySet

insert :: Ord a => a -> Set a -> Set a

insert = ...

fold :: Ord a => (a -> r -> r) -> r -> Set a -> r

fold = ...

As in this example, libraries built for our extended language would tend to
directly implement appropriate class interfaces. This improves much upon the
current practice of unqualified imports that foster the unfortunate tradition
of type-indicating names like foldSet. Any module that imports Coll un-
qualified will have to do qualified import of modules like SetColl, because
otherwise e.g. empty would refer both to the class member Coll.empty and
to SetColl.empty.

Accordingly, consider the following module header:

module Main where

import Coll

import qualified SetColl

Inside this module, it now makes sense to consider SetColl as an instance
of Collection with the type forall a . Ord a ⇒ Collection SetColl.Set a,
which is equivalent to the original (anonymous) type of the module SetColl.
This means that this is a fully polymorphic instance that can be used at
arbitrary (ordered) element types. The module SetColl, considered as a
functor in this way, hides the implementation of the Set datatype constructor,
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but it does not hide its identity, nor its dependence on types provided by the
functor argument — these are the effects that lead to the bypassing of the
sharing issue, as discussed by Jones [6].

An application that has been designed to be independent of the implemen-
tation of collections might still use collections of different element types, so it
can be defined to depend on such a polymorphic instance:

app_main :: (forall a . Ord a => Collection c a) => IO ()

Given all the above, it is now possible to instantiate this application inside
module Main in the following way, providing an explicit module type to the
conventional Haskell module SetColl:

import Application(app_main)

main = app_main #

(SetColl :: forall a . Ord a => Collection SetColl.Set a)

We conjecture that for most uses of multi-parameter classes, the resulting
need to specify the instance to be used will be only a small burden to the
user. Perhaps it may even be a liberation not to have to think about possible
overlaps, and being able to specify the intended instance, instead of having
to set up a puzzle for the compiler, and hoping that the compiler will solve it
correctly, and in finite time.

From the examples in this and the preceding section it should be clear
that named instances together with explicit module parameter supply are a
natural remedy to the commonly perceived weakness of type classes in Haskell
98 which are, citing [5], only “well suited to overloading, with a single natural
implementation for each instance of a particular overloaded operator”. For
many applications, already this simple extension would be extremely valu-
able. However, once the basic correspondence between type class concepts
and OCaml module concepts is established, further extensions are natural
consequences of the introduction of named instances, and are discussed in the
next few sections.

4 Instance Functors

In module systems, a functor is a function taking modules as arguments,
and having other modules as results. In the dictionary translation of classes,
instances with constraints are translated into functions between dictionaries.
Since dictionaries may directly be viewed as modules, we immediately see that
such instance declarations give rise to functors.

The constraints then express the types of the arguments, and the target
class of the instance is the result type. On the whole, we get a functor type,
for which we conveniently use syntax already present in Haskell. In contrast,
module types that are not functors are called atomic.

Let us consider a facility to show lists not in the standard way with brackets
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and commas, but with every element on a separate line:

instance ShowListUL :: Show a => Show [a] where

show xs = unlines (map show xs)

Now ShowListUL has the functor type Show a ⇒ Show [a]. Functor appli-
cation does of course expect appropriately typed arguments, so we cannot
provide ShowListUL as an argument to show; instead we have to apply the
functor to some argument first, and then provide the result to show. For this
functor application, we also use the infix operator “#”: The functor application
“ShowListUL # ExprShowTeX” has type Show [Expr], and we may write

show # (ShowListUL # ExprShowTeX)

which has type [Expr] → String. However, we may not always be working
with a fixed, predefined functor argument, so we need module variables :

showListUL # i = show # (ShowListUL # i)

The following type is then automatically inferred:

showListUL :: Show a => [a] -> String

The case where a functor takes several module arguments at first poses a
problem, since in Haskell 98, the types of the following two instances (apart
from being named) would be considered as completely equivalent 5 :

instance D1 :: (Show a, Show b) => Show (a,b) where ...

instance D2 :: (Show b, Show a) => Show (a,b) where ...

If we accepted this, then it would not be possible to give a reasonable semantics
to applications like D1 # ExprShowTeX. However, since these constraint lists
arise in a place where they are written by the programmer, we regard the order
of these lists as intentional, so the above is equivalent to specifying curried
functor types (we accept the above syntax only for backward compatibility):

instance D1 :: Show a => Show b => Show (a,b) where ...

instance D2 :: Show b => Show a => Show (a,b) where ...

5 Module Type Constraints

We now look in more detail into the problems generated by our view that
constraints in the types of functions should be considered not just as class
constraints, but as general module type constraints. The real problems come
from our desire to let these module type constraints be satisfied not only by
“module supply” via “#”, but also by anonymous “default instances” via the
conventional class system of Haskell. In effect, we design our extensions in such

5 In 4.1.4 of the Haskell 98 report, the type generalisation preorder for qualified types is
defined and implies that types differing only in constraints that are equal up to permutation
have to be considered as equivalent. Another hint in that direction is the mention of “most
general instance context” in 4.3.2.
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a way that we do not break existing Haskell programs. On the contrary, we
enhance the reusability of existing traditional library modules by admitting
different methods of module supply for constraints, and by exposing more
constraints to user-defined module supply.

5.1 Ordered and Unordered Constraints

Consider the following type signatures and definitions as given:

f :: Eq a => a -> c -> (a,c)

bs :: Eq b => [b]

g x = f x bs

h x = (\ ff -> ff x bs) f

The Haskell 98 interpreter Hugs98 and the compiler GHC-4.08 derive the
typings (up to α-conversion):

g :: (Eq a, Eq b) => a -> (a,[b])

h :: (Eq b, Eq a) => a -> (a,[b])

In contrast, the compiler nhc98 derives oppositely ordered constraints — for
other similar examples pairs where Hugs and GHC derive different orders,
nhc98 derives the same orders.

Of course, g and h are the same function, and since in Haskell 98 the two
typings are considered as equivalent, this is no problem — if explicit type
signatures are added, all three systems accept any ordering of constraints.

Since every reasonable typing discipline should obey the subject reduction
property — β-reduction can only lead to a more general type — this example
shows that the structure of an expression induces no natural ordering for
inferred constraints.

A canonical order might be achieved by orientation at the structure of
the inferred type, for example preferring (Eq a, Eq b) => a -> (a,[b])

because of the order of occurrence of the type variables in a -> (a,[b]),
but this breaks down for constraints on types that do not occur in the raw
typing. Therefore, unordered constraints are a natural result of type inference
for Haskell 98 expressions, even in their embedding into our extension.

More precisely, it is function application that forces joining of the ordered
constraints in the types of the two constituents of the application into the
unordered constraint of the type of the whole application. For reasons of
compatibility with the Haskell 98 view of constraints, it does not make sense to
have functor types in unordered constraints. Therefore, unordered constraints
may only contain atomic module types, while ordered constraints may contain
even higher-order functors. For a functor type µ in the ordered constraints of
the two constituents of an application we have to apply constraint reduction
(see the next section), which is of course only possible, if the class environment
contains an anonymous default functor of a type µ′ such that µ and µ′ both
map to the same Haskell 98 functor type.
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With the unordered polymorphic constraints of the example above, there
is no way to allow the user to direct their satisfaction separately, since any
structure M :: Eq t for any type t could satisfy both constraints.

In our extension, however, separate satisfaction of constraints can be en-
abled even in more general cases by providing explicit module arguments in
the same way as functor arguments — this is a result of considering a func-
tion with constraints in its type as an implicit functor with an anonymous
one-element result signature. So we are able to make module parameterisa-
tion explicit, and in analogy to the definition of showListUL in Sect. 4, we
now may define:

k # i # j = (f # i) (bs # j)

For this, only the type Eq a ⇒ Eq b ⇒ a → b can be inferred, so here we
have an ordered list of constraints.

Since the two effects may occur together, we have to partition the con-
straint component of types into what we are, from now on, going to call
“ordered constraints” and “unordered constraints”. As an example for the
coexistence of ordered and unordered constraints, consider the following:

k’ # i # j x y = let k0 z = (f # i) z (bs # j) in

if x <= y && k0 x <= k0 y then k0 x else k0 y

Here we have Eq a and Eq b in the ordered constraints, since they are associ-
ated with the module variables i and j, and in addition Ord a and Ord b in
the unordered constraints, motivated by the two occurrences of <=. Therefore,
the following typing is inferred:

k’ :: Eq a => Eq b => {Ord a, Ord b} => a -> a -> b

Note that from now on we shall write unordered constraints with braces {},
not with parentheses (). In our present design these braces, representing
the unordered (Haskell 98) constraint, clearly indicate to which part of the
constraint a module type belongs to. Therefore, unlike in Haskell 98, the
following types should then be considered as different:

ff :: Eq a => [a] -> Bool

ff’ :: {Eq a} => [a] -> Bool

However, in our investigations this difference would have noticeable conse-
quences together with a certain set of decisions concerning module type sub-
typing (see Sect. 7) that seems to be a useful compromise and is implemented
in the prototype, but will not be discussed any further in the present paper.

Without subtypes, there is a noticeable difference only inside type class
definitions:

class Foo a where

foo1 :: Foo b => a -> b -> Bool

foo2 :: {Foo b} => a -> b -> Bool
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The members of this class have different types:

foo1 :: Foo b => {Foo a} => a -> b -> Bool

foo2 :: {Foo a, Foo b} => a -> b -> Bool

As a result, the late binding capabilities of foo2 are much more restricted
than those of foo1.

5.2 Module Supply

It is natural to allow satisfaction of module types in unordered constraints
where no ambiguity arises, such as in the following (assuming the named
instance FooChar :: Foo Char):

q i = foo2 ’c’ (i :: Int) # FooChar

This has the type {Foo Int} ⇒ Int → Bool. We may allow this because the
type of FooChar is not an instance of Foo Int.

This “automatic selection” of parameter position by actual parameters may
be generalised to the ordered constraints, allowing out-of-order #-application
to modules. This means that the first type-compatible argument position in
the ordered constraints is used, or the only type-compatible element of the
unordered constraints.

f :: Eq Int => Eq Char => Eq [Int] => Eq [Char] =>

([Int],[Int]) -> ([Char],[Char]) -> ([Int],[Char])

MyEqLC :: Eq [Char]

-- f # MyEqLC :: Eq Int => Eq Char => Eq [Int] =>

-- ([Int],[Int]) -> ([Char],[Char]) -> ([Int],[Char])

The case of several type-compatible elements in the unordered constraints has
to be rejected as an unresolvable ambiguity.

This convention — which is in fact nothing more than syntactic sugar —
avoids having to use module variables, and thus reduces the syntactic heaviness
of supplying parameters to specific parameter positions. Although it may
seem somewhat ad-hoc, we consider this usability aspect a strong argument
in favour of including this feature — it is also relatively cheap to implement
in the type checker and in the formal design, where the details are defined
(Sect. 9). For functors, however, out-of-order application is not an option,
since it makes module type inference undecidable.

5.3 Typing Functors

Finally, we have to decide how far we take module polymorphism. Consider
the following definition:

f # k # j x y = ((==) # (k # j)) x y
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The module variable k obviously must have a functor type, but we have no
information about its argument type. Thus the inferred type for f could be
f :: (? ⇒ Eq a) ⇒ ? ⇒ a → a → Bool — where “?” might denote a
module type variable. Since we perceive this as an over-generalisation of very
limited use, we tend to exclude module type variables from the syntax, and
not to allow definitions that imply constraints with module types in which
module type variables occur. The definition above may then be legalised by
adding an appropriate type signature.

Functors are polymorphic by nature, but Haskell’s first-order type inference
makes it impossible to use arguments at polymorphic types. Extensions in
Hugs and in GHC include the feature of rank-2-types which we adopt for our
constraints. We have shown an application of a function with a second-order
constraint in Sect. 3; here we show how such a function might be defined:

int_component :: Collection c Integer => IO ()

string_component :: Collection c String => IO ()

app_main :: (forall a . Ord a => Collection c a) => IO ()

app_main # coll = do int_component # coll

string_component # coll

It would of course be more comfortable without explicit instance variables:

app_main :: (forall a . Ord a => Collection c a) => IO ()

app_main = do int_component

string_component

This could be made possible by an extension of forcing constraint reduction,
which is discussed at the end of the next section.

There is no intrinsic restriction of this kind of polymorphism to functors;
the above example could be rewritten for Collections defined without con-
straints, for example via lists.

It would of course be most elegant if we would not have to think about
such constraints while designing the application, so we would like to have:

app_main :: (forall a . Collection c a) => IO ()

However, this cannot be directly applied to SetColl in our current system;
one would have to supply (transparently through type quantification)

instance PolyOrd :: (forall a . Ord a)

main = app_main # (SetColl # PolyOrd)

The polymorphic ordering instance might be defined via Hinze’s and Peyton
Jones’ derivable type classes [3] or Hinze’s fully polymorphic atomic instances
from [2,1].

Short of requiring such fully polymorphic ordering instances, one might
also consider polymorphism restricted to ground types generated by a limited
set of type constructors, which would allow more compile-time control:
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app main :: (forall a BuiltFrom {Int,Maybe,(,)} . Collection c a) ⇒ IO ()

Obviously, this area deserves further investigation.

6 Constraint Reduction

As we have seen in the previous sections, we must have a closer look at con-
straint reduction and module type instantiation. We say that a module type is
instantiated if its type variable(s) are made less polymorphic. In contrast, a
constraint is reduced if we delete one of its module types. In addition, moving
a module type from the unordered to the ordered constraint is also a kind of
constraint reduction.

The concept of how constraints are reduced and module types are instanti-
ated directly influences the use and flexibility of module type constraints. The
tradeoff to be balanced is between compatibility with Haskell 98 and the de-
sire for maximum flexibility. An eager approach to constraint reduction would
enforce ultimate compatibility, but incur a severe loss of flexibility, whereas
a “fairly lazy” approach is as flexible as possible, while only compromising
compatibility in tolerable ways. Fully lazy constraint reduction is not feasi-
ble, since it would produce ambiguous constraints and inhibit polymorphic
recursion [16].

Monomorphic Module Types

As we have seen in Sect. 2, monomorphic module types such as Monoid

Integer play an essential rôle when using named instances. Therefore, we
will not delete a monomorphic module type from constraints, since the user
may decide at a “later” stage which structure to choose.

In order to accept Haskell 98 programs, we have to allow constraint reduc-
tion through explicit type annotations; this will then eliminate monomorphic
module types for which a satisfaction is entailed from anonymous class in-
stances. Thus, adding for example the type signature

bar :: Int -> Integer -> Integer

is only legal when a default instance declaration for Monoid Integer is in
scope, and then this type signature forces bar to have precisely this type.
This perfectly reflects the behaviour of Haskell 98.

Note that every compilable Haskell 98 program has at least one explicit
type annotation 6 main :: IO(a), which is forced by the Haskell compiler if
it is not explicitly given by the programmer — this would be the ultimate
point of forcing away delayed constraints by supplying the anonymous default
instances from the Haskell 98 class system.

6 Since the type variable a may be instantiated in the process, this is a somewhat special
case.
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Ambiguous Constraints

As seen above, there may be problems when two module types M1 and M2

in an unordered constraint are ambiguous. This is the case if there exist
substitutions θ1 and θ2 such that θ1M1 = θ2M2. If, according to the definition
of Peyton Jones et al. [16], M1 entails M2, denoted by M1 ° M2, then there is
a default functor Φ justifying this entailment. So we can delete the constraint
M2 and supply Φ # M1 into the original parameter position of M2. This is
the only case where automatic constraint reduction is left intact.

Of course, explicit type annotations with ordered constraints may be used
to prevent this automatic constraint reduction:

f :: Eq a => Eq [a] => [a] -> [a] -> Bool

f xs ys = (head xs) == (head ys) || (tail xs) == (tail ys)

However, we cannot allow type annotations that change ordered constraints
into unordered constraints, because ordered constraints only arise from the
use of module variables and from explicit type annotations.

Note that the definition of entailment of Peyton Jones et al. [16] also
includes superclass declarations which we regard as projection functors. Since
the problem of ambiguous constraints only involves module types related to
the same class, we do not need to include superclass projection functors in
the definition of entailment used in our context. Note further that with our
notion of automatic constraint reduction, “lonely” constraints, as for example
{Eq [a]}, are always treated as irreducible.

Forcing Constraint Reduction

As we have seen in the preceding sections, we can force constraint reduction
via explicit type annotations. This will be full Haskell 98 constraint reduction
without exceptions, and it can force away only from elements of the unordered
constraints. Of course it needs to have the corresponding instance (and
class) declarations in scope.

7 Instance Subtyping and Joint Instance Declarations

According to the above, a named variant of the default Ord instance for Maybe,
with the header instance OM :: Ord a => Ord (Maybe a) would have the
type Ord a ⇒ Ord (Maybe a).

Now consider the implications of the fact that Ord is defined as a subclass of
Eq. With the usual understanding of subclass relationships, the module type
Ord (Maybe a) should also be a subtype of the module type Eq (Maybe a).
This implies that wherever an instance of type Eq (Maybe a) can be used, an
instance of type Ord (Maybe a) should also be acceptable.

At first sight this seems to be no problem: class declarations for classes
with superclasses can be seen as containing implicit functor definitions for
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projection functors from the signature of the subclass to the signatures of the
superclasses. A radical view on this subtyping relation implies that the current
definition of the class Ord is equivalent to the following expanded version:

class Ord a where

(==), (/=), (<=), (<), (>=), (>) :: a -> a -> Bool

compare :: a -> a -> Ordering

This would then also support joint instance declarations, which have recently
been proposed in a mailing list discussion. They address mainly the following
scenario which is relevant to adaptability of library classes:

Assume a library class declaration

class C a where

m1 :: a

m2 :: a

for which a user defined the following instance:

instance C Int where

m1 = 1

m2 = 2

Now the library undergoes some redesign, and it is decided that splitting the
class has advantages, so now we have:

class C1 a where m1 :: a

class C1 a => C a where m2 :: a

But in Haskell 98, this breaks the user’s instance definition! Since C1 Int is a
supertype of C Int, the proponents of joint instance definitions propose that
the user’s instance definition should be considered as legal, because it really
defines a structure of type C Int, from which a structure of type C1 Int may
be extracted by the corresponding superclass projection functor.

In contrast, the “conventional” instance definition

instance C Int where m2 = 2

really defines an anonymous functor of type C1 Int ⇒ C Int, which is used
to construct a structure of type C Int from a previously available structure
of type C1 Int.

In the same way, our named instance from the beginning of this section
should have the type MO :: Eq (Maybe a) ⇒ Ord a ⇒ Ord (Maybe a). We tend
to put Eq first since in common understanding no instance of a subclass can
be defined before there are instances of all its superclasses. Now this is quite
counter-intuitive, but making this type explicit in the instance declaration
would fail to indicate that the Eq structure of the first argument will end up
as the Eq component of the result. Furthermore, in the presence of more than
one instance at some type we run into the same multiple-inheritance problems
as in C++ — just imagine additional class declarations as the following:
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class Eq a => R a

class (R a, Ord a) => S a

Now we could define two joint instances for R and Ord, equipped with different
equalities, and a non-joint implicit functor for S:

instance R1 :: R Int where (==) = eq1 -- R1 :: R Int

instance O2 :: Ord Int where (==) = eq2 -- E2 :: Eq int

instance S1 :: S Int -- S1 :: R Int => Ord Int => S Int

As a result, S1 somehow contains the two different bindings eq1 and eq2

for the class member (==), and no sensible automatically defined projection
functor is available for using (S1 # R1 # O2) of type S Int at the subtype
Eq Int, as for example in the expression “(==) # (S1 # R1 # O2)”.

The whole topic of subtyping of module types therefore has to be treated
with great care.

From this discussion it should be obvious that joint instance definitions are
really independent from named instances and module type constraints, but we
claim that our system is a good way to explain the issues behind joint instance
definitions. This is especially so since default definitions for members in class
definitions may be considered as inducing a set of functors that turn different
subtypes of the defined class type into the complete class type. How these
default definitions are to interact with joint instance definitions is probably
much easier to analyse using our functor concept.

This problem is closely related to the problem that the identity of atomic
module types (i.e., signatures) in Haskell is defined by class name, and not
by the contained signature. From this point of view, implicit parameters are
more honest since they use anonymous module types as arguments, and an
accumulation of implicit parameter constraints may even be considered as a
multiple-member module type. However, there is no way to supply a single
multiple-member structure as an argument that instantiates all these param-
eters. Finding a better way to use “anonymous classes” would therefore be a
useful continuation of our present work.

8 Implicit Parameters

The Haskell interpreter Hugs [4] provides an experimental extension called
“implicit parameters” [13], introducing dynamic bindings. We argue that im-
plicit parameters cover a subset of the possibilities of module type constraints,
but are easier to use at least in simple cases.

A translation of the “File IO” example given by Lewis et al. [13] into
Haskell with module type constraints will naturally use zero-parameter type
classes and local instance declarations not discussed in this paper. For good
measure, we throw in a joint instance definition, used at a supertype:
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class StdIn where stdIn :: IO Handle

class StdOut where stdOut :: IO Handle

class {StdIn, StdOut} => StdIO

instance StdStdIO where

stdIn = stdin

stdOut = stdout

getLine :: {StdIn } => IO String

putStr :: {StdOut} => String -> IO ()

session :: StdIn => StdOut => IO ()

session = do putStr "What is your name?\n"

s <- getLine

putStr ("Hello, " ++ s ++ "!\n")

main = do h <- openFile "foo"

instance H :: MkStdOut where stdOut = h

session # StdStdIO # H

We feel that, on the one hand, the approach of module type constraints gives
much more flexibility and syntactically fits better into Haskell 98. On the other
hand, implicit parameters are easier to handle because the programmer can
use functions to modify them. Therefore, both approaches might “peacefully”
coexist in a Haskell environment.

9 A Typed λ-Calculus with Named Instances

In this section we formalise named instances and module type constraints by
presenting a type system and a type inference algorithm for a small language
corresponding to the relevant extension of a subset of Haskell 98, covering
only the central aspects of our extension. We present this as a fairly standard
typed λ-calculus with let-polymorphism.

9.1 Notation and Utility Functions

In this section we will introduce syntactical notations (see Fig. 1) and define
some basic functions. We follow the common notations of [13,9].

Distinguishing λ-bound variables (x) from let-bound variables (p) is not
really necessary, but makes the reading of formulae easier. Module variables
have their own name space (which they share with Haskell 98 modules). Types
are constructed from type variables via the function type constructor → and
other type constructors χ.

Module types are simpler than types in that there is only the functor type
constructor :⇒ (associating to the right) for producing non-atomic module
types. As noted in Sect. 5, a constraint consists of an ordered part O and
an unordered part U . The ordered part is a list of module types (and we use
Haskell list syntax), while the unordered part is a set of atomic module types.
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Constraints are used to construct qualified types σ which are then of the shape
O ¤ U ⇒ τ . For qualified types with empty constraints we just write τ .

A Haskell 98 context Γ is a finite partial function associating variables from
Var with either a qualified type (QType) or a type scheme (TScheme), where
Var contains λ-bound variables and let-variables. An additional context ∆ is
provided, associating module names and module variables with module types.

λ-variables x

let variables p

Terms or expressions e, f, t ::= x | p | λx.t | e f | let p = e in t

Module variables MVar i, j

Module expressions m ::= i |m1 # m2

Type variables α

Type constructors χ

Types τ ::= α | τ → τ | χ τ1 . . . τn

Class predicate symbol κ

Module type variable ν

Atomic module type κ〈τ〉
Module types MType µ ::= µ0 | ∀ᾱ.µ0 where ᾱ ⊆ tvars(µ0)

µ0 ::= µ1 | (∀ᾱ.µ1
1) :⇒ µ1

2 where ᾱ ⊆ tvars(µ1
1)

µ1 ::= µ0 | µ0 :⇒ µ1 | κ〈τ〉 | ν
Ordered constraint O ::= [µ1, . . . , µk]
Unordered constraint U ::= {µ1, . . . , µk}
Constraint O ¤ U

Qualified type QType σ ::= O ¤ U ⇒ τ

Type scheme TScheme η ::= ∀ᾱ.σ where ᾱ = tvars(σ)
Substitution θ, θ̂

Haskell 98 context Γ : Var 7 7→ (QType + TScheme)
Module context ∆ : MVar 7 7→ MType

Fig. 1. Syntax

When we write S1 ⊕ S2, this denotes the union S1 ∪ S2 and additionally
expresses the fact that S1 and S2 are disjoint. We write mgu(τ1, τ2) resp.
mgu(µ1, µ2) to denote the most general unifier for types τ1 and τ2, or module
types µ1 and µ2, respectively.

In Sect. 5 we argued that it makes sense to accept module arguments for
the first argument position expecting a matching argument type. In order
to preserve type-substitutivity, we have to make sure that no earlier position
unifies with the argument type. Therefore, we define the partial function
fstmgu that takes as arguments a constraint and a module type µ. In case of
success, fstmgu returns a substitution θ that instantiates µ, together with the
constraint without µ.

• fstmgu([µ1, . . . , µi−1, µi, µi+1, . . . , µk]¤U, µ) = ([µ1, . . . , µi−1, µi+1, . . . , µk]¤
U, θ) if θ = mgu(µ, µi) and no µj with j < i is unifiable with µ, and
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• fstmgu(O ¤ U ⊕ {µ1}, µ) = (O ¤ U, θ) if θ = mgu(µ, µ1), and no element of
O and no other element of U is unifiable with µ.

In addition, we define delfst(O ¤ U, µ) = O′ ¤ U ′ iff fstmgu(O ¤ U, µ) =
(O′ ¤ U ′, id).

The notation gen(Γ, σ) is used when we want to denote the generic type
scheme resulting from “generalisation” over the type variables in σ:

gen(Γ, σ) = ∀ᾱ.σ where ᾱ = tvars(σ) \ tvars(Γ)

Substitutions form an upper semilattice with ordering ¹, where θ1 ¹ θ2 iff
∃θ′ • θ′θ1 = θ2. We write θ1 t θ2 to denote the least upper bound of two
substitutions in this semilattice.

Finally, we need a partial function join to join two potentially complex
constraints into a single unordered constraint, if possible. Therefore, join(O1¤

U1, O2 ¤ U2, Γ) is defined iff all functor types in O1 and O2 are contained in
Γ (as representants of anonymous default instances), and then its value is the
union of U1 and U2 and the set containing all atomic module types from O1

and O2.

9.2 Well Typed Terms

The following type system is an extension of a standard Hindley-Milner type
system. What distinguishes it is primarily the presence of the new module
context ∆ which keeps track of named instances. We define a term as being
well typed if and only if it may be derived by the rules in Fig. 2.

Well-typedness judgements for module expressions, resp. for terms are there-
fore of the following shapes:

∆; Γ ` m : µ ∆; Γ ` t : σ

Named instances are accessed via the rule (MVar)WT. Functor application
(App#)WT is straight-forward.

The standard λ-calculus rules (Var)WT, (λ)WT, and (App)WT are “mostly
standard”, with the following exceptions:

• the λ-bound variable needs to have an un-constrained type, since otherwise
the stratification between the two type systems would be destroyed, and

• application has to join ordered constraints into an unordered constraint
since ordering makes no sense here, as seen in Sect. 5.

The next four rules work on the interface between terms and module terms:
Module abstraction via the (λ#)WT rules is similar to λ-abstraction, where
polymorphic module types have to be annotated. Note that the (λ#)WT rules
always include the module type of the bound module variable into the ordered
constraint. In order to include polymorphic module types smoothly into our
calculus, we must allow the instantiation of their type variables ᾱ with arbi-
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(MVar)WT instance i : µ ∈ ∆
∆;Γ ` i : µ

(App#)WT ∆;Γ ` i : µ1 :⇒ µ ∆;Γ ` j : µ1

∆;Γ ` (i # j) : µ

(Var)WT e : O ¤ U ⇒ τ ∈ Γ
∆; Γ ` e : O ¤ U ⇒ τ

(λ)WT ∆;Γ, x : τ1 ` e : O2 ¤ U2 ⇒ τ2

∆;Γ ` (λx.e) : O2 ¤ U2 ⇒ τ1 → τ2

(App)WT

∆;Γ ` e1 : O1 ¤ U1 ⇒ τ1 → τ
∆;Γ ` e2 : O2 ¤ U2 ⇒ τ1 U = join(O1 ¤ U1, O2 ¤ U2, Γ)

∆; Γ ` (e1 e2) : [] ¤ U ⇒ τ

(λ#,1)WT ∆;Γ, i : µ ` e : O ¤ U ⇒ τ µ 6≡ ∀ᾱ.µ0

∆;Γ ` (λ#i.e) : ([µ]++O) ¤ U ⇒ τ

(λ#,2)WT ∆;Γ, i : µ ` e : O ¤ U ⇒ τ

∆;Γ ` (λ#(i::µ).e) : ([µ]++O) ¤ U ⇒ τ

(Inst#)WT ∆;Γ ` i : ∀ᾱ.µ

∆;Γ ` i : [τ̄ /ᾱ]µ
(#)WT ∆;Γ, e : O ¤ U ⇒ τ, µ ∈ O ` i : µ

∆; Γ ` (e # i) : delfst(O ¤ U, µ) ⇒ τ

(Let)WT

∆; Γ ` u : O1 ¤ U1 ⇒ τ1

∆; Γ, p : η ` t : O2 ¤ U2 ⇒ τ2 η = gen(Γ, O1 ¤ U1 ⇒ τ1)
∆; Γ ` (let p = u in t) : O2 ¤ U2 ⇒ τ2

(auto)WT

∆;Γ ` e : ∀ᾱ . O ¤ U ⇒ τ
U = U1 ⊕ U2 ⊕ {κ〈χ τ1 . . . τn〉}

U2 = {κ〈τ1〉, . . . , κ〈τn〉}
∃θ1, θ2 . θ1(κ〈χ τ1 . . . τn〉) ∈ θ2U2

U2 °Γ κ〈χ τ1 . . . τn〉
∆;Γ ` e : O ¤ U1 ⊕ U2 ⇒ τ

(force)WT ∆;Γ ` e : O ¤ (U1 ⊕ U2 ⊕ U3) ⇒ τ U1 ∪ U3 °Γ U2 U3 = {µ1, . . . , µk}
∆;Γ ` (e::(O++[µ1, . . . , µk]) ¤ U1 ⇒ τ) : (O++[µ1, . . . , µk]) ¤ U1 ⇒ τ

Fig. 2. Well-typedness rules

trary types τ̄ via the (Inst#)WT rule. Explicit “dictionary application” (#)WT

is, as discussed above, not restricted to arguments matching the first argument
type of the constraint.

(Non-recursive) let bindings are treated as usual; there is no need to add
the constraints of u to those of t, since they are already taken care of via the
presence of p.

The last group of rules corresponds to constraint change and constraint
reduction. “Automatic” reduction only takes place in ambiguous unordered
constraints. Note that the rule (auto)WT only applies if and only if the type
variables are polymorphic.

Automatic constraint reduction might be considered as problematic since
we may derive several different types for one term — as Haskell 98 does in a
number of cases. As an example consider f :: Eq a, Eq [a] ⇒ [a] → [a]

which has also the type {Eq a} ⇒ [a] → [a]. For this reason, type infer-
ence can only be complete when the unordered constraint of a qualified type is
irreducible. In addition, the rule (auto)WT may only be applied (repeatedly)

93



Kahl, Scheffczyk

as last steps of the derivation of the type of u in the (Let)WT rule (that is,
top-level in binding groups). Reduction via (auto)WT is obviously normalising
because it strictly reduces the size of the unordered constraint, and because
of transitivity of entailment.

Less problematic is constraint change through explicit type annotation,
which is denoted by “::” as usual in Haskell. There are two effects possible
here. The first is elimination of atomic module types from the unordered
constraint if they can be entailed from anonymous instances in Γ and the
remaining unordered constraint. The second allows to move atomic module
types from the unordered into the ordered constraint.

9.3 Type Inference Algorithm

An only slightly more involved set of rules defines a type inference algorithm
for our system. In comparison with well-typedness judgements, type inference
judgements carry an additional substitution; this substitution and the inferred
type are the output of the algorithm, while the two contexts ∆ and Γ and the
(module) term are its input:

↑
θ;

↓
∆;

↓
Γ `

↓
i:
↑
µ

↑
θ;

↓
∆;

↓
Γ `

↓
t:
↑
σ

We understand a type inference judgement to be a result of the algorithm if
no further derivation is possible — the rule “(auto)” would otherwise intro-
duce ambiguities. It is understood that type inference is impossible if any of
the operations used in a rule invocation is undefined. The rules of the type
inference algorithm as shown in Fig. 3 correspond to the rules in the preceding
section.

The relationship between the type system and the inference algorithm is
made precise by the following two theorems.

Theorem 9.1 (Soundness) For every (module) term judgement resulting
from the type inference algorithm, a corresponding well-typedness judgement
may be derived:

θ; ∆; Γ ` i : µ =⇒ θ∆; θΓ ` i : µ

θ; ∆; Γ ` t : O ¤ U ⇒ τ =⇒ θ∆; θΓ ` t : O ¤ U ⇒ τ

Theorem 9.2 (Completeness) For every well-typedness judgement not in-
volving rank-2 module types, a corresponding judgement may be derived via
the type inference algorithm:

θ∆; θΓ ` i : µ =⇒ ∃θ1, θ2, µ1 . θ1; ∆; Γ ` i : µ1 ∧
θ∆ = θ2θ1∆ ∧ θΓ = θ2θ1Γ ∧ µ = θ2µ1
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(MVar)TI instance i : µ ∈ ∆
id; ∆; Γ ` i : µ

(Inst#)TI θ; ∆; Γ ` i : ∀α.µ

θ;∆; Γ ` i : [ α′/α]µ

(App#)TI θ1;∆; Γ ` i : µ1 :⇒ µ θ2;∆; Γ ` j : µ2 θ = θ1 t θ2 tmgu(µ1, µ2)
θ;∆; Γ ` (i # j) : θµ

(Var)TI e : O ¤ U ⇒ τ ∈ Γ
id;∆; Γ ` e : O ¤ U ⇒ τ

(λ)TI θ; ∆; Γ, x : τ1 ` e : O2 ¤ U2 ⇒ τ2

θ;∆; Γ ` (λx.e) : O2 ¤ U2 ⇒ τ1 → τ2

(App)TI

θ1;∆; Γ ` e1 : O1 ¤ U1 ⇒ τ1 → τ
θ2;∆; Γ ` e2 : O2 ¤ U2 ⇒ τ2

θ = θ1 t θ2 tmgu(τ1, τ2)
U = join(O1 ¤ U1, O2 ¤ U2, Γ)

θ;∆; Γ ` (e1 e2) : θ([] ¤ U ⇒ τ)

(λ#,1)TI θ;∆; Γ, i : µ ` e : O ¤ U ⇒ τ µ 6≡ ∀ᾱ.µ0

θ;∆; Γ ` (λ#i.e) : ([µ]++O) ¤ U ⇒ τ

(λ#,2)TI θ;∆; Γ, i : µ ` e : O ¤ U ⇒ τ

θ;∆; Γ ` (λ#(i::µ).e) : ([µ]++O) ¤ U ⇒ τ

(#)TI

θ1; ∆; Γ ` e : O1 ¤ U1 ⇒ τ
θ2; ∆; Γ ` i : µ

(O ¤ U, θ3) = fstmgu(O1 ¤ U1, µ)
θ = θ1 t θ2 t θ3

θ;∆; Γ ` (e # i) : θ(O ¤ U ⇒ τ)

(Let)TI

θ1;∆; Γ ` u : O1 ¤ U1 ⇒ τ1

θ2;∆; Γ, p : η ` t : O2 ¤ U2 ⇒ τ2

η = gen(θ1Γ, O1 ¤ U1 ⇒ τ1)
θ = θ1 t θ2

θ;∆; Γ ` (let p = u in t) : θ(O2 ¤ U2 ⇒ τ2)

(auto)TI

θ;∆; Γ ` e : ∀ᾱ . O ¤ U ⇒ τ
U = U1 ⊕ U2 ⊕ {κ〈χ τ1 . . . τn〉}

U2 = {κ〈τ1〉, . . . , κ〈τn〉}
∃θ1, θ2 . θ1(κ〈χ τ1 . . . τn〉) ∈ θ2U2

U2 °Γ κ〈χ τ1 . . . τn〉
θ;∆; Γ ` e : O ¤ U1 ⊕ U2 ⇒ τ

(force)TI θ;∆; Γ ` e : O ¤ (U1 ⊕ U2 ⊕ U3) ⇒ τ U1 ∪ U3 °Γ U2 U3 = {µ1, . . . , µk}
θ;∆; Γ ` (e::(O++[µ1, . . . , µk]) ¤ U1 ⇒ τ) : (O++[µ1, . . . , µk]) ¤ U1 ⇒ τ

Fig. 3. Type inference rules

θ∆; θΓ ` t : σ =⇒ ∃θ1, θ2, σ1 . θ1; ∆; Γ ` t : σ1 ∧
θ∆ = θ2θ1∆ ∧ θΓ = θ2θ1Γ ∧ σ = θ2σ1

If furthermore the unordered constraint of σ is irreducible wrt. (auto)WT, then
the unordered constraint of σ1 is irreducible wrt. (auto)TI, too.

The proofs of both theorems proceed by induction on the structure of
derivations. Note that Theorem 2 implies µ1 ¹ µ and σ1 ¹ σ. Apart from
that, possible types σ can only differ in unordered constraints of t. Since this
holds for all possible module types µ of i and all possible types τ of t, the
algorithm yields the principal types for i and t.

β-reduction is defined as usual, and it interacts sensibly with type infer-
ence. Since ordered constraints have to be joined in expression application,
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we obtain a weaker variant of subject reduction:

Definition 9.3 A qualified type σ1 = O1 ¤ U1 ⇒ τ1 is called weaker than a
qualified type σ2 = O2 ¤ U2 ⇒ τ2 under context Γ, iff there are a substitution
θ and three subsequences Oo, Ou, and Oe of O1, such that O1 is an interleaving
of Oo, Ou, and Oe, and

θτ1 = τ2 , θOo = O2 , θ(|Ou|) ∪ θU1 = U2 , U2 °Γ θOe .

Theorem 9.4 (Subject reduction) If θ1; ∆; Γ ` t1 : σ1 holds by type in-
ference and the term t1 β-reduces to another term t2, then there are θ2 and σ2

with θ2 ¹ θ1 such that σ2 is weaker than σ1 and the type inference judgement
θ2; ∆; Γ ` t2 : σ2 holds.

As an aside, the above definition of the weaker than relation can also be
used to help remedy the fact that with lazier context reduction for named
instances — in the same way as with implicit parameters — user-supplied
type signatures frequently hinder adaptability of Haskell code. We propose
lax type signatures, which are to be understood as asserting a lower bound
(with respect to the above weaker than relation) on the type of the defined
entity. This implies that

f ::< forall a . (Eq a) => a -> b

would allow any of the following:

f :: (Eq a ) => a -> b

f :: (Eq a ) => a -> String

f :: (Ord a ) => a -> b -- modulo entailment equivalence

f :: (Eq a, Read b) => a -> b

Forcing the user to make the forall explicit follows the guideline that these
lax type signatures enable users to enforce structure for inferred types by
explicitly providing it. Writing

f ::< exists b . (Eq a) => a -> b

instead would rather have a taste of explicitly specifying degrees of freedom
— but it does not specify degrees of freedom in the context. For the latter,
an appropriate syntax seems to be much harder to find. Therefore, we find
the forall variant more natural.

10 Type Checking Prototype

In order to be able to experiment with our design of module type constraints,
we developed a prototype type checker. It extends the Haskell 98 type checker
“Typing Haskell in Haskell” of Mark Jones [7] with module type constraints
and performs type inference in the manner described in the preceding sections.
We mainly extended the handling of constraints and introduced user defined
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type classes and (named) instances as well as type checking inside them. Fur-
thermore some experimental features as for example subtyping (see Sect. 7)
have been implemented as well as extensions that are not covered in detail by
this paper (see below).

Nevertheless, the basic features of “Typing Haskell in Haskell” have not
been compromised, and our prototype continues to accept the original exam-
ples provided by Mark Jones, and to infer their principal types. This serves
to increase our confidence that our extension is essentially conservative. The
prototype is available on the WWW 7 . Further developments will also be
published at this address.

11 Conclusion and Outlook

The desire to enable later binding of Haskell type class members together with
the known analogies between the Haskell type class system and ML module
systems lead us to design an extension of Haskell comprising named instances,
explicit instance supply, instance functors and module types. This extension
incorporates a subset of Jones’ parameterised signatures, but in a way that
preserves compatibility with the Haskell 98 type class system and refrains form
giving structures first-class citizenship, so in this respect stays closer to the
separate module language of OCaml.

In addition, the desire to remain compatible to conventional Haskell leads
also to a new feature: type class constraints now have to be considered as
module type constraints and thus lead to a new class of qualified types which,
as we have seen, can be considered as closely related to the implicit parameters
of Lewis et al. [13].

Apart from this, our work is of course closely related to work on first class
module systems, most notably that by Russo [17,18]. We believe that extend-
ing our proposal towards first-class module system capabilities is a natural
step and will most probably be necessary for many uses. Nevertheless we
have intentionally left out such considerations. We consider that already our
relatively small extensions have quite far-reaching consequences both concep-
tually and from the point of view of expressive power and (re)usability, so that
it makes sense to study them in relative isolation.

The relation with work on multi-parameter classes [16] turns out to be
relatively weak — module type constraints mainly offer a way to obtain many
of the benefits of multi-parameter classes, short-circuiting a lot of the prob-
lems research has been centring around. We think that our extension may in
fact allow more exploration of library design centred around multi-parameter
classes — it would certainly have been useful in the design of the relation
algebra toolkit RATH [10].

The design we presented should not be considered as an attempt at a

7 URL: http://ist.unibw-muenchen.de/Haskell/NamedInstances/
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conclusive definition of named instance features. Instead, we tried to present
an apparently reasonable subset of non-trivial features amidst some discussion
of the decisions involved. Due to lack of space we have concentrated on the
basic idea and left out further extensions that are already implemented in our
prototype and seem to prove their usefulness. A detailed discussion will be
contained in the second author’s diploma thesis [19].

Among these extensions are notations to directly access the anonymous
default instances (via the special instance name Default) and anonymous de-
rived instances (via the special instance name Derived). The possibility to
access these instances directly makes it possible to use them as explicit func-
tor arguments. We consider furthermore the possibility to import instances
“as Default”.

A straightforward step towards first-class instances is to make their param-
eterisation via module variables possible as well as their local definition via
let or where expressions — the example in Sect. 8 shows a possible notation.

We have not discussed implementation at all — this is mainly because it
does not seem to be a serious problem. Since current Haskell implementations
of type classes rely on dictionary translation, implementing our features mostly
amounts to extending the parser and connecting it to existing features of the
implementation, which just had not been directly accessible via the user-level
language before. We intend to address this in the near future.

In summary, following through the consequences of explaining the Haskell
type system in terms of the ML module system is not quite as trivial as it
might seem at first sight. However, it enforces useful conceptual clarifications
and then gives rise to a natural extension that, in our opinion, will also be of
great value to users of Haskell.
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Abstract

Functional dependencies help resolve many of the ambiguities that result from the
use of multi-parameter type classes. They effectively enable writing programs at the
type-level which significantly enhances the expressive power of Haskell’s type sys-
tem. Among the applications of this technique are the emulation of dependent types,
and precise typechecking for XML and HTML combinator libraries. Unfortunately,
the notation presently used for functional dependencies implies that the type-level
programs are logic programs, but many of its applications are conceptually func-
tional programs. We propose an alternative notation for functional dependencies
which adds a functional-programming notation to Haskell’s type classes and makes
applications of functional dependencies significantly more readable. We apply the
new notation to our examples and study the problems arising due to Haskell’s open
world assumption and overlapping instances.

Since the invention of type classes more than a decade ago [12], every new year
has seen astonishing new applications and interesting extensions of the original
idea. The most recent addition is Jones’s incorporation of functional depen-
dencies [8] which allow the formulation of tighter constraints on the instances
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of multi-parameter type classes. A functional dependency is a declaration
which specifies that a set of parameters of a type class uniquely determines
another parameter. Such a specification avoids many ambiguous typings.

Functional dependencies constrain the instance declarations so that they
specify a function at the type level. This functionality makes it feasible to
write regular programs entirely evaluated by the type checker, opening the
door for a wide range of potential applications [6,9].

Unfortunately, the use of functional dependencies is hampered by the tra-
ditional notation of type classes as relations and instances as logic programs
computing these relations: As the resulting programs are getting more com-
plex, they often become awkward and hard to read. This is not a fault of
the mechanism of functional dependencies per se, but of the syntax offered by
current implementations.

Thus, in this paper, we suggest a notational shift for type classes: View
a type class as a type-level function instead of a type-level relation. We offer
some realistic example applications of functional dependencies which would
benefit significantly from such a notation. Moreover, we give a brief formal
outline of how the new notation may be implemented by a translation to the
traditional syntax. We present the relevant part of a larger example—type-safe
combinator libraries for XML documents—and discuss some of the problems
remaining.

1 Simulating Dependent Types

We start our investigation with two simple examples drawn from the realm of
dependent types: formatted printing and specified list operations.

1.1 A type-safe sprintf

The sprintf function from the C-library is an example of an unsafe function
that can be made type-safe by using a dependent type [1]: The first parameter
of sprintf is a format specifier which determines the number and type of the
remaining parameters. The idea here is that a type-level function computes the
type of the remaining parameters from the format specifier. For this to work
in Haskell, format specifiers cannot simply be strings with control characters
but rather String constants or values from the following datatypes: 5

data I f = I f
data C f = C f
data S f = S String f

Using these datatypes, the format specifier

S "Int: " (I (S ", Char: " (C ".")))

5 Danvy [5] has shown that this particular example can be made to work relying only on
ML-style polymorphism.
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means “The literal string ‘Int: ’ followed by an integer followed by the
literal string ‘, Char: ’ followed by a character and terminated by a period.”
A somewhat more convenient notation for the format specifier is the following:

S "Int: " $ I $ S ", Char: " $ C $ "."

The type of the format specifier contains an almost complete encoding of
the format specifier itself, only omitting the string literals. In this case, the
type is:

S (I (S (C String)))

A type class SPRINTF specifies a member function sprintf1 which accepts
a prefix, that it prepends to the output, a format specifier, and matching
further arguments:

class SPRINTF m o | m -> o where
sprintf1 :: String -> m -> o

instance SPRINTF String String where
sprintf1 prefix str = prefix ++ str

instance SPRINTF a funa => SPRINTF (I a) (Int -> funa) where
sprintf1 prefix (I a) i = sprintf1 (prefix ++ show i) a

instance SPRINTF a funa => SPRINTF (C a) (Char -> funa) where
sprintf1 prefix (C a) c = sprintf1 (prefix ++ [c]) a

instance SPRINTF a funa => SPRINTF (S a) funa where
sprintf1 prefix (S str a) = sprintf1 (prefix ++ str) a

The instance declarations comprise a logic program for computing o from
m using the relation SPRINTF. In particular, the functional dependency m ->

o is a kind of mode declaration.
The main entry point, sprintf, supplies an empty prefix to sprintf1:

sprintf :: SPRINTF m o => m -> o
sprintf = sprintf1 ""

For example, the type of

sprintIntChar = sprintf (S "Int: " $ I $ S ", Char: " $ C $ ".")

is

sprintIntChar :: Int -> Char -> String

When applied to an integer and a character, sprintIntChar yields

> sprintIntChar 42 ’x’
"Int: 42, Char: x."
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1.2 Specified list operations

Another classic example for the use of dependent types is length-indexed
lists [13,9]. A translation of this example into Haskell first requires an en-
coding of natural numbers at the type level to encode list lengths:

data ZERO = ZERO
data SUCC n = SUCC n

ADD is a type class that encodes addition on these two datatypes at the
type level using a functional dependency:

class ADD a b c | a b -> c
instance ADD ZERO b b
instance ADD a b c => ADD (SUCC a) b (SUCC c)

Again, the instance declarations for ADD constitute a small logic program.
Two datatypes encode heterogeneous lists on the value-level and on the

type-level:

data NIL = NIL
data CONS x xs = CONS x xs

It is now possible to compute the length of a list statically via another
logic program at the type level:

class LISTLENGTH xs len | xs -> len where
listLength :: xs -> len

instance LISTLENGTH NIL ZERO where
listLength NIL = ZERO

instance LISTLENGTH xs len
=> LISTLENGTH (CONS x xs) (SUCC len) where

listLength (CONS x xs) = SUCC (listLength xs)

Here is a definition of an append operation on fixed-length lists:

class APPEND li1 li2 app | li1 li2 -> app where
append :: li1 -> li2 -> app

instance APPEND NIL y y where
append NIL y = y

instance APPEND xs ys app
=> APPEND (CONS x xs) ys (CONS x app) where

append (CONS x xs) ys = CONS x (append xs ys)

With these declarations in place, it is natural to relate the definitions of
LISTLENGTH and ADD to that of APPEND: Two concatenated lists must be as
long as the sum of their lengths. The condition can be seen as a partial
specification of append. Again, the constraint as a logic program is part of a
revised instance declaration for APPEND:

instance (APPEND xs ys app,
LISTLENGTH xs m,
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LISTLENGTH ys n,
ADD m n s,
LISTLENGTH app s)
=> APPEND (CONS x xs) ys (CONS x app) where

append (CONS x xs) ys = CONS x (append xs ys)

Now, changing LISTLENGTH to something incompatible with the constraint
results in a type error as soon as append occurs applied to a non-NIL list as
first argument anywhere in a program. Consider the following buggy definition
of LISTLENGTH:

instance LISTLENGTH NIL (SUCC ZERO) where
listLength NIL = SUCC ZERO

instance LISTLENGTH xs len
=> LISTLENGTH (CONS x xs) (SUCC ZERO) where

listLength (CONS x xs) = SUCC ZERO

As predicted, appending anything to (CONS 1 NIL) fails at compile time.
Here is the error reported by Hugs:

> append (CONS 1 NIL) NIL
ERROR: Constraints are not consistent with functional dependency
*** Constraint : ADD ZERO (SUCC ZERO) ZERO
*** And constraint : ADD ZERO (SUCC ZERO) (SUCC ZERO)
*** For class : ADD a b c
*** Break dependency : b a -> c

2 Functional is Better

The examples in the preceding section show that the logic-programming nota-
tion for type classes leads to poor readability in cases where the programmer
really wants to define functions rather than predicates. In particular, we iden-
tify the following shortcomings:

• A functional language should express functional dependencies directly as
functions. In the case of LISTLENGTH, where the listLength member mir-
rors the computation at the type level on the value level, the dichotomy is
especially painful.

• The notation is occasionally difficult to read. Consider the final instance
declaration of APPEND: The reader must discover that the type variable s is
shared between the last argument of ADD and that of LISTLENGTH. In the
sprintf example, nested applications are moved to the predicate set and
linked via result variables.

In the following subsections, we propose a functional syntax for type-level
functions and demonstrate their use with our examples.
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2.1 Functional sprintf

The modifications to the syntax are small and only affect the class and instance
declarations. The syntax of expressions does not change. The header of the
class declaration expresses the functional dependency directly. The first line
of an instance declaration becomes a defining equation for a type function,
the keyword where precedes the definition of the member function:

class SPRINTF :: m -> o where
sprintf1 :: String -> m -> o

instance SPRINTF String = String where
sprintf1 prefix str = prefix ++ str

instance SPRINTF (I a) = Int -> SPRINTF a where
sprintf1 prefix (I a) = \i -> sprintf1 (prefix ++ show i) a

instance SPRINTF (C a) = Char -> SPRINTF a where
sprintf1 prefix (C a) = \c -> sprintf1 (prefix ++ [c]) a

instance SPRINTF (S a) = SPRINTF a where
sprintf1 prefix (S str a) = sprintf1 (prefix ++ str) a

sprintf :: m -> SPRINTF m
sprintf = sprintf1 ""

The main conceptual change inherent in the notation is that type classes
no longer specify predicates on types but rather functions. A class declaration
by itself specifies the kind of the instance declarations; a new-style declaration

class SPRINTF :: m -> o

stands for the previous functional dependency

class SPRINTF m o | m -> o

The instance declarations define the corresponding function. This nota-
tion is arguably more natural than the logic-programming notation. This is
not merely the case for this specific notation, but for a number of typical
applications of functional dependencies.

With a functional notation on the type-level, qualified type schemes that
incorporate predicates with functional dependencies can also be expressed
more concisely: As the type annotation of sprintf shows, we can shift the
application of SPRINTF to the position where the resulting type occurs.

2.2 List operations

The list operations also benefit from the new notation. This example also
opens an additional issue, namely the question where to put the extra speci-
fication predicates that relate ADD, LISTLENGTH, and APPEND.
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t ::= a type variable

| C type constructor

| F type function

| t t type application

d ::= class F :: a1 . . . an → a class declaration

| instance (t1 == t′1; . . . ; tm == t′m) ⇒ F t1 . . . tn = t instance declaration

Fig. 1. Syntax for functional instances

class LISTLENGTH :: xs -> len where
listLength :: xs -> len

instance LISTLENGTH NIL = ZERO where
listLength NIL = ZERO

instance LISTLENGTH (CONS x xs) = SUCC (LISTLENGTH xs) where
listLength (CONS x xs) = SUCC (listLength xs)

class ADD :: a b -> c
instance ADD ZERO b = b
instance ADD (SUCC a) b = SUCC (Add a b)

class APPEND :: li1 li2 -> app where
append :: li1 -> li2 -> app

instance APPEND NIL y = y where
append NIL y = y

instance (LISTLENGTH (APPEND xs ys) ==
ADD (LISTLENGTH xs) (LISTLENGTH ys))

=> APPEND (CONS x xs) ys = CONS x (APPEND xs ys) where
append (CONS x xs) ys = CONS x (append xs ys)

This example shows that an instance declaration can carry an axiom
consisting of an equality constraint: LISTLENGTH (APPEND xs ys) == ADD

(LISTLENGTH xs) (LISTLENGTH ys). The intended semantics of this con-
straint is unification. The original logic program models this by sharing the
type variable s.

3 Functional Instances

We call the applicative notation for functional dependencies functional in-
stances. The implementation of functional instances does not require any
new machinery in the underlying Haskell system. The implementation is a
syntactic translation of functional instances into standard Haskell instance
declarations with functional dependencies. The translation resembles the flat-
tening translation for functional logic programming languages [2]. This section
gives an account of this translation. Figure 1 shows the syntax for functional
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`δ class F :: a1 . . . an → a ; class F a1 . . . an a | a1 . . . an → a

`τ t ; P1 | t′ `σ {(l1, r1), . . . , (lm, rm)} ; P2

`δ instance (l1 == r1; . . . ; lm == rm) ⇒ F t1 . . . tn = t

; instance P1, P2 ⇒ F t1 . . . tn t′

`τ a ; ∅ | a
`τ C ; ∅ | C

`τ t1 ; P1 | t′1 `τ t2 ; P2 | t′2
`τ t1 t2 ; P1, P2 | t′1 t′2

`φ t ; P | t′

`τ t ; P, t′ a | a
a fresh

`φ t1 ; P1 | t′1 `τ t2 ; P2 | t′2
`φ t1 t2 ; P1, P2 | t′1 t′2

`φ F ; ∅ | F

Fig. 2. Translation to old-style class and instance definitions

instances. An instance declaration may specify a set of axioms that must be
fulfilled for the instance to apply. instance F t1 . . . tn = t is an abbreviation
for instance () ⇒ F t1 . . . tn = t.

In addition to the constraints imposed by the grammar, in every declara-
tion instance (. . .) ⇒ F t1 . . . tn = t, the terms t1, . . . , tn are constructor
terms, meaning that no type function symbols F occur in them. Also, each
type function of arity n must always be fully applied to n arguments.

The translation specified in Figures 2 and 3 is defined using five judgments:

(i) The judgment `δ d ; d′ maps a new-style definition, d, to an old-style
definition, d′. It is used for translating class and instance definitions.
The translation adds a result parameter to the class definition and states
the functional dependency. For an instance definition, it translates the
right-hand side of the definition into a predicate set and a type term.

(ii) The judgment, `τ t ; P | t′ translates a type term, t, into a predicate
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`σ ∅ ; ∅
`ω (l, r) ; P1 `σ {x2, . . . , xn} ; P2

`σ {(l, r), x2, . . . , xn} ; P1, P2

`τ t1 ; P1 | t′1 `τ t2 ; P2 | t′2
`ω (t1, t2) ; P1, P2, EQV t′1 t′2

Fig. 3. Translation of axioms

set, P , and a type, t′. Its main job is the translation of constructor terms,
which is straightforward.

(iii) The translation of applications of type functions is left to the judgment,
`φ t ; P | t′. It is only defined for terms t of the form F t1 . . . tn. All
arguments, ti, are translated using `τ; and the final rule that connects
`φ; to `τ; adds the result parameter, a, as a fresh variable and moves
the resulting predicate into the predicate set.

(iv) The judgment, `σ {(l1, r1), . . .} ; P , translates a set of equations,
li == ri, into a predicate, P . Its only function is to dispatch single equa-
tions to the next judgment.

(v) The judgment, `ω (t1, t2) ; P , translates a single equation into a pred-
icate set, P . It translates t1 and t2 into predicates and type expressions
without type functions. It enforces equality of t1 and t2 by making use of
an auxiliary type class EQV a b. This class specifies that a and b must
be equal:

class EQV a b | a -> b, b -> a
instance EQV a a

The functional dependencies in the class declaration specify that EQV is
an invertible function. The only instance defines that EQV is the identity
function.

It is a simple exercise to show that the judgment `δ; really defines a function.

Lemma 3.1 If `δ d ; d′ and `δ d ; d′′ then d′ is equal to d′′ up to renaming
of free variables.

4 A Larger Example: Regular Expressions

Besides giving a larger, real-life example, we also pinpoint new problems with
pattern matching on types in this section.

In our work on generating valid HTML and XML documents in Haskell
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[11], we model the restrictions that a DTD poses on the content of one par-
ticular XML element. The key ingredient in this model is a type class AddTo

elem subelem, which relates each element to its corresponding admissible
subelements. This approach requires that each element can be identified via
its type.

A DTD specifies, in principle, a regular language of subelements for the
contents of each element. It is straightforward to implement a simple recog-
nizer for each element specified in the DTD as a regular expression matcher.
Typechecking the uses of the element constructors then requires keeping track
of the states of this matching automaton at the type level. The transition func-
tion is a generalization of the AddTo class, namely a class NEXTSTATE subelem

elem elem’. In this approach, each element has an initial type (correspond-
ing to the initial state of its automaton) and adding subelements changes the
type of the element according to the transition function.

4.1 Data-Level Regular Expressions

Because of the laborious nature of standard type-level programs, we first
present the transition function in the more familiar value-level syntax; this
simplifies the presentation. First, here is a datatype for regular expressions:

type Symbol = String

data Regexp =
Empty | Epsilon | Atom Symbol |
Seq Regexp Regexp | Alt Regexp Regexp | Star Regexp

The transition function nextState maps an input symbol a and a regular
expression r to a regular expression r′ so that L(r′) = {w|aw ∈ L(r)}. This is a
well-known trick for matching a string to a regular expression. The same trick
can also be used to translate a regular expression directly into a deterministic
finite state automaton with regular expressions as its states [3]:

nextState :: Symbol -> Regexp -> Regexp
nextState a Empty = Empty
nextState a Epsilon = Empty
nextState a (Atom b) = if a == b then Epsilon else Empty
nextState a (Seq r1 r2) = if finalState r1

then alt ra rb
else ra
where ra = seq (nextState a r1) r2

rb = nextState a r2
nextState a (Alt r1 r2) = alt (nextState a r1) (nextState a r2)
nextState a (Star r) = seq (nextState a r) (Star r)

The alt and seq functions are “smart” versions of the corresponding Alt

and Seq data constructors which use standard algebraic identities to simplify
the resulting regular expressions on the fly; see Appendix A for their defini-
tions.
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The auxiliary finalState function (occasionally called nullable in the
parsing folklore), when applied to a regular expression r, yields True when
ε ∈ L(r), thus identifying final states in the automaton:

finalState :: Regexp -> Bool
finalState Empty = False
finalState Epsilon = True
finalState (Atom b) = False
finalState (Seq r1 r2) = finalState r1 && finalState r2
finalState (Alt r1 r2) = finalState r1 || finalState r2
finalState (Star r) = True

4.2 Type-Level Regular Expressions

One possible approach to lifting the regular expression matcher to the type
level is to explicitly compute the automaton first and translate it into a set
of instance declarations. This is somewhat more involved than merely imple-
menting the transition function. Consequently, it is more desirable to simply
lift the entire computation of the automaton to the type level, preserving as
much of the structure of the value-level program as possible.

The first step is to lift the declaration of regular expressions to the type
level. This works just like the natural-number and fixed-length list examples
above:

data EMPTY = EMPTY
data EPSILON = EPSILON
data ATOM t = ATOM t
data SEQ r s = SEQ r s
data ALT r s = ALT r s
data STAR r = STAR r

In the context of the HTML combinator library, the argument type of
ATOM is a tag such as DL, DD, or DT. Each of these tags is represented by a
corresponding (singleton) type, like EMPTY or EPSILON.

The transition function maps a state and a symbol to the next state.
Hence, it must be modeled using a type function NEXTSTATE: 6

class NEXTSTATE :: t s -> s’ where
nextState :: t -> s -> s’

For readability, we omit some definitions of the nextState member func-
tion in the running text (see Appendix B for the complete definitions). The
first two cases are simple:

instance NEXTSTATE t EMPTY = EMPTY where
nextState t EMPTY = EMPTY

instance NEXTSTATE t EPSILON = EMPTY where
nextState t EPSILON = EMPTY

6 A version of the code written in the traditional notation for functional dependencies is in
Appendix B.
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But the next case, dealing with ATOM, raises an interesting problem: The
conditional in the original program must distinguish between a matching and
a non-matching input symbol. Hence, it must be able to compare types and
“branch” on the results. The naive approach would be this one:

instance NEXTSTATE t (ATOM t) = EPSILON where ...
instance NEXTSTATE t (ATOM s) = EMPTY where ...

Unfortunately, the instances violate the functional dependency: all pa-
rameters are simultaneously unifiable by mapping s to t, but the results are
different.

In a more expressive language, it would be possible to state that t 6= s

in the second instance. Unfortunately, it is not obvious how such constraints
might be incorporated into the type language because inequations are not
admissible predicates in Jones’s framework of qualified types [7] (they are not
closed under substitution). In addition, it is not clear if term equality is really
the predicate that we want to test.

A working solution introduces an explicit equality test in the form of a
type class EQUAL:

class EQUAL :: s t -> b where
equal :: s -> t -> b

instance EQUAL DL DL = TRUE where equal DL DL = TRUE
instance EQUAL DL DT = FALSE where equal DL DT = FALSE
instance EQUAL DL DD = FALSE where equal DL DD = FALSE
...

where TRUE and FALSE are the obvious singleton types. To be useful, there
must be an instance definition for each pair of types, which are admissible
symbol types. Subsection 4.4 discusses the problem in more detail.

With this in place, the ATOM case turns into a single instance:

instance NEXTSTATE t (ATOM s) = IF (Equal s t) EPSILON EMPTY where
nextState t (ATOM s) = cond (equal s t) EPSILON EMPTY

where the IF type class implements a conditional on the level of types:

class IF :: b t1 t2 -> t where
cond :: b -> t1 -> t2 -> t

instance IF TRUE t1 t2 = t1 where cond TRUE t1 t2 = t1
instance IF FALSE t1 t2 = t2 where cond FALSE t1 t2 = t2

Interestingly, this conditional “evaluates” both branches, potentially even
before the condition itself is known.

Sequences are the most difficult case. Fortunately, the techniques devel-
oped so far apply in the same way:

instance NEXTSTATE t (SEQ r1 r2) =
IF (FINALSTATE r1)

(ALT (SEQ (NEXTSTATE t r1) r2) (NEXTSTATE t r2))
(SEQ (NEXTSTATE t r1) r2) where
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nextState t (SEQ r1 r2) =
let ra = seq’ (nextState t r1) r2

rb = nextState t r2
in cond (finalState r1) ra (alt’ ra rb)

The same holds for ALT and STAR:

instance NEXTSTATE t (ALT r1 r2) =
ALT (NEXTSTATE t r1) (NEXTSTATE t r2) where

nextState t (ALT r1 r2) =
alt’ (nextState t r1) (nextState t r2)

instance NEXTSTATE t (STAR r) =
SEQ (NEXTSTATE t r) (STAR r) where

nextState t (STAR r) =
seq’ (nextState r) (STAR r)

The definition of FINALSTATE is straightforward to derive from the value-
level function finalState. It is omitted because it poses no additional prob-
lems. It relies on type-level versions of and and or, AND and OR, which are
also straightforward.

4.3 Smart Constructors

In the data-level formulation, smart versions of Alt and Seq called alt and
seq simplify the resulting regular expressions on-the-fly. When computing a
matching automaton at the data level, this is strictly necessary to obtain a
finite set of states. The type-level does not need to enumerate all the states, so
it is possible to do without simplification. However, after several transitions,
the type terms and their evidence-data terms grow enormously and slow down
the type checker considerably.

Implementing smart constructors at the type level poses some interesting
additional problems. The smart versions of ALT and SEQ are type classes called
ALT’ and SEQ’. Their class declarations are as follows:

class SEQ’ :: r1 r2 -> r
class ALT’ :: r1 r2 -> r

Their instance declarations can be easily derived from their data-level
counterparts. However, they must be spelled out in considerably more de-
tail. In particular, most variables must be eliminated from the patterns. For
example:

instance ALT’ EMPTY r = r
instance ALT’ r EMPTY = r

These two instances overlap and hence the type checker rejects them. Even
the implemented extensions for overlapping instances [10] do not help in this
case because each instance matches the other.

One approach to make the instances non-overlapping is to define instances
for all combinations of parameters r1 and r2 to ALT’. However, this results
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in a quadratic number of instances.
A better approach is to sequentialize the class ALT’. In this approach,

ALT’ is only responsible for dispatching on the first parameter. Dispatching
on the second parameter is left to yet another type class ALT’’. Sequentializing
“only” doubles the number of instances. Here is the beginning of that effort:

instance ALT’ EMPTY r2 = r2
instance ALT’ r1 r2 = ALT’’ r1 r2

The last line gives rise to an overlapping instance, but it can be resolved
using the extension for overlapping instances. 7

Ideally, an implementation of ALT’’ would look as follows:

class ALT’’ :: r1 r2 -> r
instance ALT’’ r1 EMPTY = r1
instance ALT’’ r1 r2 = ALT r1 r2

Unfortunately, the last line breaks the functional dependency: in the case
where r2 = EMPTY, the last line says that ALT’’ r1 EMPTY = ALT r1 EMPTY
which seems to contradict the functional dependency of ALT’’ (at least, this
is what the implementations tell us). Consequently, all the alternatives need
to be listed:

instance ALT’’ r1 EPSILON = ALT r1 EPSILON
instance ALT’’ r1 (ATOM t) = ALT r1 (ATOM t)
instance ALT’’ r1 (SEQ s1 s2) = ALT r1 (SEQ s1 s2)
instance ALT’’ r1 (ALT s1 s2) = ALT r1 (ALT s1 s2)
instance ALT’’ r1 (STAR s) = ALT r1 (STAR s)

4.4 The Problem with Equality

The astute reader will have asked why the type class EQUAL is defined as a
function that explicitly maps a pair of types to TRUE or FALSE. It would be
much more in line with typical type class programming to define a type class
EQUAL2 along the following lines (in the traditional syntax):

class EQUAL2 a b
instance EQUAL2 DL DL

7 Unfortunately, the February 2001 release of Hugs 98 is not able to correctly process the
instances of ALT’. To obtain runnable code, it is necessary to expand the second line by
giving the following set of instance definitions:

instance ALT’ EMPTY r2 r2
instance (ALT’’ EPSILON r2 r) => ALT’ EPSILON r2 r
instance (ALT’’ (ATOM t) r2 r) => ALT’ (ATOM t) r2 r
instance (ALT’’ (SEQ s1 s2) r2 r) => ALT’ (SEQ s1 s2) r2 r
instance (ALT’’ (ALT s1 s2) r2 r) => ALT’ (ALT s1 s2) r2 r
instance (ALT’’ (STAR r1) r2 r) => ALT’ (STAR r1) r2 r

These instance definitions require a facility to turn off the termination guarantee of predicate
rewriting (thus making type checking undecidable) because there are non-variable types in
the predicates.
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instance EQUAL2 DT DT
instance EQUAL2 DD DD
...

This type class could even be specified with a linear number of instance dec-
larations.

Unfortunately, EQUAL2 is not up to the job. Since the Haskell class system
is designed with an open-world assumption in mind, it is impossible to extract
negative information from the definition of EQUAL2. A predicate like EQUAL2

DL DT simply remains unreduced in the context. Hence, it cannot be used to
select a particular instance.

Neither does the class EQV from Section 3 perform the desired task. Using
the predicate EQV t1 t2 immediately unifies t1 and t2, thereby making it
impossible to reach the EMPTY case for NEXTSTATE t (ATOM s).

5 Towards better Type-Level Pattern Matching

While the syntax proposed in the previous sections is appealing and makes
type-level programming much easier, it still leaves much to be desired. Most
prominently, function definitions on the data level are still more readable than
the ones on the type level, largely because data-level functions can utilize wild-
card patterns and type-level functions cannot. Unfortunately, a naive trans-
lation of wild-card patterns to instances gives rise to overlapping instances.
These overlapping instances are not easily resolved (witness Section 4.3), and
give rise to subtle type checking problems.

Part of the problem lies in the as yet unexplored interaction of functional
dependencies and overlapping instances. Since there is no underlying theory
that encompasses both, there is still work to be done here.

Another part of the problem stems from the fact that type classes are the
only structuring tool available for types. Data values can be classified by types
in a much more rigorous fashion than types can be classified by type classes.
This weak classification of types is due to the open nature of type classes:
The typing of a program must not depend on the instances known at compile
time. Instead, the program is guaranteed to work regardless of the instances
that are added later on. Hence, it is impossible to automatically expand a
wild-card pattern into the potential parameter types because this set might
be different depending on the context of use of a particular module.

Moreover, the simplification example (Sec. 4.3), requires sequentializing
the pattern matching. This “pattern matching by hand” seems wasteful, but
is impossible to automate, as pattern-match compilation heavily relies on wild-
card patterns.

A potential way out of the problem with wild-card patterns (and hence
with pattern matching, too) lies in enriching the kind structure. Currently,
the only kinds available are types, ∗, and arrow kinds, κ → κ′. An enumerated
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kind defines a set of types, but in contrast to a type class, its set of types cannot
be changed once it is defined.

The proposed notation for the simplification example (Sec. 4.3) is the fol-
lowing:

class ALT’ r1 r2 -> r with
r1, r2 <- { EMPTY, EPSILON, ATOM t, SEQ r1 r2, ALT r1 r2, STAR r1 }

Using this information, the compiler can compile pattern matching by
expanding wild cards. 8

6 Getting It Back

All examples presented in this paper exclusively rely on type classes defined
using functional instances. The notation does not subsume the old notation
for type classes. On the other hand, it is easy to embed old-style type classes
into functional instances by always returning a dummy Success type from
the type-level functions.

Moreover, the notation for functional instances also does not subsume
functional dependencies. Specifically, functional instances do not not cover
the following cases:

(i) functional dependencies which do not cover all of the variables of the type
class

(ii) multiple functional dependencies in a single type class

In the first case, a class written using functional instances introduces type
variables on the left-hand side which do not occur on the right-hand side of
its instances. Naive implementations of type inference for functional depen-
dencies might miss opportunities for improvement in this case. However, it is
straightforward to detect unused left-hand-side type variables and omit them
from the generated functional dependencies.

The second case is more involved, and it is hard to assess the value of multi-
ple functional dependencies, as there are few published examples which make
fundamental use of them. (Jones’s original paper on functional dependen-
cies [8] contains not a single concrete example for multiple dependencies, and
the examples in McBride’s collection [9] also work without them in concrete

8 Curiously, it is already possible to define type classes that correspond to singleton kinds.
For example, the class

class STrue true | -> true

has a functional dependency, which states that its parameter true depends on nothing.
Hence, it must be a constant function (or undefined). Only a single instance declaration is
possible:

instance STrue TRUE

Any use of STrue a in a context immediately simplifies to a = TRUE.
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applications.) In any case, it seems it is usually possible to rewrite multiple
functional dependencies into multiple type classes implementing the different
modes specified by them.

7 Conclusions

We have shown examples for performing non-trivial computations on types
using extensions of the Haskell class mechanism. We propose an alternative,
applicative syntax for specifying type functions and we provide a translation
from new-style classes and instances to the original formulation.

While we have shown how to translate the new functional instances into
the old functional dependencies, we have not addressed the issue of how to
do the reverse. Moreover, there is the question of how to define and handle
ordinary type classes without functional dependencies in the new framework.
One simple option is to keep the old notation entirely. Another option would
be to reinterpret all type classes as functions rather than predicates. This
means that inheritance constraints could also be formulated using equations
over the values of type-class applications. The right mix is the subject of
ongoing work.

Given the fragile nature of the available implementations of functional
dependencies and the drawbacks listed in Section 5, we feel that the support
for type-level programming is still in its infancy. To get the best of both
worlds, there must be a better way of classifying types than type classes.
The natural proposition here is to look to dependently typed systems and to
allow lifting data-level computation to the type level [4]. This would solve
the classification problem (since every lifted data value belongs to a lifted
type, which is a kind), and address the problems about pattern matching and
properties, too.

Also, since pattern matching has a well-defined semantics, such a step
would alleviate the problems with overlapping instances. It remains, of course,
to integrate this kind of computations into a type checker. This is also part
of our ongoing work.
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A Smart Constructors

These are the value-level definitions of the seq and alt smart constructors:

seq Empty r = Empty
seq r Empty = Empty
seq Epsilon r = r
seq r Epsilon = r
seq (Seq r1 r2) r3 = Seq r1 (seq r2 r3)
seq r1 r2 = Seq r1 r2
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alt Empty r = r
alt r Empty = r
alt Epsilon Epsilon = Epsilon
alt Epsilon (Star r) = Star r
alt (Star r) Epsilon = Star r
alt (Alt r1 r2) r3 = Alt r1 (alt r2 r3)
alt r1 r2 = Alt r1 r2

B Instance Declarations for NEXTSTATE and FINALSTATE

Here is the code for the NEXTSTATE class in the traditional syntax for functional
dependencies:

class NEXTSTATE t s s’ | t s -> s’ where
nextState :: t -> s -> s’

instance NEXTSTATE t EMPTY EMPTY where
nextState t EMPTY = EMPTY

instance NEXTSTATE t EPSILON EMPTY where
nextState t EPSILON = EMPTY

instance (EQUAL s t b, IF b EPSILON EMPTY r)
=> NEXTSTATE t (ATOM s) r where

nextState t (ATOM s) = cond (equal s t) EPSILON EMPTY

instance (FINALSTATE r1 b,
NEXTSTATE t r2 rb,
NEXTSTATE t r1 ra’,
SEQ’ ra’ r2 ra,
ALT’ ra rb rb’
IF b ra rb’ r)
=> NEXTSTATE t (SEQ r1 r2) r where

nextState t (SEQ r1 r2) =
let ra = seq’ (nextState t r1) r2

rb = nextState t r2
in cond (finalState r1) ra (alt’ ra rb)

instance (NEXTSTATE t r1 r1’,
NEXTSTATE t r2 r2’,
ALT’ r1’ r2’ r’)
=> NEXTSTATE t (ALT r1 r2) r’ where

nextState t (ALT r1 r2) =
alt’ (nextState t r1) (nextState t r2)

instance (NEXTSTATE t r r’,
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SEQ’ r’ (STAR r) r’’)
=> NEXTSTATE t (STAR r) r’’ where

nextState t (STAR r) =
seq’ (nextState r) (STAR r)

Here is the definition of FINALSTATE in the traditional syntax:

class FINALSTATE s t | s -> t where
finalState :: s -> t

instance FINALSTATE EMPTY FALSE
instance FINALSTATE EPSILON TRUE
instance FINALSTATE (ATOM t) FALSE
instance (FINALSTATE r r’, FINALSTATE s s’, AND r’ s’ u’)

=> FINALSTATE (SEQUENCE r s) u’
instance (FINALSTATE r r’, FINALSTATE s s’, OR r’ s’ u’)

=> FINALSTATE (UNION r s) u’
instance FINALSTATE r r’ => FINALSTATE (PLUS r) r’
instance FINALSTATE (STAR r) TRUE
instance FINALSTATE (OPTION r) TRUE

The definition of the IF class in the traditional syntax:

class IF b t1 t2 r | b t1 t2 -> r where
cond :: b -> t1 -> t2 -> r

instance IF TRUE t1 t2 t1 where
cond TRUE t1 t2 = t1

instance IF FALSE t1 t2 t1 where
cond FALSE t1 t2 = t2

The definition of FINALSTATE requires type-level versions of the logical
operations && and ||. These are two type classes AND and OR. Their definition
in the traditional syntax:

class OR s t u | s t -> u
instance OR FALSE FALSE FALSE
instance OR FALSE TRUE TRUE
instance OR TRUE FALSE TRUE
instance OR TRUE TRUE TRUE

class AND s t u | s t -> u
instance AND FALSE FALSE FALSE
instance AND FALSE TRUE FALSE
instance AND TRUE FALSE FALSE
instance AND TRUE TRUE TRUE

120



GHood – Graphical Visualisation and
Animation of Haskell Object Observations

Claus Reinke 1

Computing Laboratory, University of Kent

Canterbury, UK

Abstract

As a possible extension to his Haskell Object Observation Debugger Hood [7], Andy
Gill has described the “dynamic viewing of structures”, stepping through observa-
tions instead of accumulating them into a static view. Starting from this idea, we
have implemented and released an animation back-end for Hood, called GHood.
Instead of the dynamic textual visualisation based on pretty-printing proposed in
[7], our back-end features a dynamic graphical visualisation, based on a simple
tree layout algorithm. This paper reviews the main aspects of Hood, gives a brief
introduction to GHood’s features and summarises our experience so far.

The visualisation of program behaviour via animations of data structure obser-
vations has uses for program comprehension and exposition, in development, de-
bugging and education. We find that the graphical structure facilitates orientation
even when textual labels are no longer readable due to scaling, suggesting advan-
tages over a purely textual visualisation. A novel application area is opened by the
use of GHood as an applet on web pages – discussions of Haskell program behaviour,
e.g., in educational online material or in explanations of functional algorithms, can
now easily be augmented with graphical animations of the issues being discussed.

1 Well-typed programs don’t go anywhere – or do they?

The war-cry of static typing is that “well-typed programs don’t go wrong”, but
sometimes the question is “where does this well-typed program go?”, requiring
a more detailed understanding of program behaviour.

For a surprisingly long time, Haskell programmers have been deprived of
tools that would enable them to investigate the behaviour of their programs at
a suitable level of abstraction. This lack of tool support, especially in the areas
of debugging and profiling, has been quoted as one of the reasons “why no one
uses functional languages” [18]. In the context of Haskell profiling, the lack has

1 mailto:c.reinke@ukc.ac.uk http://www.cs.ukc.ac.uk/people/staff/cr3/
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not been felt quite so urgently, because increasingly sophisticated lower-level
tools have continued to appear (support still varies between implementations,
though, and tools are implementation-specific). Still, there is a discrepancy:
if programs are written in a nice high-level language, why do their dynamic
aspects have to be studied in low-level terms of stack- and heap-usage? And
in the area of debugging, the situation has only just started to improve.

A recent survey [3] compares three tools for tracing and debugging of lazy
functional programs: Hat [20], Freja [13], and Hood [7]. All of these systems
offer inspection facilities at a level close to the programming language, based
on different forms of execution traces, and can be characterised on the basis
of the questions they help to answer. Hat 2 takes wrong program output as
starting points, enabling users to trace backwards through reduction sequences
(“where did this result or output come from?”). Freja supports a technique
known as declarative debugging, involving users in a dialogue that narrows
down to the source of errors (“this part of your program gives the following
result. Is this correct (yes/no)?”). For Hood, it is useful to imagine a data-flow
model of functional program execution, with parameters flowing into operators
or functions and results flowing out. On this basis, programmers can use Hood
to insert probes into their programs to monitor or observe the flow of data at
runtime (“what kind of data structure is flowing through here?”).

Tracing tools offer high-level views into Haskell program executions. Focus-
ing on different aspects of program behaviour, the existing tools complement
each other, but it turns out that they all provide essentially static views of
program execution traces, highlighting logical connections between interme-
diate terms instead of execution dynamics. As a possible extension to Hood,
Andy Gill described the “dynamic viewing of structures”, stepping through
observations using a textual form of visualisation based on pretty-printing [7].
Gill implemented and demonstrated a browser back-end for Hood, based on
this idea (the back-end itself is available from the Haskell CVS repository, but
it is not supported by the Hood observation library, as released in July 2000;
that Haskell library implements the observation combinator by accumulating
observations and printing a static view at the end of program runs).

We are here concerned with extending the usefulness of Hood (the most
recent of these tools, and also the only implementation-independent one) by
adding dynamic views of observation traces. Starting from Gill’s idea, and
building on the Hood observation library, we have implemented and released
a graphical animation back-end for Hood, called GHood. Instead of a dy-
namic textual visualisation based on pretty-printing, our back-end features a
dynamic graphical visualisation, based on a simple tree layout algorithm. Af-
ter reviewing the main aspects of Hood, this paper gives a brief introduction
to GHood’s features, demonstrates some of the new applications enabled by
GHood by way of two small examples, and summarises our experience so far.

2 Hat has since been extended considerably, and now supports several models of tracing,
implemented on top of a single program execution trace (cf. Section 5.1, as well as [19,20]).
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2 Hood – goodbye trace, hello observe

The pseudo-function trace :: String -> a -> a – not part of any Haskell
language definition, but supported by all Haskell implementations – is sup-
posed to be acting as an identity with a String-label. When evaluated, it
returns its second parameter, but also prints its label as a side-effect. Rem-
iniscent of the print-statements with which imperative programmers inspect
their programs in the absence of proper debuggers, side-effecting output can
thus be used to generate a trace of the execution of a Haskell program.

But in the end, unconstrained use of side-effecting input/output operations
is no more suitable for debugging than for any other kind of input/output in a
lazy functional language. Functional input/output has moved on to more sys-
tematic, declarative means of expression, which require to make effects visible
in the structure, and thus in the type of programs (Chapter 3 of [16] aims to
give a logical reconstruction of the main lines in this development). But this is
exactly what prevents the use of these more structured means of input/output
for debugging purposes, where one wants to inspect the behaviour of a given
program, without having to restructure it into something else first.

Enter Hood (Haskell Object Observation Debugger). One way of under-
standing Hood is via a line of reasoning similar to that which led to today’s
functional input/output systems – it is not the idea of side-effecting opera-
tions that is at fault, it is their undisciplined use that causes problems. As the
requirements of debugging differ from those of standard input/output, a simi-
lar line of reasoning will not necessarily lead to similar solutions. In standard
usage, input/output is part of the program and should be reflected in its type
structure whereas, for debugging purposes, the input/output-operations are
part of the workbench used to inspect the program, and the original program
should be disturbed as little as possible.

Developing this idea, Hood consists of a fairly complex library with a
relatively simple interface. In fact, the type of the major function has not
changed much: observe :: Observable a => String -> a -> a. Similar
to trace, observe acts as an identity with a String label. But the similari-
ties end here – calls to trace effectively imitate imperative print-statements,
whereas calls to observe capture the intention behind print-style-debugging
(indicating interest in intermediate values) in a declarative way, leaving the
“how” of capturing and presenting information to the implementation. The
combination of observe and its observation and presentation library elimi-
nates all the major deficiencies of trace:

(i) (a) With trace, all information is communicated via the String parame-
ter. Programmers have to add code to inspect parts of their program,
and to incorporate the inspection results into the String labels.

(b) With observe, instances of the Observable class handle all aspects
of program inspection, offering a much more convenient high-level
interface. The String parameter is just used as a label.
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(ii) (a) The extra inspection code needed to feed information into trace

labels implies non-trivial program modifications, which run the risk
of introducing bugs and changing strictness properties in the process.

(b) Predefined instances for most standard types and a combinator ap-
proach to user-defined instances of Observable imply smaller pro-
gram modifications and ensure that strictness properties of the pro-
gram under inspection are not affected by the use of observe.

(iii) (a) When evaluated, trace immediately attempts to output its label.
Under a lazy evaluation strategy, this may cause other traced expres-
sions to be evaluated, and the order of output can be confusing.

(b) Evaluation of observe causes information to be captured, but this is
decoupled from presentation and output. In Hood, the observation
events are post-processed when the observed program has terminated
– observations are grouped by their labels into comprehensive sum-
maries, which are pretty-printed as partially-known data structures.

For the full details, readers are referred to the Hood paper and documen-
tation [7,8], but for a two-parameter constructor C in an algebraic data type,
the general mechanism can be illustrated by the following pseudo-code:

observer (C x y) = λposition -> unsafePerformIO $
do sendEvent <observed constructor C at position position>

return (C (observer x position.0) (observer y position.1))

where observer is a helper function called by observe (initialising position),
and position records the position of the current subexpression in the observed
data structure. The definition is strict in the observed (sub-)structure, forcing
its evaluation to weak head normal form, but only if the weak head normal
form of the whole expression is required by the evaluation context. On this
occasion, the observer generates an observation event, tagged with the po-
sition information, wraps any constructor parameters in new observers, and
returns the observed constructor to the evaluation context.

All those implementation details are hidden behind suitable monads and
combinators, offering a simple user-level interface, and observers for most
standard types are predefined. The (predefined) instance of Observable for
lists may serve to illustrate that it is straightforward, if somewhat tedious, to
make new types observable:

instance (Observable a) => Observable [a] where

observer (a:as) = send ":" (return (:) << a << as)

observer [] = send "[]" (return [])

Using observe is equally straightforward (runO :: IO a -> IO () runs
an IO-script while taking care of observation event processing):

import Observe

main = runO $ print $ observe "just a list" [1..4::Int]
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3 GHood – seeing what your program does

Using a small set of commonly implemented extensions to standard Haskell,
Hood instruments existing Haskell implementations to generate observation
data during program evaluation, and when the observed program terminates,
the stream of observation events is postprocessed and pretty-printed. The
result is a portable library that can be used with the full Haskell language.

However, there is more information in the stream of observation events
than is utilised in the vanilla version of Hood. Each observation event conveys
three kinds of information:

(i) what constructor or constant is observed?

(ii) where is this part of a data structure located?

(iii) when is this part of a data structure observed?

Hood uses location information (where) to collate related observations and
then pretty-prints the collection of partial information (what) about the data
structures under observation. The original Hood publication [7] mentions “We
have an extension to the released version of HOOD, that includes a browser
that allows dynamic viewing of structures.” and includes screenshots showing
dynamic pretty-printing, but this combination has yet to be released 3 .

For GHood, we have taken Gill’s idea of using the when information of
observation events as a basis for animating observations as our point of depar-
ture. GHood can be characterised as a new back-end for Hood’s observation
library – instead of textual visualisation, based on pretty-printing, we have
chosen a graphical form of visualisation, based on a simple tree-layout algo-
rithm. The visualisation consists of displaying the structure under observation
as a tree, and the animation refines the display whenever an observation event
adds information. With the potential exception of functions (see section 4.2),
all Haskell types are of the (recursive) sum-of-products kind, and thus have a
simple mapping to a tree representation. This is not always the most natural
mapping – e.g., GHood currently renders Strings as binary lists of characters.

3.1 Implementation

We have added extension hooks in the Hood observation library: apart from
initialisation and finalisation, these hooks enable additional processing of ob-
servation events, either individually, as each observation occurs (extending the
sendEvent used in observer), or on the event stream as a whole, between
program termination and Hood’s pretty-printing. These hooks give fairly good
control over the production and formatting of observation logs and could be
used by other postprocessing tools. No further modifications of Hood’s obser-

3 nhc98 comes bundled with pre-release versions of the browser (from the Haskell CVS
repository) and the Hood observation library, the latter modified to produce the XML-
based input expected by the browser (referred to as THood in section 5.1).
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Fig. 1. GHood screenshot

vation library are necessary – the Haskell interface remains unchanged.

Using these hooks, the observation log is made available in a text file. To
keep parsing of these logs in our back-end simple, log files consist of one line
of plain text per observation event, giving position information and type of
observation (observation label, demand for evaluation, constructor or func-
tion) for each event, as well as observation-type-specific information (arity
and constructor name for observations of constructors, label text for observa-
tion labels). Observation logs can then be processed, visualised and animated
in our graphical back-end GHood. The hooks give a choice between online
and offline generation of external logs, with associated trade-offs: On current
machines, the slow-down of programs by file i/o during evaluation in the on-
line variant appears to be more substantial than the extra space usage by the
offline version, so the latter is the default. The online version remains useful
when GHood is used to debug programs that do not terminate successfully: on
ghc, Hood manages to process the observation log anyway, capturing abnor-
mal termination via exceptions, but on other Haskell implementations, only
our online version of Hood generates an external log in these cases.

The GHood viewer itself is Java-based, ensuring availability on most plat-
forms that support Haskell implementations, and it can be used with any
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Haskell implementation that supports Hood (plus hooks). The graphical user
interface (figure 1) is straightforward, comprising a drawing panel in which
partially observed structures are displayed using a tree-layout algorithm, and
a few buttons to play, stop, reset, and single-step the animation (forwards or
backwards), or to print snapshots (printing produces bitmap-style Postscript,
so export of vectorised encapsulated Postscript was added for use in print pub-
lications). When observation trees get large, they can be scaled down, or the
panel can be scrolled, providing survey views or access to parts of the struc-
tures under observation. To provide for comprehensible automatic stepping
on different platforms, controlable delays have be added between observation
events in automatic animation. In the following, we focus on the observation
trees, as shown in the drawing panel, but produced by the EPS export.

The main reason for implementing our own viewer was that existing graph
drawing tools -as far as they have not gone commercial- appear to be lim-
ited to certain platforms or specialised towards pretty, reasonably fast (a few
seconds) layout, whereas our application required portability and a quick and
simple tree layout for an incrementally updated tree. The only complication
resulted from the single-threaded design of Java’s GUI libraries (event han-
dlers are scheduled non-preemptively). Fortunately, GHood can be decom-
posed into two threads (observation tree update and GUI), only one of which
requires access to the GUI, but both threads operate on the observation tree.
Synchronising the threads on a per-node basis, with an atomic transaction
corresponding to the processing of each observation event, appears to give a
reasonable compromise between GUI responsiveness and animation progress
while avoiding erroneous displays of partially updated trees.

GHood can be used as a standalone Java application or as a Java applet in
web pages, and the production and visualisation of observation event logs can
be decoupled. This means that online course material, documentation and
publications of functional algorithms can be enhanced with dynamic visuali-
sations without requiring a Haskell implementation on the browser side.

3.2 Observations about unsafePerformIO and extension hooks

In the implementation of observe, the non-standard, but commonly imple-
mented, pseudo-function unsafePerformIO :: IO a -> a is used to turn an
effect (logging an observation event), documented in the type of an expression,
into a side-effect, so that the expression tagged with a call to observe can be
used just as the original expression.

Traditionally, unsafePerformIO is seen as a means to extend programs
with impure operations in such a way that their use, as seen from the evalu-
ating context, can be shown to be uncritical (the prefix unsafe is meant to
document this proof obligation). In the case of observers, however, the idea is
to leave the program under observation entirely undisturbed while extending
the implementation that runs the program. In other words, unsafePerformIO
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can also be seen as a hook provided in the Haskell evaluation mechanism.

This hook is used in observe to instrument the evaluator so that it per-
forms useful logging functions when evaluating structures under obervation.
And just as Hood uses an implementation hook to reuse and extend the func-
tionality of existing Haskell implementations, GHood uses hooks in Hood to
reuse the observation functionality while extending it for purposes of graph-
ical visualisation. Such implementation extension hooks enormously simplify
the implementation of portable tools, and it would seem worthwhile to create
and standardise a catalogue of such hooks across Haskell implementations,
moving towards portable tools that can plug into different implementations,
using only the standardised extension interfaces.

Once it is understood that unsafePerformIO functions as an extension
hook in the underlying implementation, other uses become possible as well.
Instead of just logging the evaluation of some expression, the hook could be
used to wait for user input before continuing the evaluation. Such user input
could even be used to modify the structure under observation before passing
it on to the evaluation context, enabling interactive debugging.

In the specific context of GHood, another useful implementation hook
would be to the memory manager, permitting GHood to show when struc-
tures become unobservable. According to the documentation (module Weak in
HsLibs), addFinalizer :: a -> IO () -> IO () should do just that. This
operation should associate an IO-script with an expression, so that the script
is guaranteed to be run after the expression gets garbage collected. Unfor-
tunately, implementation optimisations currently subvert this operation for
most types, rendering it unusable in the general form.

4 GHood applications, by examples

To demonstrate the opportunities opened by GHood, we choose two examples
that display non-obvious behaviour but have either been analysed recently
(the breadth-first numbering problem) or can be assumed to be well-known to
Haskell programmers (the interaction of non-strict evaluation with the use of
foldl as a pattern for tail recursion). We can thus focus on the visualisation
and on the information that can be derived from it. Both of the following
subsections can also be seen as examples of how descriptions of functional
algorithms can be augmented with animations of program behaviour. To avoid
page-filling series of snapshots, we occasionally resort to radio-style textual
commentaries of animations that do not easily fit into the static publication
format here. Online versions of the examples discussed here are provided
on the GHood home page 4 , and readers are strongly encouraged to use the
online animations side by side with the text here (for completeness, and to
give a rough impression of the graphical animations, samples of reduced-size

4 http://www.cs.ukc.ac.uk/people/staff/cr3/toolbox/haskell/GHood/
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task2Events.log(76/76)

after

N

N

N

E 4 E

2 N

E 5 E

1 N

N

E 6 E

3 N

E 7 E

before

N

N

N

E E

N

E E

N

N

E E

N

E E

Fig. 2. End-of-run observation of breadth-first numbering

snapshot series are provided in the appendix of this paper).

4.1 Breadth-first numbering revisited

As a first small example, consider the breadth-first numbering problem pro-
posed in a recent functional pearl [14] as “an interesting toy problem that
exposes a blind spot common to many –perhaps most– functional program-
mers”. The problem is stated as follows:

Given a tree T, create a new tree of the same shape, but with the values at
the nodes replaced by the numbers 1. . . |T| in breadth-first order.

Readers who have not come across this problem before are encouraged
to try finding a solution for themselves before reading on (our Haskell code
is in Appendix A). Originally, we tried to animate our solutions more to
gain insight into the practicalities of visualisation than in the expectation to
learn anything new about the problem. As a first illustration, figure 2 shows
observations of two trees, one before and one after breadth-first numbering,
in the final state of the animation. All observations are grouped under a root
node, which also gives the name of the observation file. Below the root node
come observation labels (the String parameters to the function observe),
followed by tree-representations of the observed Haskell structures.

The observation labels are underlined and coloured blue 5 , constructors
and constants are coloured black, unobserved subexpressions (thunks) are
shown as red boxes. Thunks under observation are represented as orange
boxes with red outlines until their weak head normal form becomes available,
and the thunk is replaced by some constructor. The typical lifecycle of a node
is from “not yet inspected” (red, closed box) to “under observation, but weak
head normal form not yet available” (orange, open box) to some constructor
(black constructor label).

Trees are either empty (E) or nodes (N) with left and right subtree and
some label, so the display in figure 2 gives the information expected from the

5 Presentation scheme changed for publication, to facilitate readability of both colour and
greyscale renderings (red and orange appear as dark and light shades of grey, respectively).
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task2Events.log(33/76)
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Fig. 3. A middle-of-run strictness problem
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Fig. 4. Strictness problem solved?

problem specification, in that only the shape, but not the node labels of the
input tree need to be inspected to construct the resulting tree, in which nodes
are labeled with positive integers in breadth-first order.

The surprise came while inspecting intermediate stages of the animation
– figure 3 shows an extreme situation in the middle of the run. The thunk
which will evaluate to the tree after renumbering is represented as an opened
box, indicating that it is being inspected by the evaluation context, but that
its weak-head normal form has not yet become available. It has been in that
state all the way from just after the start, while more and more of the shape of
the input tree has been observed. In other words, this solution has an extreme
strictness problem, inspecting parts of the input long before they should be
needed! Only the very next step will replace the thunk under inspection by a
node labeled N, with three unobserved thunks as subnodes, so no part of the
result tree becomes available for observation until after all observations of the
input tree shape have taken place.

Once the animation had so drastically brought this strictness problem to
our attention, improving the program was not too difficult. Choosing roughly
the same stage in a run of the modified program, the intermediate observation
in figure 4 shows the difference quite clearly (watching the observed structures
unfold dynamically during animation, it is almost impossible not to notice the
difference between the two programs): parts of the resulting tree have become
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available for observation, right down to the first complete non-trivial sub-tree
at the left, while still not all of the input tree shape has been observed.

In spite of the drastic improvement, a careful inspection of the animation
for the new version shows that it still does not behave as one might expect.
The relabeled tree is observed in depth-first order, whereas the input tree
is observed in breadth-first order. At first, that looks reasonable: the prob-
lem specification calls for a breadth-first traversal of the input tree, and the
printing routine traverses the result in depth-first order. On second thought,
though, only the computation of the new labels should depend on a breadth-first
traversal of the input, and printing the result should give the whole leftmost
branch of the tree before inspecting any node labels.

At this point, we need to explain our approach to the problem and the
differences between the versions. In our earliest attempts, we did indeed ex-
perience the blind spot discussed by Okasaki, though not for the reasons listed
by him. Instead, our road-block was that any solution seems to involve two
different views of the input trees: whereas the problem specification clearly
calls for a breadth-first traversal, the easy way to describe a recursive algo-
rithm over the trees follows their recursive structure – in depth-first order!
Our very first solution side-stepped the issue in an overcautiously systematic
approach, restructuring the input tree into a list of levels, then doing the
relabeling (straightforward in this form), and finally rebuilding a tree of the
original structure, with the new labels. But once we had managed to find at
least one solution to Okasaki’s problem, and identified our own blind spot on
the way, we then sought to get rid of the blind spot by constructing a more
suitable solution. This led to the variants described in the present paper (the
original brute-force solution had similar strictness problems).

The new approach does not impose a breadth-first traversal on the input
tree, but instead follows its natural recursive structure, generating a pool of
“things to do” on the way. The tasks -one for each subtree- are connected
by data-dependencies which represent the breadth-first traversal constraint,
and it is left to the inspection of the result tree to actually cause those tasks
to be evaluated, in a co-routine-like fashion. In other words, the producer
of relabeled trees consumes the input trees in a depth-first traversal, and any
consumer of the result tree will implicitly (by the virtues of lazy evaluation and
the data dependencies set up by the producer) cause a breadth-first traversal
to take place. This decoupling of the two conflicting traversals solves our
blind-spot problem and gives a concise first variant of a solution, called task1

(figures A.2, A.6, 4).

After reading Okasaki’s comments [14], we noticed that his suggestion
about replacing two-way queues by unidirectional queues in languages that
do not support matching on both ends applied to our task pool (represented
as a list, with an awkward use of splitAt to pattern-match at its back end).
So task1 became task2 (figures A.3, A.5, 3) – and acquired the extreme
strictness problem described earlier: Okasaki’s workaround maintains queues
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task1newEvents.log(27/76)
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Fig. 5. Strictness problem solved!

in reversed order (so that elements can be taken from the output ends using
pattern-matching), which happens to put the relabeled top node at the very
end of the queue, so that the whole task queue has to be processed -and the
whole input tree be observed- to get to the very first node of the result tree.

Switching back to our original variant got rid of this problem, but left
another, only slightly more subtle strictness problem: to show the result tree
up to the first label, as in figure 4, it should not be necessary to observe three
levels of nodes in the input tree. The node labeled 4 in the result is the first at
level three, so observing two levels of the input tree should suffice to compute
the label! Perusing the animation again gives the embarrassing insight: just
traversing the structure of the result tree seems to trigger the breadth-first
traversal of the input tree, even before any labels are inspected. And indeed,
this variant takes the result structure from the task pool that was set up to
enforce the breadth-first traversal. Separately passing the structure of the
input tree and filling in the labels computed on demand solves this problem,
and the animation of our final variant, task1new (figures A.4, A.7, 5), exhibits
a nice, demand-driven pattern of observations.

Note that this kind of dynamic strictness problem, where parts of inputs
are demanded too early, differs from the kind of problems that could be inves-
tigated using static strictness information (is a part of input ever demanded or
not at all?). If the iteration bounds that guarantee termination of a strictness
inference system can be increased in cases where termination is obvious for
other reasons, the best information such a system could give corresponds to
that deducible from figure 2. But that information is the same for all variants
of the solution!

4.2 A well-known strictness problem

Recursive algorithms over lists can often be expressed more concisely as folds,
avoiding explicitly recursive definitions. For lists, there are two standard fold
operators, foldr and foldl, which combine the list elements by right- and left-
associative operators, respectively. More generally, a fold operator replaces
constructors in a parameter structure by operators of appropriate arity, thus
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Fig. 6. foldl versus foldl’ – tail recursion with (non-)strict accumulator

expressing the recursive structure of the algorithm in terms of the recursive
structure of its input. Viewed in these more general terms, foldr expresses
a standard recursion along the list structure, whereas foldl expresses a tail
recursion with an accumulator. Such tail recursions are usually associated
with constant stack-usage.

foldr op c [] = c

foldr op c (x:xs) = x ‘op‘ (foldr op c xs)

foldl op c [] = c

foldl op c (x:xs) = foldl op (op c x) xs

As many Haskell programmers discover for the first time in more complex
programs, this idea does not quite work – for large inputs their programs can
run out of stack space in spite of the careful use of tail recursion! This is
quite a common experience, and so it seems worthwhile to see how much of
the problem reveals itself by careful analysis of an example, using only the
graphical animation of observations. The reader should keep in mind that
this subsection is not concerned with new aspects of folds – rather, it serves
to illustrate the novel ways of explaining more or less well-known properties
of functional algorithms, made possible by visualisation tools such as GHood.

Figure 6 (left) shows an end-of-animation snapshot of the call:

observe "foldl" foldl (+) 0 [1..4::Int]
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To make up for the lack of animation here, nodes in this figure are annotated
with superscripts giving the number of observation events between the begin-
ning of their observation and the availability of their weak head normal form
(shown only if that number exceeds one). As in Hood, the observed part of a
function is presented as a finite map of input/output pairs. Those pairs are
labeled with arrows here, so FUN{6->FUN{4->10},3->FUN{3->6},..} repre-
sents a function f that, when applied to 6, returned a function that, when
applied to 4, returned 10 (f was also applied to 3, and returned a function
that, when applied to 3, returned 6). The overall picture tells us that foldl

is a ternary function, mapping a binary function (itself applied four times, as
there are four pairs in its map) to a function, that maps the integer 0 to a
function, that maps the list [1,2,3,4] to the integer 10.

In the animation, several phases can be distinguished. First, foldl itself is
observed to reveal its arity, then evaluation demands that its result be observed
(the box corresponding to this thunk is opened). Before this becomes available,
the spine of the input list is observed in full, which in itself is a stumbling block
in many programs operating on lists of substantial size: the whole length of the
input list is created in memory before any other computations take place (the
spine of the list can be collected immediately, but the thunks for its elements
take up space, even though these elements are not yet about to be inspected).
Using foldr would avoid this problem, at the expense of linear stack usage.

Next, observation of the result of applying the binary operator is de-
manded, leading to a demand for the first parameter of this application. This,
in turn, demands observation of the result of another application of the opera-
tor, and so on, creating a chain of thunks under observation until the demand
for the first parameter of the fourth application is fulfilled by observing the
second parameter to foldl. After that point, the chain unwinds step by step,
demanding successive observations of all input list elements before, finally, the
result of the call to foldl becomes observable.

Returning to the annotated snapshot in figure 6 (left), we see that some 58
events passed during observation of the final result, 10, and that the chain con-
sisted of computing, starting in this sequence 6+4->10, 3+3->6, 1+2->3, and
0+1->1, and terminating in reversed order, taking 42, 31, 20, and 9 observed
steps, respectively. In summary, the call to foldl was indeed tail recursive,
but it only observed the spine of the input list and delivered a thunk involving
the list elements as an interim result. Evaluating this thunk then unfolded
another, implicit recursion (corresponding to the evaluation of a nested arith-
metical expression) with just the kind of linearly growing stack-usage (the
chain of opened boxes) we wanted to avoid.

The obvious countermeasure is to force evaluation of the accumulator to
avoid this split into a tail-recursive thunk construction and a not tail-recursive
evaluation of that thunk, e.g., by using the call-by-value applicator $!:

foldl’ op c [] = c

foldl’ op c (x:xs) = (foldl’ op $! (op c x)) xs
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The new annotated end-of-animation snapshot in figure 6 (right) already
indicates a major change. With the exception of the final result, no more
than 9 observation events occur between the beginning of a node observation
and the availability of its weak head normal form. As those delays roughly
correspond to stack usage, getting rid of the ghost-recursion has established
the bound on stack usage that was the original goal. The order of applications
of the binary operator seems to have changed as well.

Going through the full animation sequence shows further differences: the
spine and elements of the input list are now inspected in a stepwise fash-
ion, interleaved with applications of the binary operator, now in the sequence
0+1->1, 1+2->3, 3+3->6, and 6+4->10. This ordering ensures that intermedi-
ate results are already available when demanded by the next application and
is the result of forcing the evaluation of the accumulator. So, not only has the
unbounded use of stack space been avoided, but a space leak (observing the
full spine of the input list -thus creating implicit thunks for all elements- long
before its elements are inspected) has been plugged as well.

4.3 Summary, and further examples

The examples in this section have been chosen to be small, relatively well-
known, yet displaying interesting behaviour and illustrating different aspects
of GHood. In the case of breadth-first numbering, animation of observations
was used during algorithm development and helped to discover unexpected
properties of early program variants, as well as pointing to the source of the
problems. In the case of foldl, the algorithm and problems are usually con-
sidered to be well-known, but resurface with surprising reliability, and the
animation was used to demonstrate and explain how a tail-recursive function
could still lead to linear resource usage for intermediate structures. The ex-
amples differ in another notable aspect: for breadth-first numbering, the tree
layout imposed by GHood naturally matches the trees in the problem, whereas
the tree layout is rather less natural for foldl.

In both examples, observation of unexpected behaviour could be traced
back to problems and led to modifications of the programs observed. It would
be misleading, though, to assume that the main use of GHood was in debug-
ging – it just happens that understanding what a program does can be a useful
asset in debugging (declarative debugging, as in Freja [13], suggests that such
an understanding is not always necessary). For a nice example of how ani-
mation of observations can aid program comprehension outside of debugging,
readers are again referred to the GHood home page: the online examples in-
clude an animated observation of Colin Runciman’s Haskell implementation
of the “wheel sieve” algorithm for generating prime numbers [17]. The pro-
gram is considerably more complex than the examples discussed here, and the
animation provides a nice complement to the discussion in the JFP paper.
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5 Evaluation, related and further work

5.1 Experience, feedback, and evaluation

After some internal testing at UKC, first versions of GHood were made avail-
able to the Haskell community in January 2001. Since then, we have received
a lot of positive feedback, very few feature requests, and problem reports
have mostly been limited to problems with the Java 2 runtime installations
on which our viewer depends. This suggests that the tool, while far from per-
fect, is already considered good enough to fill its niche. In other words, while
our current users might welcome refinements of the current features, such im-
provements will not be considered essential unless they reflect changes in the
basic approach. Our plans for GHood are thus limited to completion of the
modifications currently under development (see below), to be incorporated in
a final release later this year.

In March, we also had the opportunity to visit 6 the functional program-
ming group in York and take part in a repetition of the usability study de-
scribed in [3], with updated variants of the same tools. Though limited to
case studies in debugging, the experiment provided a host of useful feedback
and ideas. The most important outcome was that the tools (Freja, Hat, and
GHood) had actually managed to explore, and partially fill, different niches in
the area of debugging Haskell programs. Each tool was useful for debugging,
but each tool was useful in a different way, and more than once, we would
have wanted an easy way to switch from one tool to another – not only with
the same Haskell implementation, but in the same debugging session, taking
the current debugging state and investigating it from a different perspective.
As the Hat trace seems to contain most of the information needed for each
of the tools, the York group has now started to move in that direction, and
first results are visible in the new Hat toolsuite bundled with the just-released
nhc98-1.04 [20,19] (the suite includes a variant of Hood-style observation, im-
plemented on top of Hat’s redex trails instead of Hood’s observation library).

In the following, we distinguish between Hood -the Haskell library released
in July 2000, GHood -the graphical back-end for Hood described in this paper,
and THood, by which we refer to the version of Hood that comes bundled
with nhc. The latter includes Gill’s textual browser from the Haskell CVS
repository, and a pre-release version of the Hood library, modified to generate
the XML input expected by the browser. In its current pre-release form,
THood suffers from differences to the released Hood (this is easily repaired)
and from a lack of automated animation (only single-stepping forwards and
backwards and jumps to beginning and end of observations are provided).

All Hood backends inherit the core functionality and some limitations from
the library. In practice, the most annoying limitation is the need to inspect
and modify the source code in order to import the module Observe and to

6 This visit was supported by EPSRC grant number GR/M81953.
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define instances of the class Observable for all non-standard data types, as
far as values of these types need to be observed (this set of types needs to
be closed with respect to embedded types). Further modifications include
a call to runO in main and running the implementation with options indi-
cating extensions beyond Haskell 98. In contrast to calls to observe, which
indicate programmer intentions, these modifications are implied, boring, and
error-prone. Even though errors introduced in the process are isolated from
the program, easily spotted and fixed, they could be avoided entirely by au-
tomating these tasks (Malcolm Wallace suggested using Drift to generate the
instances of Observable). The main problem with calls to observe is to
identify program positions where such calls will provide useful information.

The York experiment was limited to debugging, and as far this is con-
cerned, the most useful feature of GHood surprisingly turned out to be infor-
mation about what is not there: again and again, unevaluated thunks provided
shortcuts to spotting bugs (one example was a bugged compiler in which a
symboltable lookup managed to return values without the symboltable ever
being observed). Both Hood and THood indicate unevaluated thunks as sim-
ple underscores, and neither shows temporal relations between different obser-
vations (Hood has no animation, THood treats observations under different
labels separately). GHood, in contrast, displays unevaluated thunks in clearly
visible red, and animates all observations under a single root node, facilitating
comprehension of interrelationships. Deriving information from non-available
data (thunks) seems to take some getting-used-to, though: the important con-
nection is that Hood-based tools show what the program sees, so if GHood
does not show the value of a thunk, there is no need for the debugger to know
the value, simply because the program never asks for that value.

Of the tools in the experiment, GHood seemed to cope best with large
structures, but it was not entirely without problems in this regard: scaling
(both in time and in space) is useful because the graphical structure supports
orientation even when textual labels are no longer readable, but because of
this graphical structure, small structures are not represented as compactly as
in Hood or THood. If THood would be extended with automated animation,
it would be at an advantage for small, not inherently tree-like structures, such
as the observation of foldl. For slightly larger observations, such as the lazy
wheel sieve, THood’s compact representation can no longer entirely make up
for the lack of scaling (scaling the pretty-printed representation to point size
would give a graphic represention without much structure, but it would be
interesting to compare that representation to GHood’s).

GHood extends Hood, so the static pretty-printed observations are still
available to complement the dynamic graphic visualisation, but some graphs,
especially Strings, should be represented more compactly, to improve read-
ability. Another problem concerns navigation in large structures: the stan-
dard two-scrollbars solution is rather unsuited for concurrently navigating in
both dimensions and needs to be replaced, and although both survey views
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and zooming to details are currently supported, they should not exclude each
other. On a related note, we should point out that Hood-based animation
tools not only enable programmers to focus on the parts of the program to
be observed, decoupling program size from the size of observations. To some
extent, the level of abstraction at which to animate program observations
can also be controlled: at the level described in section 3, entirely different
approaches to the breadth-first numbering problem, such as the brute-force
level-and-reconstruct approach, will display similar behaviour, even though
their behaviour would differ substantially under more detailed observations.

Other issues include online versus offline generation of observation logs (cf.
section 3.1), observability of η-conversion (observe "f" f shares a single ob-
servation label between all uses of f, whereas \x->observe "f" f x creates
separate observation labels for each call), the need to remove calls to observe

to avoid clutter (GHood should be extended to permit selective observation),
and the need for “packaging” of observations, preserving the connection be-
tween them (for instance, several local variable bindings in a function body).

As mentioned earlier, the approach taken by Hood and GHood does not in
principle exclude interactive debugging, and the February 2001 release of Hugs
(www.haskell.org/hugs) offers support for a built-in variant of Hood, called
HugsHood, which heads in this direction by supporting breakpoints. Similarly,
there is no fundamental reason against online visualisation (during program
execution) but our current offline approach to visualisation has opened new
application areas beyond debugging.

5.2 Other related work

The idea to visualise and animate the execution of functional programs in or-
der to gain insights into their behaviour is an old one. For an overview of the
problems and opportunities see Sandra Foubister’s thesis [5]. We are not aware
of a survey covering this area, but various proposals and even implementations
have been put forward, including Foubister’s “hint” tool and an animation of
a G-machine implementation using the graph layout tool daVinci [15], not to
mention proposals for specially designed visual functional languages. More re-
cent incarnations of the idea include a graphical debugger/tracer in the Curry
Integrated Development EnviRonment CIDER [11], and the Kiel Interactive
Evaluation Laboratory [2] for a simple first-order subset of ML. For com-
pleteness, text-based navigation through reduction sequences should also be
mentioned, as in the DrScheme environment [4] or in the reduction systems
in the Berkling and Kluge tradition [10].

Animation of observations in GHood is distinctly different from traditional
text- or graphics-based animation or navigation of reduction sequences. Com-
paring our experience with GHood and with textual single-stepping through
reduction sequences, as afforded, e.g., by the reduction systems developed by
Kluge et. al. [10,6], we find both disadvantages and advantages.
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At first, the disadvantages seem overwhelming: without any extra effort by
programmers, reduction systems provide a direct experience of the operational
semantics, as well as navigation, editing, and selective reduction of parts of
intermediate programs in a reduction sequence. GHood, as a back-end for
Hood, only animates observations of intermediate structures. Observations
are approximations of weak head normal forms of those intermediates, and
the animation shows the sequence in which parts of structures under observa-
tion are inspected. This allows only indirect conclusions about the program
behaviour. In practice, it can be rather difficult to try and infer the algorithm
from the visualisation alone but, starting with a conjecture or some approxi-
mate understanding of the program behaviour, it tends to be straightforward
to confirm or refute such hypotheses in the visualisation.

On the positive side, graphical visualisation is more suitable for overviews
of larger programs and of animation sequences, where textual information
is no longer readable. The observational approach also makes it easier to
focus visualisation on interesting aspects of program behaviour, excluding both
unobserved parts of programs and intermediate expression representations on
the way to weak head normal forms. Nevertheless, observation graphs for
realistic programs grow quickly, demanding further work on the user interface.

The general problem faced by developers of execution monitoring tools is
the need to use (and most likely create) specially instrumented implementa-
tions. As a consequence of the efforts involved, such specialised implementa-
tions tend to support only small subsets of the original languages, visualisation
often takes place at the implementation level, and the specialised implemen-
tations do not evolve with the language and its standard implementations.
Tools based on specialised implementations are by definition not portable,
and if separate implementations are needed for normal and for visualisation
use, differences in evaluation mechanisms may occur.

Another alternative is to use a separate evaluator with built-in execution
animation facilities and to provide mappings between subsets of that evalu-
ator’s language and subsets of the language to be extended with execution
monitoring. Wolfram Kahl has demonstrated this approach with his term-
graph-based program development and transformation environment HOPS [9],
but it means that two evaluators, their languages, and the mapping between
them have to be kept in synch, not to mention portability issues.

Hood avoids all these problems by using a commonly implemented im-
plementation hook (unsafePerformIO) to instrument existing Haskell imple-
mentations, reusing and extending their functionality. The resulting library is
portable and can be used with the full Haskell language. GHood uses hooks
in Hood to reuse the observation functionality while extending it for purposes
of dynamic graphical visualisation, using Java as a widely available imple-
mentation platform. Reflecting on the success of these hook-based solutions,
implementation hooks turn out to be (application-specific) residues of more
general meta-programming infra-structure.
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In language communities with successful tool-building traditions, such as
Lisp, Prolog, and Smalltalk, tool development seems to rely on well-developed
infra-structures for meta-programming and reflection. At a prototype stage,
the key idea is to write a meta-interpreter (between a few lines and a page
of code for these languages) that reuses existing implementation functional-
ity, and then to instrument the meta-interpreter for purposes of monitoring
(animation in our case). Successful prototype tools can then be implemented
more efficiently, often using standard techniques. To achieve efficiency, the
meta-interpreter should delegate standard functionality to the standard eval-
uator with as little overhead as possible. In such embedded meta-interpreters,
only the extra functionality (e.g., for program monitoring) incurs interpreta-
tive overhead, and if suitable extension interfaces to the standard evaluator
are available (aka reflection or introspection capabilities), the meta-interpreter
becomes the standard interpreter, instrumented via its extension hooks.

In the context of declarative debugging, Naish and Barbour [12] have used
this idea to design a “portable lazy functional declarative debugger” which
could be implemented in the functional language to be debugged, assuming a
single impure primitive, called dirt (display intermediate reduced term).

Haskell neither supports reflection 7 nor does it offer well-documented in-
terfaces to implementation functionality (cf. the SML/NJ Compiler structure
[1]), or other typical parts of a meta-programming infra-structure. Its syntax
is more complex than Lisp’s S-expressions, and reusable parsers for full Haskell
have only recently started to appear, but the parsers in the various Haskell
implementations remain practically unaccessible; all Haskell implementations
internally build up a symbol-table, associating identifiers with attributes, such
as types or strictness, but there is no standard interface by which Haskell pro-
grams could load a Haskell program and query the symbol-table information.

6 Conclusions

GHood is a new back-end for Hood, providing graphical visualisation and an-
imation of Haskell program execution. Unlike traditional approaches to graph
reduction animation, GHood is not based on a special-purpose implementa-
tion, but extends and reuses existing Haskell implementations, via Hood. The
visualisation itself is also different, in that it does not animate reductions of
terms to normal form, but inspection of terms by their evaluation contexts:
instead of evolution of a term through intermediate representations, an anima-
tion shows refinement of information about a term in a single representation.

Portable tools such as Hood and GHood depend critically on being able
to instrument and thus reuse existing Haskell implementations by means of
extension hooks, and the ease with which tool implementers can reuse existing

7 How to do this properly in a statically typed, pure, and non-strict functional language is
another research direction that would merit more attention
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implementation functionality has an important impact on the development of
tools for Haskell. We suggest that a common (implementation-independent)
infra-structure for meta-programming and reflection in Haskell, with standard
interfaces to implementation functionality, could improve the basis for Haskell
tool development, and that both the general framework and specific imple-
mentation extension hooks should become a focus of research.

In the present paper, we have focussed on illustrating the way in which
GHood can be used to help comprehension of Haskell program behaviour,
using small examples from everyday practice. Our own experience and feed-
back from users shows that dynamic observation of intermediate structures is
a useful addition to the Haskell programmer’s toolbox. Although the ‘d’ in
Hood stands for “debugger”, we prefer to see GHood as a workbench: Haskell
programmers can use it to set up and perform experiments involving dynamic
aspects of their programs. Such experiments can be used to validate theories
of program behaviour or they can deliver the data points from which such the-
ories can be abstracted. For both uses, experiments have to be set up and the
data be interpreted carefully, so Hood and GHood are tools that can inform
thinking about programs, but they cannot replace such thinking.

We hope to see GHood or similar tools for the visualisation of functional
program behaviour used in education (online course material), documentation,
and publication (online supplements to articles on functional algorithms). In-
structors might want to consider the motivational aspect as well – several
correspondents commented the first pre-releases with the words “GHood is
cool!”. Another correspondent remarked “finally, I can show my colleagues
what non-strict evaluation means”.
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A Source code and animation sequences

A note on the use of animation sequences: online animations for all examples
are available on the GHood home page. Snapshot samples of animation sequences
are included in this appendix for archival reasons, but as the static medium cannot
portray the advantages of dynamic visualisation, the online animations should be
preferred, if at all possible. Readers without access to the online animations will
find it helpful to print or display this appendix separately from the main text, so
that they can see both side by side without having to jump back and forth.

import Observe

data Tree a = E | N (Tree a) a (Tree a) deriving (Show)

instance Observable a => Observable (Tree a) where

observer E = send "E" (return E)

observer (N l x r) = send "N" (return N << l << x << r)

main = printO $ observe "after" $ bfnum $ observe "before" xxx

where { xxx = N xx 2 xx; xx = N x 1 x; x = N E 0 E }

Fig. A.1. task-based breadth-first numbering, common prefix
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-- for non-empty tree, fork out immediate subtrees (l,r) as

-- new tasks, build result from sub-results (l’,r’)

task n ~[] E = (n ,[] ,E)

task n ~[l’,r’] (N l x r) = (n+1,[l,r],N l’ n r’)

taskM n [] = []

taskM n (t:ts) = t’:rs’

where

(n’,tp’,t’) = task n r t

ts’ = taskM n’ (ts++tp’)

(rs’,r) = splitAt (length ts) ts’

bfnum t = head $ taskM (1::Integer) [t]

Fig. A.2. task1 – task-based breadth-first numbering, first attempt

task n ~rs E = (n ,rs,[] ,E)

task n ~(r’:l’:rs) (N l x r) = (n+1,rs,[l,r],N l’ n r’)

taskM n [] = []

taskM n (t:ts) = rs’++[t’]

where

(n’,rs’,tp’,t’) = task n ts’ t

ts’ = taskM n’ (ts++tp’)

bfnum t = head $ taskM (1::Integer) [t]

Fig. A.3. task2 – task-based breadth-first numbering, more elegant?

task n ~[] E = (n ,[] ,E)

task n ~[l’,r’] (N l x r) = (n+1,[l,r],N l’ n r’)

taskM n [] = []

taskM n (t:ts) = t’:rs’

where

(n’,tp’,t’) = task n r t

ts’ = taskM n’ (ts++tp’)

(rs’,r) = splitAt (length ts) ts’

fillIn E ~E = E

fillIn (N l _ r) ~(N l’ x’ r’) = N (fillIn l l’) x’ (fillIn r r’)

bfnum t = fillIn t $ head $ taskM (1::Integer) [t]

Fig. A.4. task1new – task-based breadth-first numbering, improved!

144



Reinke

task2Events.log(2/76)

after

task2Events.log(4/76)

after before

task2Events.log(8/76)

after before

N

N

task2Events.log(10/76)

after before

N

N N

task2Events.log(12/76)

after before

N

N

N

N

task2Events.log(14/76)

after before

N

N

N N

N

task2Events.log(16/76)

after before

N

N

N N

N

N

task2Events.log(33/76)

after before

N

N

N

E E

N

E E

N

N

E E

N

E E

task2Events.log(35/76)

after

N

before

N

N

N

E E

N

E E

N

N

E E

N

E E

task2Events.log(37/76)

after

N

N

before

N

N

N

E E

N

E E

N

N

E E

N

E E

task2Events.log(39/76)

after

N

N

N

before

N

N

N

E E

N

E E

N

N

E E

N

E E

task2Events.log(45/76)

after

N

N

N

E 4 E

before

N

N

N

E E

N

E E

N

N

E E

N

E E

task2Events.log(55/76)

after

N

N

N

E 4 E

2 N

E 5 E

before

N

N

N

E E

N

E E

N

N

E E

N

E E

task2Events.log(76/76)

after

N

N

N

E 4 E

2 N

E 5 E

1 N

N

E 6 E

3 N

E 7 E

before

N

N

N

E E

N

E E

N

N

E E

N

E E

Fig. A.5. task2: steps 2, 4, 8, 10, 12, 14, 16, 33, 35, 37, 39, 45, 55, and 76
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Fig. A.6. task1: steps 2, 4, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, and 76
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Fig. A.8. foldl steps 2, 9, 18, 24, 29, 41, 47, 53, 59 and 66
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Fig. A.9. foldl’: steps 2, 9, 17, 25, 34, 38, 47, 51, 60 and 66
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Abstract

Different tracing systems for Haskell give different views of a program at work. In
practice, several views are complementary and can productively be used together.
Until now each system has generated its own trace, containing only the information
needed for its particular view. Here we present the design of a trace that can serve
several views. The trace is generated and written to file as the computation pro-
ceeds. We have implemented both the generation of the trace and several different
viewers.

1 Introduction

Usually, a computation is treated as a black box that performs input and
output actions, but whose internal workings are invisible. As programmers,
however, we may want to look into the black box to understand how the
different parts of the program cause the computation to perform the observed
actions. Often the computation does not perform the intended actions and we
have to determine which parts of the program cause the erroneous behaviour.
Even if a program is correct, we may desire to understand its parts better by
seeing “how it works”; especially when we have to modify a program that we
did not write ourselves. Also for teaching it is sometimes useful to “see” a
computation.

In [2] we compared the Haskell tracing systems Freja 1 [5,6] and HOOD 2

[3] with our Haskell tracer Hat 3 [9,10,11]. The main conclusion of our com-
parison was that each system gives a unique view of a computation and these
views are usefully complementary. In experiments, we discovered that after
using one system to help track a bug to a certain point, users often wanted to
change to another system to continue the search, or to confirm their suspicions.

1 http://www.ida.liu.se/~henni
2 http://www.haskell.org/hood
3 http://www.cs.york.ac.uk/fp/hat
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All three tracing systems take a two-phase approach to tracing: during
the computation information describing the computation is collected in a data
structure, the trace. After termination of the computation the trace is viewed.
An advantage of a trace as a concrete data structure is that it liberates the
viewer from the time arrow of the computation. However, each system creates
its own trace, containing only the information required for its particular view.
We noted in [2] that Hat’s trace, called a Redex Trail, contains nearly all
the information contained in Freja’s trace. Hence we decided to extend the
Redex Trail structure to the Augmented Redex Trail structure (ART). With
separate tools we can view an ART trace in at least three different ways: à
la Freja, à la Hat and à la HOOD. Whereas Freja, HOOD and the old Hat
system generated their traces in main memory, the new Hat writes the ART
trace to file as computation proceeds. Hat’s new architecture has the following
advantages:

• As a stand-alone description of a computation, the ART trace serves as in-
terface between trace generation and trace viewing. The two phases become
completely separate.

• A trace in file supports sequential access and forms of indexed search that
were not feasible for heap-based traces.

• The ART trace clarifies the relationships between the different views of a
computation. It suggests ways for integrating different views and creating
new views.

• The size of the trace is no longer bound by the size of the main memory
but only by the far larger size of the file store.

• The trace is no longer transient but can be archived for later viewing.

• Trace system developers only need to implement trace generation once for
several views.

• The user only pays the cost of generating a trace once for several views.

In Section 2 we review the Redex Trail of the old Hat system, while Section
3 briefly illustrates some alternative tracing views. In Section 4 we develop
in several steps the new Augmented Redex Trail structure. In Section 5 we
describe how several tools for different views obtain their information from
the ART trace. In Section 6 we outline the generation of the ART trace. In
Section 7 we discuss ideas for future work. Section 8 concludes.

We have modified Hat to produce the ART trace and have implemented
new tools for viewing the trace in the style of Freja and HOOD. The system
has been publicly released as Hat 1.04.

2 The Redex Trail Model

Let us view a computation abstractly as a series of rewrite steps. Starting
from a single expression (main), at each step a reducible expression (redex)
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is replaced by another expression (its reduct), by instantiating the lhs of
an equation, and replacing it with the corresponding instance of the rhs.
Eventually, only irreducible expressions (values) remain.

The original Redex Trail structure is a directed graph, recording copies
of all values and redexes, with a backward link from each reduct (and each
proper subexpression contained within it) to the parent redex that created it.

2.1 Example

oneTrue :: [Bool ] → Bool

oneTrue [] = False

oneTrue (x : xs) = xor x (oneTrue xs)

xor :: Bool → Bool → Bool

xor x True = not x

xor False = True

main = print (oneTrue [False, not True])

Fig. 1. Example program

The small example program shown in Figure 1 produces the Redex Trail
illustrated in Figure 2. A subexpression with a different parent is represented
as a box within a box. A solid arrow denotes the parent relationship. Of
course, the user is not expected to see and understand a complete graph of
this nature. A tool called the Redex Trail viewer permits the whole graph
to be explored interactively one expression at a time, as illustrated in this
snapshot:

• True

not False

xor False True

• xor (not True) False

5 oneTrue []

5 oneTrue (not True : [])

oneTrue (False : not True : [])

main

Each redex is shown on a separate line. The parent of an expression is
shown below it. (Because parents are shown below their children in the viewer,
we have drawn the full graph in Figure 2 similarly.) The parent of a whole
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main

oneTrue [False, not True]

oneTrue [not True]

oneTrue []

xor (not True) False

xor False True

not False

True

Fig. 2. An example of a Redex Trail

redex starts in the same column, whereas the parent of a proper subexpression
is further indented. Underlining, and colouring if available, is used to show to
which subexpression a parent belongs.

2.2 Structure

Figure 3 formalises the Redex Trail structure as a set of concrete Haskell
types. An App node represents a redex in the obvious way, with a trace for the
function and separate traces for each argument. It also contains the parent

trace describing the redex that created it. Each function and argument is
likewise of Trace type and therefore has its own, possibly different, parent. The
SrcPos type records the location in the source code of the relevant application
site on the rhs of a definition.

A Const node represents an irreducible value (an Atom), such as an integer,
character, or a constructor or named function from the program, represented
simply as a string identifier. (In the latter case, a SrcPos is associated with
the identifier to record its static definition site.) A Const node also has a
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data Trace = App { fun :: Trace, args :: [Trace]
, parent :: Trace, src :: SrcPos }

| Const { value :: Atom
, parent :: Trace, src :: SrcPos }

| Root
data SrcPos = SrcPos { file :: FilePath

, line :: Int , column :: Int }
| NoPos

data Atom = Id String SrcPos | IntVal Int | CharVal Char | ...

Fig. 3. The original Redex Trail structure.

parent redex and a SrcPos to indicate its dynamic origin. For instance, two
uses of the function f in a computation may have different positions in the
source code, because they are introduced to the trace by rewriting different
redexes.

Finally, it is possible for a redex to have no parent, represented simply as
Root . This clearly occurs at the very start of the computation, namely for the
main function. It also applies in the case of other top-level pattern-bindings
(cafs).

3 Alternative Views

We would like to adapt the original Redex Trail structure to support additional
styles of viewing, such as Algorithmic Debugging and Observations. So what
do these views look like? And what information do they require from the
trace?

3.1 Algorithmic Debugging

Algorithmic Debugging is a well-known technique in declarative languages [8],
implemented for a subset of Haskell by the Freja system [5]. The algorithm
locates an error in a program, given a user who can provide answers to a
sequence of questions. Each question concerns a reduction of a redex to a
result, presented as an equation. The user should answer yes if the equation
is correct with respect to his intentions, and no otherwise. After some number
of questions, the system identifies an incorrect function definition.

Here is such a session for the example program of Figure 1. The symbol
‘ ’ represents an expression that has never been evaluated and whose value
hence cannot have influenced the computation.

1> oneTrue (False:_:[]) = True (Y/?/N): n

2> oneTrue (_:[]) = True (Y/?/N): n

3> oneTrue [] = False (Y/?/N): y

4> xor _ False = True (Y/?/N): n
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Error located!

Bug found in: xor _ False = True

Freja creates an Evaluation Dependency Tree (EDT) as its trace structure.
Figure 4 shows the EDT for this example. Each node of the tree is a reduction.
The tree is basically the derivation/proof tree for a call-by-value reduction with
miraculous stops where expressions are not needed for the result. The call-by-
value structure ensures that the tree structure reflects the program structure
and that arguments are maximally evaluated.

main ⇒ True

oneTrue [False, ] ⇒ True

oneTrue [ ] ⇒ True xor False True ⇒ True

oneTrue [] ⇒ True xor False ⇒ True not False ⇒ True

Fig. 4. An Evaluation Dependency Tree

The viewer dialogue walks the tree, presenting each node as a question –
some answers permit some branches of the tree to be ignored.

To allow algorithmic debugging starting from a Redex Trail rather than
an EDT, we need to add the ability to extract redexes from deep within the
Trail – for instance, the very first question is about the reduction of main,
which lies at the farthest tip of the Redex Trail graph. Furthermore, we need
to record dependency information in the opposite direction – the reduction of
an expression depended on what sub-reductions?

3.2 Observations

HOOD [3] allows observation of individual values within computations. The
programmer annotates the expression(s) of interest in the program source with
the combinator observe. For each annotation, HOOD records the value in
all of its intermediate stages of evaluation, so that after termination of the
computation the observed expression can be shown to exactly the degree to
which it was demanded.

By a few clever tricks, HOOD can record not only data values, but also
functional values, again only to the degree they are really used in the compu-
tation. Thus a functional value is recorded as a bag of actual argument/result
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data StoredEvent = Value { value :: String
, inside :: Ref , position :: Int }

| Constr { name :: String , arity :: Int
, inside :: Ref , position :: Int }

typeObservation = Ref → StoredEvent

dataObservedValue = Value { value :: String }
| Constr { name :: String

, arguments :: [ObservedValue] }

Fig. 5. The two HOOD observation structures. StoredEvents are recorded as a
simple sequence during the computation, but the viewer must later traverse the
StoredEvents to construct an ObservedValue that can be displayed.

mappings [4].

Here we illustrate the output when observing the functions oneTrue and
xor in our example program. The symbol ‘ ’ again represents an unevaluated
expression.

oneTrue (False:_:[]) = True

oneTrue (_:[]) = True

oneTrue [] = False

xor False True = True

xor _ False = True

The HOOD trace structure (sketched in Figure 5) is a sequence of individ-
ual ‘events’. Every event represents the creation of a data value or constructor
(in whnf) during the computation. It has a backwards link to identify the en-
closing data structure of which it is a component, and the particular argument
position it occupies. Each constructor also has a note of how many argument
‘holes’ it can accept. A functional value is treated like a data constructor with
two components, an argument and a result.

At viewing time, the HOOD viewer transforms the stored structure inter-
nally by constructing forward links from each constructor to the final value of
each of its components. This can be expensive for a large structure.

The most notable difference between these structures and the Redex Trail
is that HOOD stores only irreducible values, not reducible expressions. An-
other major difference is that HOOD records only individual annotated values,
not a full trace of the whole computation.

In another paper at this workshop Reinke describes a graphical viewer for
HOOD observations [7].
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4 The Augmented Redex Trail Structure

The EDT structure used in Freja’s algorithmic debugging is very similar to
a substructure of the Redex Trail, but with pointers reversed. Most of the
information in HOOD’s Observations can be derived from either an EDT or
a Redex Trail by searching through those structures for named values and
source positions. The Redex Trail lacks some small pieces of information that
would permit the reconstruction of an EDT by the reversal of pointers. This
same lack also prevents the reconstruction of Observations.

In this section we extend the original structure in stages to become the
Augmented Redex Trail, or ART structure. 4

4.1 Linearisation and Explicit Sharing

The original Redex Trail is an ephemeral heap-based structure, but we want
to store the trace in a file so it is persistent, does not depend on connecting a
viewer to a live program, and can be accessed many times by different tools.

The original Redex Trail type Trace (in Figure 3) is self-recursive, so to
place it in file requires the structure to be linearised. Linearisation gives two
benefits: we can write the trace into the file one node at a time; and we can
access a part of the trace piecemeal without necessarily following all possible
paths. In both cases, efficiency is important: when generating, sequential
writing is best; when viewing, the viewer tool should need to read only a
small fragment of the whole structure.

Another benefit of linearising the structure is that it makes sharing of
nodes explicit. In the original graph model, sharing and cycles are implicit
via the self-recursive type, but in the new model this information is revealed
directly to the viewing tool. There is a great deal of sharing in a trace of a
typical program.

data Expr = App { fun :: Ref , args :: [Ref ]
, parent :: Ref , src :: SrcPos }

| Const { value :: Atom
, parent :: Ref , src :: SrcPos }

| Root
type Trace = Ref → Expr

data Ref = NoRef | Ref FilePos deriving Eq

Fig. 6. The linearised Redex Trail structure.

Figure 6 shows how the trace structure changes to accommodate lineari-
sation. We rename the original Trace datatype to Expr , and all self-recursive

4 The concrete types presented in this section are a slightly abstracted view of the real
trace structures in our current implementation.
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uses of the type become explicit pointers Ref . The new Trace type defines a
unique mapping from Ref s to Exprs. The Root constructor is replaced by the
null reference NoRef . Every Expr node of the graph can be written to or read
from a file individually. A Ref can also be updated in-place (see Section 4.2).

The trace structure as a whole is a sequence of Expr nodes, and the eval-
uation order of the program is apparent from the implicit ordering of Expr
nodes in the file.

4.2 Redexes with Results

The original Redex Trail structure records all of the intermediate steps in a
reduction sequence, but the links are made only in one direction – backwards –
allowing exploration only from ‘effects’ to ‘causes’ in a viewer. However, both
Algorithmic Debugging and Observations present equations in their viewers,
and hence require a ‘forward’ link from every redex (lhs) to its reduct (rhs).

In Figure 7 we once again modify the concrete Haskell representation of
the trace structure, this time to incorporate the ‘forward’ or result links.

data Expr = App { fun :: Ref , args :: [Ref ]
, parent :: Ref , src :: SrcPos
, status :: Eval , result :: Ref }

| Const { value :: Atom
, parent :: Ref , src :: SrcPos
, status :: Eval , result :: Ref }

data Eval = Applied | Blackholed | Completed | Value

Fig. 7. The core of the Augmented Redex Trail structure.

Although it may appear that the parent and result pointers simply repre-
sent the same relation with directions reversed, this is not so. A redex has at
most one outgoing result arc – to the single expression it is rewritten to – but
it can have many incoming parent arcs, because it is the creator of all subex-
pressions within the reduct. Hence, a result arc represents equality whereas a
parent arc represents only inclusion.

A Const representing a basic value (e.g. integer/character) has a parent

but no result ; a Const which is an identifier (e.g. a top-level pattern-binding)
could have a result , but no parent ; often a Const identifier (e.g. local pattern-
bindings) has both a parent and a result .

4.3 Unevaluated Expressions

Together with the result pointer we introduced a status :: Eval field. Even
though an Expr is created, the expression it represents may never be evaluated.
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This has consequences for how a viewer should interpret the result pointer. 5

Every Expr can potentially go through three possible states. Initially, it
is created by rewriting another expression according to some equation (its
status is Applied and its result pointer is undefined). At some later point in
the computation, the value of the expression may be demanded, or ‘entered’
(status now becomes Blackholed). At that point the result pointer is set to the
newly written Expr that represents the reduct. Later again, the expression
may become evaluated to a result expression (although this of course may
still contain unevaluated subexpressions). At this point, the lazy evaluation
mechanism does an ‘update’, overwriting the original expression with its result.
In the trace, however, we do not overwrite the Expr , but update only the
status to Completed (see §6.2). The final possible Eval status of Value is for
irreducible expressions: an Atom, or an App with a data constructor in the
function position. The result pointer for a Value is undefined.

4.4 Example

The augmented version of the Redex Trail graph from Figure 2 is shown in
Figure 8. The subexpression relationship is now shown as a pointer (solid line).
Parents are shown as dotted lines, and results as dashed lines. Expressions
are annotated with their status .

4.5 Entry Points to the Trace

Every ART viewing tool needs an entry point at which to begin its presentation
to the user. These entry points can be different for different tools.

The entry point for algorithmic debugging is the ‘beginning’ of the com-
putation, the evaluation of the main function. In every ART trace, the Expr
for main is the first Expr in the generated sequence.

The entry point for some other viewers is at the ‘end’ of computation, for
instance when reconstructing a virtual stack-trace from an error message, or
when exploring a Redex Trail backwards from the program output. This sug-
gests that both the program output and any error messages must be recorded
in the trace, since they are the ‘end-points’ of the program. Output and errors
are easily added to the ART structure as strings with parent pointers. The
output need not be monolithic; it can be spread across many strings; however
we do not discuss here the various possible ways to split the output, nor how
to store it in the file in a manner that permits quick access.

Other viewers may have variable entry points. For instance, a HOOD-style
observation may need a named function or source position, and retrieve the
relevant information by linear search through the trace.

5 The original Redex Trail structure had a kind of node (Sat) which incorporated aspects
of both the result pointer and the status marker, but these nodes were transient, removed
from the graph once an expression was evaluated. The Sat node did not permanently record
the full information required to forward-link every redex to its reduct.
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Fig. 8. A Trace

4.6 Other Refinements – Lambda, Do, Case, If, Guard

Not all expressions in Haskell are either a simple value, an application of a
constructor to arguments, or an application of a named function to arguments.
We also have anonymous functions (lambda expressions), monadic bindings
(do statements), and various forms of conditional operations (ifs, cases, and
guards). For conditionals, it is important to record in the trace not merely the
final result, but how the decision was reached to take a particular branch. We
follow much the same treatment for these extra constructs as in the original
Redex Trail structure. For lambda expressions, we introduce a new kind of
Atom to represent any function without a name, and the various kinds of
conditional are handled by introducing new kinds of Exprs, each of which
differs only slightly from the standard App kind.

4.7 Projections

There are situations that are slightly tricky to record, due to interesting conse-
quences of the lazy evaluation model. One such is projections. In a definition
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like id x = x , the question is, who is the parent of x? In one sense, it is id ,
yet in another sense, id is merely passing on the value without touching it,
so x ’s parent is really whatever expression created it, not id . Once again, we
follow the original Redex Trail structure by introducing another special kind
of Expr , the Proj node, which can be thought of as attaching an additional
projective parent to the referenced redex.

4.8 Trusting

Finally, it is sometimes desirable not to record all reductions in the trace
structure – we trust some function definitions, such as those in the Standard
Prelude [10]. There are two main reasons for trusting. The first reason is to
improve performance. Trace files are very large and quite slow to write. If we
know that certain parts of the trace are not of interest, it makes sense to omit
them. The second reason is to reduce the amount of information presented to
the user of a trace-viewing tool. 6 Traces contain a huge amount of data, so
a trace that appears too complex can actually hide the information the user
wants. We do not elaborate the details of the trusting mechanism here.

5 Multiple Views from a Single Trace

Having outlined a unifying trace structure, we must now demonstrate that it
can satisfy the needs of the Redex Trail, EDT, and Observation views. We
have built three separate viewers which mimic the user interface behaviour of
the three previous systems (Freja, HOOD, and the old Hat). In this section,
we describe how the required information is reconstructed from the new ART
trace.

5.1 A Redex Trail View: hat-trail

The original Redex Trail structure can be recovered by following mainly parent
pointers. The result pointer chain is used to show a subexpression in its most
evaluated form. The original Hat browser has been adapted to use the new
ART trace, and is now called hat-trail. The viewer starts with program
output or an error message, and enables the user to interactively explore a
computation backwards from effect to cause by revealing the parent (origin)
of any selected subexpression.

5.2 A Static Call Stack: hat-stack

One special-case use of the parent pointers is to show a static call-stack back-
trace from any error message. This does not represent the real lazy evaluation
stack — often sadly incomprehensible. Instead the backtrace gives the virtual

6 It would of course be possible to implement a trusting mechanism in the viewing tool
itself, rather than omitting the data from the trace altogether.
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stack showing how an eager evaluation model would have arrived at the same
result. In our system, this tool is hat-stack.

5.3 Algorithmic Debugging: hat-detect

The tool hat-detect provides Algorithmic Debugging, by extracting a virtual
EDT ‘by need’ from the ART trace structure. 7 It can be seen from Figure 4
that we need three kinds of information from the trace: first, the EDT’s root
node; second, an EDT node’s label, where a label is an equation containing
an application and its result; and third, the children of an EDT node.

The root node of the EDT is always the main caf, found at the beginning
of the trace file.

Each EDT label is an equation: the lhs is an application or caf itself, and
the rhs is its result in its most fully evaluated form. When an App or Const
has a status of Completed , we can follow the result pointer to determine the
eventual value. The immediately referenced node might in turn be Completed ,
so the result chain must be followed iteratively until we find a node with
an Applied , Blackholed or Value status. An Applied node was unevaluated,
therefore it cannot have influenced the execution. It is presented to the user
as a ‘ ’ symbol. A status of Blackholed is similarly displayed as ⊥. Only a
Value status represents a genuine result, either a simple value or a complex
structure, and can be printed as a normal expression.

To determine the children of an EDT node, we must find all fully-evaluated
applications on which the evaluation of the current node depended. The first
child of a EDT node p, may be found by following p’s ART result pointer, but
the referenced node q is a child only if its status is Completed or Blackholed .
(Only with one of these status annotations does the node describe an appli-
cation or caf whose result was actually demanded.) Further children can be
found if q is Completed , Blackholed or a Value. In these cases the argument
pointers of q are considered. If an argument’s ART parent is also p, provided
the argument itself is Completed or Blackholed , it is also a child of p. More
children can be found recursively by the same method.

In this way, all the information necessary to define a computation’s EDT
can be retrieved from an ART trace file.

Only applications of top-level identifiers are considered by hat-detect. A
locally defined function may depend on the values of free variables bound in an
enclosing scope. To decide whether an application appears to be correct, the
programmer needs to know the values of the free variables, yet the ART trace
does not record any direct link to these variables. Program errors found by
our tool therefore always refer to the top-level function; computation within
local definitions is attributed upwards to its enclosing top-level definition.

7 Although we describe the reconstruction of an EDT as if performed in one pass, the
implementation need never build the whole structure - it can be constructed and traversed
piecemeal.
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The dialogue presented by hat-detect is straightforward to arrange, fol-
lowing the standard debugging algorithm. It starts at the root of the EDT,
the main caf. If the programmer answers that a node label is erroneous, he is
asked about the correctness of its children, but children of nodes identified as
correct need not be considered. An erroneous node with only correct children,
or no children at all, is the location of the bug.

5.4 Observation of Functions: hat-observe

Our tool hat-observe displays all function applications of a given identifier
within a computation. Unlike HOOD, no annotations are needed in the pro-
gram’s source code. As the observed identifier is chosen independently of the
program run, it is easy to make a number of successive observations without
modifying or rerunning the computation.

The tool observes a function by searching sequentially through the trace
file. First, the identifier itself is found as a Const node containing an Id atom
with the name. (See structures in Figures 7 and 3). Then every application
node is checked for a reference to the given Const in the function position.

To deal with partial applications we must search the ART trace not only
for references to the original Const node, but for references to any application
which in turn references the Const , and so on recursively. If the function
involved in an application is a reducible expression (with a function as result)
we must follow this expression’s forward result link, to see whether it is the
desired function, or a partial application of it. The cost of such searching from
application nodes to determine the associated function turns out to be low,
as the relevant expressions are usually found close to the original application
node. In particular, an additional file access is very rarely needed, as these
expressions are usually within the file’s buffer. Linearisation ensures that the
function reference in an application node can only refer to an earlier node in
the trace 8 , so a single linear scan through the trace is sufficient to collect all
applications of a specified function.

Not all applications or cafs have results – they may be unevaluated, or
an application may be partial – but where a result is available, the rhs of the
equation can be determined as described in Section 5.3. All applications or
cafs with results are displayed as a list of equations.

To avoid redundant output, equivalent or less general applications of the
identifier can be omitted in the display. One application of an identifier is
considered more general than another if all its arguments are less defined (due
to lazy evaluation). To avoid problems with local functions capturing free
variables, as described in Section 5.3, we again only permit observations of
top-level functions.

Our tool shows all applications of the function throughout the program,
whereas HOOD observes a specific function application at one point in the

8 All Ref s in the ART structure, apart from the result , refer to earlier nodes.
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source code. However, because the source code position is recorded in the
ART trace, an equivalent feature could be achieved by a different interface,
perhaps a source code browser allowing the user to select expressions to be
observed.

6 Trace Generation

The developers of Freja, Hat and HOOD made different choices about the
architectural level at which they implemented the creation of the trace. For
instance, in HOOD the trace is created by the combinator observe defined
in a high-level Haskell library, which uses side-effecting I/O to record the
information. In Freja the trace is created in the heap by low-level variants of
the graph reduction machine instructions [5].

To generate the new ART trace [11] we took the old Redex Trail ap-
proach, but adapted to write traces to file instead of constructing them in
heap memory. First, the original program is transformed into a new pro-
gram that computes its trace in addition to its normal result. Second, the
transformed program is compiled. Third, the compiled program is run. The
computation writes a trace to file in addition to any normal I/O of the original
program. Fourth, the trace is viewed.

Currently the program transformation is performed by an early phase of
the Haskell compiler nhc98. However, we intend to separate the transforma-
tion from the compiler, so that the transformed program can be compiled with
all Haskell compilers. The Augmented Redex Trail approach is then poten-
tially as portable as the HOOD implementation, in contrast to Freja. The
principle of using an automatic source-to-source transformation, coupled with
a library of combinators written in standard Haskell, permits the possibility
of using any Haskell compiler system to generate an ART trace.

6.1 The Program Transformation

The transformation wraps every expression of the original program into the
R data type, which is defined as follows:

data R α = R α Ref

The Ref is a reference to an Expr node of the trace in file. The pairing
assures that an expression and its description “travel together” throughout
the computation, so that when expressions are plumbed together by applica-
tion, the corresponding descriptions in the trace can be plumbed together by
creating an App node at the same time. Trace nodes are written to file by
side-effects which are triggered when certain expressions are evaluated. All
the plumbing and writing of trace nodes is performed by combinators which
are defined in a library.

165



Wallace, Chitil, Brehm and Runciman

The program transformation introduces numerous calls of the combina-
tors into the program. For example, here is the original oneTrue definition,
together with its transformed version.

oneTrue :: [Bool ] → Bool

oneTrue [] = False

oneTrue (x : xs) = xor x (oneTrue xs)

oneTrue :: SrcPos → Ref → R (Ref → (R [Bool ]) → R Bool)
oneTrue sr p = fun1 (mkAtomId “oneTrue” 7) oneTrueW sr p

where

oneTrueW :: Ref → R [Bool ] → R Bool

oneTrueW p ′ (R [] ) =

con0 (mkSrcPos 2) p ′ False (mkAtomId “False” 6)
oneTrueW p ′ (R (x : xs) ) =

rap2 (mkSrcPos 3) p ′ (xor (mkSrcPos 3) p ′) x

(ap1 (mkSrcPos 4) p ′ (oneTrue (mkSrcPos 4) p ′) xs)

In this example the combinators fun1, con0, ap1, rap2, mkAtomId , and
mkSrcPos are used. The combinator fun1 wraps the function oneTrueW ,
which does the actual work, with R constructors. The combinator con0 wraps
the constructor False. The combinators ap1 and rap2 assure the correct
plumbing of applications. The combinators mkAtomId and mkSrcPos build
references to detailed information about the identifier oneTrue, the construc-
tor False and various source references. Numeric arguments are indexes to
tables that contain the detailed information.

Very similar combinators were used in the old Hat system. The most
important difference is that the new Hat combinators now record the trace
nodes directly to file.

6.2 Writing with Updating

The main technical obstacle is that the trace is a (usually cyclic) graph which
is continuously modified during generation. These modifications were no prob-
lem in main memory but for efficient writing to file updates have to be min-
imised.

We assume that writing nodes to file has much better performance if it can
be achieved sequentially. However, even a cursory examination of the ART
structure tells us that after writing an Expr node to file, it is highly likely
that we will need to return to it to update the result pointer. Although some
expressions remain completely unevaluated throughout the computation, the
vast majority of intermediate expressions are indeed entered and evaluated to
their reduct.
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What is more, in our scheme there are two possible updates for each Expr ,
one on entering the expression (Applied → Blackholed), and another on its
completion (Blackholed → Completed).

However, we observe that a Blackholed expression is almost always tran-
sient. The only situation in which such an annotation can remain in the final
trace is when the program’s overall result is undefined, such as an error or
interruption. We also observe that the order in which trace expressions are
entered and then completed follows a strict stack discipline, mirroring the
evaluation stack of the underlying abstract machine. Hence, we do not up-
date Applied to Blackholed on entry, but only write the remaining stack of
‘blackholes’ at the end of the computation should it fail.

We also try to avoid interspersing the final update of each Expr with the
sequential generation of nodes. This is easily achieved by storing a large queue
of updates that are performed all at once.

7 Future Work

The practical questions that interest most people are about time and space.
How large is the trace? And how long does it take to produce, relative to the
original computation?

An ART trace is undoubtedly big, to be measured in megabytes for a com-
putation of any significant size. We estimate about 40–50 bytes are required
per reduction. The largest trace we have yet generated is 240Mb in size, for a
computation of around 6 million reductions (a chess end-game solver). Traced
computations also take about 50 times longer than normal computations.

If Hat is to be used for substantial computations, we have to reduce the
slow-down factor for traced computations. The fact that only 10% of traced
computation time is spent on actually writing to file demonstrates that the
implementation of trace generation can be improved. Since the computation
of a transformed program spends most of its time evaluating the combinators,
efficient definitions of the combinators are vital. We will also separate the
program transformation from nhc98, so that a transformed program can be
compiled by an optimising Haskell compiler such as ghc. Not only would this
improve absolute runtimes, but aggressive optimisation may also reduce the
relative slow-down. Furthermore, the computation of trusted function defini-
tions is not yet much faster than that of untrusted definitions. We intend to
investigate how transformed modules can be combined with trusted untrans-

formed modules. Such a scheme, not requiring access to the sources of trusted
modules, would also aid portability.

Other issues we want to address include:

• Currently I/O actions are traced in a rather ad hoc way that works well
only with some views for simple I/O only. We aim to develop a general
method for tracing I/O actions.
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• We want to solve the problem that none of the views copes well with pro-
grams that make substantial use of higher-order combinators, for example
in monadic or continuation-passing style.

• We plan to extend hat-observe to observe values at any program point.
We could also add information about free variables to expressions in the
trace, so that hat-detect and hat-observe can show a fuller trace of local
computation. It may even be desirable to switch levels of detail within a
view.

• There is scope for new viewing tools. For instance, the evaluation order of
the computation is stored implicitly in the sequence in which Expr nodes
are written to file. Hence, the computation, or selected parts of it, could be
shown as an “animation”, perhaps in the style of GHood 9 . We could also
offer a “stories” view in the style outlined in [1]. A more specialised tool
could isolate the circular self-dependency that evokes a “blackhole” error.

• We have begun to integrate hat-detect and hat-observe into a single
tool. Eventually we hope for a full integration allowing the programmer to
switch between views at any point during the exploration of a computation.

• How can we evaluate the useability of Hat in practice and gain information
to improve it?

More generally, we intend to study the properties of the ART trace fur-
ther. Is the trace complete with respect to information, such as recorded re-
ductions, intermediate unevaluated expressions and values, and with respect
to distinctions and relationships, such as sharing and evaluation order? How
conveniently and efficiently can one access the trace to obtain a specific snip-
pet of information? Can we claim some sort of “universality” for the trace
structure, in terms of the range of queries it can support? How are all these
properties affected by trusting? Does the exclusion of trusted redexes from the
trace compromise the reachability of individual trace nodes from designated
entry points?

There should be a close relationship between tracing and operational se-
mantics, both of which aim to describe the relationship between a program and
the observed actions of a computation of the program. We have begun work to
define the ART trace and specific views through conservative extensions of an
operational semantics of a program. Different kinds of formal semantics may
suggest new views for tracing. For instance, the evaluation dependency tree of
algorithmic debugging is closely related to a big-step structured operational
semantics; the Redex Trail view was inspired by graph-rewriting machines;
the observation of values recalls denotational semantics, especially the view of
functional values as (finite) mappings (‘minimal function graphs’ [4]).

In principle, a semantics defines all the answers a tracer could give for
the computation of a particular program with particular input. A tracer

9 http://www.cs.ukc.ac.uk/people/staff/cr3/toolbox/haskell/GHood/
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makes this information available. A tracer avoids providing its own semantics
but hooks on to a compiler instead. A program transformation provides this
“hook” in a portable way. Even more important than the information in a
trace is its accessibility.

8 Conclusions

We have presented the new modular architecture of our Haskell tracer Hat.
At its heart lies the new Augmented Redex Trail trace structure, designed on
the one hand to be written to file while performing the traced computation,
and on the other hand to provide data sufficient for multiple views.

As an immediate result, we have widened the applicability of the new Hat
considerably. Initial experiences confirm the usefulness of generating a trace
only once and viewing it in several different ways.

The new modularity improves the understanding of the tracing process.
The new architecture has also prompted us to ask some more general questions,
such as those in the Future Work section.
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Abstract

A permutation phrase is a sequence of elements (possibly of different types) in which
each element occurs exactly once and the order is irrelevant. Some of the permutable
elements may be optional. We show a way to extend a parser combinator library
with support for parsing such free-order constructs. A user of the library can easily
write parsers for permutation phrases and does not need to care about checking and
reordering the recognised elements. Possible applications include the generation of
parsers for attributes of XML tags and Haskell’s record syntax.

1 Introduction

Parser combinator libraries for functional programming languages are well-
known and subject to active research. Higher-order functions and the possi-
bility to define new infix operators allow parsers to be expressed in a concise
and natural notation that closely resembles the syntax of EBNF grammars.
At the same time, the user has the full abstraction power of the underlying
programming language at hand. Complex, often recurring patterns can be
expressed in terms of higher-level combinators.

A specific parsing problem is the recognition of permutation phrases. A
permutation phrase is a sequence of elements (possibly of different types) in
which each element occurs exactly once and the order is irrelevant. Some of
the permutable elements may be optional. Since permutation phrases are not
easily expressed by a context-free grammar, the usual approach is to tackle
this problem in two steps: first parse a relaxed version of the grammar, then
check whether the recognised elements form a permutation of the expected
elements. This method, however, has a number of disadvantages. Dealing
with a permutation of typed values is quite cumbersome, and the problem
is often avoided by encoding the values in a universal representation, thus
adding an extra level of interpretation. Furthermore, because of the two steps
involved, error messages cannot be produced until a larger part of the input

171



Baars, Löh, Swierstra

has been consumed, and special care has to be taken to make them point to
the right position in the code.

Permutation phrases have been proposed by Cameron [1] as an extension to
EBNF grammars, not aiming at greater expressive power, but at more clarity.
Cameron also presents a pseudo-code algorithm to parse permutation phrases
with optional elements efficiently in an imperative setting. It fails, however,
to address the types of the constituents.

We show a way to extend any existing parser combinator library with
support for parsing permutations of a number of typed, potentially optional
elements. Our approach uses Haskell, relying essentially on existentially quan-
tified types, that are used to encode reordering information that permutes the
recognised elements to a canonical order. Existential types are not part of
the Haskell 98 standard [6], but are, for example, implemented in GHC and
Hugs. Additionally, we utilise lazy evaluation to make the resulting imple-
mentation efficient. The administrative part of parsing permutation phrases
has a quadratic time complexity in the number of permutable elements. The
size of the code, however, is linear in the number of permutable elements.

Possible applications include the implementation of Haskell’s read function
where it is desirable to parse the fields of data types with labelled fields in
any permutation, the parsing of XML tags which have large sets of potentially
optional attributes that may occur in any order, and the decomposition of a
query in a URI, consisting of a number of permutable key-value pairs.

The paper is organised as follows: Section 2 explains the parser com-
binators we build upon. Section 3 presents the basic idea of dealing with
permutations in terms of permutation trees and explains how trees are built
and converted into parsers. Section 4 shows how to extend the mechanism in
order to handle optional elements. In Section 5, we take a brief look at two
of the applications mentioned above, the parsing of data types with labelled
fields and the parsing of XML attribute sets. Section 6 concludes.

2 Parsing using combinator libraries

The use of a combinator library for describing parsers instead of writing them
by hand or generating them from a separate formalism is a well-known tech-
nique in functional programming. As a result, there are several excellent
libraries around. For this reason we just briefly present the interface we will
assume in subsequent sections of this paper, but do not go into the details of
the implementation. However, we want to stress that our extension is not tied
to any specific library.

We make use of a simple arrow-style [3,9] interface that is parametrised by
the result type of the parsers and assumes a list of characters as input. It can
easily be implemented by straightforward list-of-successes parsers [2,10], but
we also have a version based on the fast, error-correcting parser combinators
of Swierstra [7,8]. A mapping to monadic-style parser combinators [4,5] or
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infixl 3 CB
infixl 4 ∗<>, $<>

class Parser p where
pFail :: p a
pSucceed :: a → p a
pSym :: Char → p Char
( ∗<>) :: p (a → b) → p a → p b
(CB) :: p a → p a → p a
( $<>) :: (a → b) → p a → p b
f $<> p = pSucceed f ∗<> p
parse :: p a → String → Maybe a

Fig. 1. Type class for parser combinators

infixl 4 $< , ∗>, ∗<
( $< ) :: Parser p ⇒ a → p b → p a
f $< p = const f $<> p

( ∗< ) :: Parser p ⇒ p a → p b → p a
p ∗< q = const $<> p ∗<> q

( ∗>) :: Parser p ⇒ p a → p b → p b
p ∗> q = flip const $<> p ∗<> q

pParens :: Parser p ⇒ p a → p a
pParens p = pSym ’(’ ∗> p ∗< pSym ’)’

Fig. 2. Some useful parser combinators

abstracting from the type of the input tokens is possible without difficulties.

The parser interface used here is given as a type class declaration in Fig-
ure 1. The function pFail represents the parser that always fails, whereas
pSucceed never consumes any input and always returns the given result value.
The parser pSym accepts solely the given character as input. If this character
is encountered, pSym consumes and returns this character, otherwise it fails.
The ∗<> operator denotes the sequential composition of two parsers, where the
result of the first parser is applied to the result of the second. The operator
CB expresses a choice between two parsers. Finally, the application operator

$<> is a parser transformer that can be used to apply a semantic function to
a parse result. It can be defined in terms of pSucceed and ∗<>.

Many useful higher-level combinators can be built on top of these basic
ones. A small selection that we will use later in this paper is presented in
Figure 2. These parser combinators are useful if one wants to combine parsers
and is interested in the result of only some of the constituents.
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3 Permutation trees

3.1 Data types

Before explaining permutation parsers, we investigate how to represent per-
mutation phrases. We decide to store the permutations of a set of elements in
a rose tree.

data Perms p a = Choice [Branch p a ]
| Empty a

data Branch p a = ∀ x . Br (Perms p (x → a)) (p x )

The data types are parametrised by a type constructor p (e.g. the parser type)
and a result type a.

Each path from the root to a leaf in the tree represents a particular per-
mutation. Figure 3 illustrates this idea for three elements a, b, c. If the
permutations are grouped in such a way that different permutations with a
common prefix share the same subtree, the number of choices in each node
will be limited by the number of permutable elements.

a

b

c

2

c

b

2

b

a

c

2

c

a

2

c

a

b

2

b

a

2

Fig. 3. A permutation tree containing three elements

A value of type Branch stores a subtree together with an element. The
subtree returns a function that, applied to the element, computes a value
of the required result type. Thus, the existentially quantified type of the
element stored in a branch is used to hide the order in which the types in a
subtree occur; all subtrees in a Choice node share a common type because
all correspond to a permutation of the same set of elements. To show that
reordering is almost completely determined by the type of the components,
we use the convention that values, parsers and permutation trees are named
v , p, and t , respectively, indexed by their type.

The idea that each path in the tree represents the parser for one of the
possible permutations is reflected by the following simple conversion function
from permutation trees to parsers.
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pPerms :: Parser p ⇒ Perms p a → p a
pPerms (Empty va) = pSucceed va

pPerms (Choice chs) = foldr (CB) pFail (map pars chs)
where pars (Br tx→a px ) = flip ($) $<> px ∗<> pPerms tx→a

It might be surprising at first sight that the last line does not read:

where pars (Br tx→a px ) = pPerms tx→a ∗<> px

But using this more obvious definition, the elements at the leaves of the per-
mutation tree would be recognised first by the constructed parser. Therefore,
the permutation tree would have to be unfolded completely before the first
element could be parsed. This would result in O(n!) memory usage where n
is the number of permutable elements.

Fortunately, because we are parsing a permutation, reversing the order of
the constituents when constructing the parser does not change the semantics.
In the “flipped” variant, lazy evaluation ensures that only the path corre-
sponding to the recognised permutation is unfolded.

3.2 Building a permutation tree

Permutation trees are created by adding the elements of the permutation one
by one to an initially empty tree.

add :: Perms p (x → a) → p x → Perms p a
add tx→a@(Empty ) px = Choice [Br tx→a px ]
add tx→a@(Choice chs) px = Choice (first : others)

where first = Br tx→a px

others = map ins chs
ins (Br ty→x→a py)= Br (add (mapPerms flip ty→x→a) px ) py

If we already have constructed a non-empty permutation tree, we can add a
new element px by inserting it in all possible positions to every permutation
in the tree. The function add explicitly constructs the tree that represents the
permutation in which px is the top element; for each branch, the top element
is left unchanged, and px is inserted everywhere (by a recursive call to add)
in the subtree. Because the new element and the top element of the branch
are now swapped, the function resulting from the subtree of the branch gets
its arguments passed in the wrong order, which is repaired by applying flip to
that function.

The function mapPerms is a map on permutation trees. In a branch, va→b

is composed with the function that is resulting from the subtree.

mapPerms :: (a → b) → Perms p a → Perms p b
mapPerms va→b (Empty va) = Empty (va→b va)
mapPerms va→b (Choice chs) = Choice (map (mapBranch va→b) chs)

mapBranch :: (a → b) → Branch p a → Branch p b
mapBranch va→b (Br tx→a px ) = Br (mapPerms (va→b◦) tx→a) px
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By defining the following combinators for constructing permutation parsers
we can use a similar notation for permutation parsers as for normal parsers.

succeedPerms :: a → Perms p a
succeedPerms x = Empty x

(<∗<>>) :: Parser p ⇒ Perms p (a → b) → p a → Perms p b
perms <∗<>> p = add perms p

(<$<>>) :: Parser p ⇒ (a → b) → p a → Perms p b
f <$<>> p = succeedPerms f <∗<>> p

An example with three permutable elements, corresponding to the tree in
Figure 3, can now be realised by:

pPerms ((,,) <$<>> pInt <∗<>> pChar <∗<>> pBool)

Suppose pInt , pChar , and pBool are parsers for literals of type Int , Char ,
and Bool , respectively. Then all permutations of an integer, a character and
a boolean are accepted, and the result of a successful parse will always be of
type (Int , Char , Bool).

3.3 Separators

Often the permutable elements are separated by symbols that do not carry
meaning—typically commas or semicolons. Consider extending the three-
element example to the Haskell tuple syntax: not just the elements, but also
the parentheses and the commas should be parsed. Since there is one sepa-
ration symbol less than there are permutable elements, our current variant of
pPerms cannot handle this problem.

Therefore we define pPermsSep as a generalisation of pPerms that accepts
an additional parser for the separator as an argument. The semantics of the
separators are ignored for the result.

pPermsSep :: Parser p ⇒ p b → Perms p a → p a
pPermsSep sep perm = p2p (pSucceed ()) sep perm

The function p2p now converts a permutation tree into a parser almost in the
same way as the former pPerms , except that before each permutable element
a separator is parsed. To prevent that a separator is expected before the
first permutable element, we make use of the following simple trick. The p2p
function expects two extra arguments: the first one will be parsed immediately
before the first element, and the second will be used subsequently. Using
pSucceed () as first extra argument in pPermsSep leads to the desired result.

p2p :: Parser p ⇒ p c → p b
→ Perms p a → p a

p2p (Empty va) = pSucceed va

p2p fsep sep (Choice chs) = foldr (CB) pFail (map pars chs)
where pars (Br tx→a px ) = flip ($) $< fsep ∗<> px ∗<> p2p sep sep tx→a
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The pPerms function can now be implemented in terms of pPermsSep.

pPerms :: Parser p ⇒ Perms p a → p a
pPerms = pPermsSep (pSucceed ())

To return to the small example, triples of an integer, a character, and a
boolean—in any order—are parsed by:

pParens (pPermsSep (pSym ’,’) ((,,) <$<>> pInt <∗<>> pChar <∗<>> pBool))

4 Adding optional elements

This section shows how the permutation parsing mechanism can be extended
such that it can deal with optional elements. Optional elements can be rep-
resented by parsers that can recognise the empty string and return a default
value for this element. Calling the pPermsSep function on a permutation tree
that contains optional elements leads to ambiguous parsers. Consider, for ex-
ample, the tree in Figure 3 containing all permutations of a, b and c. Suppose
b can be empty and we want to recognise ac. This can be done in three dif-
ferent ways since the empty b can be recognised before a, after a or after c.
Fortunately, it is irrelevant for the result of a parse where exactly the empty
b is derived, since order is not important. This allows us to use a strategy
similar to the one proposed by Cameron [1]: parse nonempty constituents as
they are seen and allow the parser to stop if all remaining elements are op-
tional. When the parser stops the default values are returned for all optional
elements that have not been recognised.

To implement this strategy we need to be able to determine whether a
parser can derive the empty string and split it into its default value and its
non-empty part, i.e. a parser that behaves the same except that it does not
recognise the empty string. The splitting of parsers is represented by the
ParserSplit class that is an extension of the normal Parser class. Most parser
combinator libraries can be easily adapted to cover this extension.

class Parser p ⇒ ParserSplit p where
pEmpty :: p a → Maybe a
pNonempty :: p a → Maybe (p a)

In the solution that does not deal with optional elements a parser for a per-
mutation follows a path from the root of a permutation tree to a leaf, i.e. an
Empty node. In the presence of optional elements, however, a parser may
stop in any node that stores only optional elements. We adapt the Perms
data type to incorporate this additional information. If all elements stored in
a tree are optional then their default values are stored in defaults , otherwise
defaults is Nothing . The parser stored in each Branch is not allowed to derive
the empty string. Note that we do not need an Empty constructor anymore,
since its semantics can be represented as a Choice node with an empty list of
branches.
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data Perms p a = Choice {defaults :: Maybe a, branches :: [Branch p a ]}
The function p2p constructs a parser out of a permutation tree. If there are
default values stored in defaults then the constructed parser can derive the
empty string, returning those values.

p2p :: Parser p
⇒ p c → p b → Perms p a → p a

p2p fsep sep ta→b = foldr (CB) empty nonempties
where empty = maybe pFail pSucceed (defaults ta→b)

nonempties = map pars (branches ta→b)
pars (Br tx→a px ) = flip ($) $< fsep ∗<> px

∗<> p2p sep sep tx→a

A tuple, that represents a parser split into its empty part and its non-empty
part, can describe four different kinds of parsers, as depicted in the following
table:

empty part non-empty part
Nothing Nothing pFail
Just Nothing pSucceed
Nothing Just required element
Just Just optional element

The new definition of add reflects the four different cases. In the first case
the resulting tree represents a failing permutation parser, i.e. it has no default
values and no branches. In the second case the value stored in the empty
part of the parser is pushed into the tree, only modifying the semantics of
the tree but keeping its structure. In the cases where an element is added
the non-empty part of the element is inserted in the tree in the same way as
in the original definition of add . For an optional element the default value is
combined with the defaults of the permutation tree.

add :: Perms p (a → b)
→ (Maybe a, Maybe (p a))
→ Perms p b

add ta→b@(Choice da→b bsa→b) mpa = case mpa of
(Nothing , Nothing) → Choice Nothing [ ]
(Just va , Nothing) → Choice (fmap ($va) da→b) (appSem va)
(Nothing , Just pa) → Choice Nothing (insert pa)
(Just va , Just pa) → Choice (fmap ($va) da→b) (insert pa)

where insert pa = Br ta→b pa : map ins bsa→b

ins (Br tx→a→b px )= Br (add (mapPerms flip tx→a→b) mpa) px

appSem va = map (mapBranch ($va)) bsa→b

The function mapPerms for the new Perms data type is defined as follows:

mapPerms :: (a → b) → Perms p a → Perms p b
mapPerms va→b ta = Choice (fmap va→b (defaults ta))

(map (mapBranch va→b) (branches ta))
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Since we no longer have an Empty constructor the function succeedPerms is
now defined as:

succeedPerms :: a → Perms p a
succeedPerms x = Choice (Just x ) [ ]

Using the functions from the ParserSplit class we can straightforwardly define
a new sequence operator for permutation parsers.

(<∗<>>) :: ParserSplit p
⇒ Perms p (a → b) → p a → Perms p b

perms <∗<>> p = add perms (pEmpty p, pNonempty p)

5 Applications

5.1 XML attributes

We will now demonstrate the use of the permutation parsers by showing how
to parse XML tags with attributes. For simplicity, we just consider one tag
(the img tag of XHTML) and only deal with a subset of the attributes allowed.
In a Haskell program, this tag might be represented by the following data type.

data XHTML = Img {src :: URI
, alt :: Text
, longdesc :: Maybe URI
, height :: Maybe Length
, width :: Maybe Length
}

| . . .

Our variant of the img tag has five attributes of three different types. We use
Haskell’s record syntax to keep track of the names. The first two attributes
are mandatory whereas the others are optional. We choose the Maybe variant
of their types to reflect this optionality. Our parser should be able to parse the
attributes in any order, where any of the optional arguments may be omitted.
For the parsing process, we ignore whitespace and assume that there is a
parser pTok that consumes just the given token and fails on any other input.

Using the pPerms combinator, writing the parser for the img tag is easy:

pImgTag :: ParserSplit p ⇒ p XHTML
pImgTag = pTok "<" ∗> pTok "img" ∗> attrs ∗< pTok "/>"

where
attrs = pPerms (Img <$<>> pField "src" pURI

<∗<>> pField "alt" pText
<∗<>> pOptField "longdesc" pURI
<∗<>> pOptField "height" pLength
<∗<>> pOptField "width" pLength

)
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The order in which we denote the attributes determines the order in which
the results are returned. Therefore, we can apply the Img constructor to
form a value of the XHTML data type. The two helper functions pField
and pOptField are used to parse a mandatory and an optional argument,
respectively.

pField :: Parser p ⇒ String → p a → p a
pField f p = pTok f ∗> pSym ’=’ ∗> p

pOptField :: Parser p ⇒ String → p a → p (Maybe a)
pOptField f p = Just $<> pField f p

CB pSucceed Nothing

5.2 Haskell’s record syntax

Haskell allows data types to contain labelled fields. If one wants to construct
a value of that data type, one can make use of these names. The advantage
is that the user does not need to remember the order in which the fields of
the constructor have been defined. Furthermore, all fields are considered as
optional. If a field is not explicitly set to a value, it is silently assumed to
be ⊥.

Whereas compilers implement these features as a syntax for construct-
ing values inside of Haskell programs, the read function that both GHC and
Hugs generate with help of the deriving construct lacks this functionality.
Although this behaviour is permitted by the Haskell Report, the resulting
asymmetry is unfortunate.

We show here that the code that would do the job is easy to write or
generate using the pPermsSep combinator.

pImg :: ParserSplit p ⇒ p XHTML
pImg = pTok "Img" ∗> pTok "{" ∗> fields ∗< pTok "}"

where
fields = pPermsSep (pSym ’,’)

(Img <$<>> pRecField "src" pURI
<∗<>> pRecField "alt" pText
<∗<>> pRecField "longdesc" (pMaybe pURI )
<∗<>> pRecField "height" (pMaybe pLength)
<∗<>> pRecField "width" (pMaybe pLength)

)

The pMaybe combinator just parses the Maybe variant of a data type, and the
pRecField makes each field optional.

pRecField :: Parser p ⇒ String → p a → p a
pRecField f p = pField f p

CB pSucceed ⊥
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6 Conclusion

We have presented a way to extend a parser combinator library with the
functionality to parse free-order constructs. It can be placed on top of any
combinator library that implements the Parser interface. A user of the library
can easily write parsers for free-order constructs and does not need to care
about checking and reordering the parsed elements. Due to the use of exis-
tentially quantified types the implementation of reordering is type safe and
hidden from the user.

The underlying parser combinators can be used to handle errors, such as
missing or duplicate elements, since the extension inherits their error-reporting
or error-repairing properties. Figure 4 shows an example GHCi session that
demonstrates error recovery with the UU Parsing [8] library.

We have shown how our extension can be used to parse XML attributes and
Haskell records. Other interesting examples mentioned by Cameron [1] include
citation fields in BibTEX bibliographies and attribute specifiers in C declara-
tions. Their pseudo-code algorithm uses a similar strategy. It does not show,
however, how to maintain type safety by undoing the change in semantics re-
sulting from reordering, nor can it deal with the presence of separators between
free-order constituents.

UU_Parsing_Demo> let pOptSym x = pSym x CB pSucced ’_’

UU_Parsing_Demo> let ptest = pPerms $ (,,) <$<>> pList (pSym ’a’)
<∗<>> pSym ’b’

<∗<>> pOptSym ’c’

:: Parser Char (String , Char , Char)
UU_Parsing_Demo> t ptest "acb"

Result:
("a",’b’,’c’)

UU_Parsing_Demo> t ptest ""

Symbol ’b’ inserted at end of file; ’b’ or ’c’ or (’a’)* expected.
Result:
("",’b’,’_’)

UU_Parsing_Demo> t ptest "cdaa"

Errors:
Symbol ’d’ before ’a’ deleted; ’b’ or (’a’)* expected.
Symbol ’b’ inserted at end of file; ’a’ or ’b’ expected.
Result:
("aa",’b’,’c’)

UU_Parsing_Demo> t ptest "abd"

Errors:
Symbol ’d’ at end of file deleted; ’c’ or eof expected.
Result:
("a",’b’,’_’)

Fig. 4. Example GHCi session (line breaks added for readability)
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Pretty Printing with Lazy Dequeues

Olaf Chitil
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Abstract

There are several Haskell libraries for converting tree structured data into indented
text, but they all make use of some backtracking. Over twenty years ago Oppen
published a more efficient imperative implementation of a pretty printer without
backtracking. We show that the same efficiency is also obtainable without destruc-
tive updates by developing a similar but purely functional Haskell implementation
with the same complexity bounds. At its heart lie two lazy double ended queues.

1 Pretty Printing

Pretty printing is the task of converting tree structured data into text, such
that the indentation of lines reflects the tree structure. Furthermore, to min-
imise the number of lines of the text, substructures are put on a single line
as far as possible within a given line-width limit. Here is the result of pretty
printing an expression within a width of 35 characters:

if True

then if True then True else True

else

if False

then False

else False

John Hughes [2], Simon Peyton Jones [3], Phil Wadler [7], and Pablo
Azero and Doaitse Swierstra [1] have all developed pretty printing libraries
for Haskell. A pretty printing library implements the functionality common
to a large class of pretty printers. The layout of a subtree does not only de-
pend on its form but also on its context, the remaining tree. A pretty printing
library provides functions for compositionally defining a transformation of a
tree data structure to an abstract document. Finally, such a library has one
function to transform a document into the desired text. For example, Wadler’s
library [7] provides the following functions:
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text :: String -> Doc

line :: Doc

(<>) :: Doc -> Doc -> Doc

nest :: Int -> Doc -> Doc

group :: Doc -> Doc

pretty :: Int -> Doc -> String

The function text converts a string to an atomic document, the document
line denotes a (potential) line break, and <> concatenates two documents.
The function nest increases the indentation for all line breaks within its doc-
ument argument. The function group marks the document as a unit to be
printed on a single line by converting all its line breaks into single spaces,
if this is possible without exceeding the line-width limit. Hence a document
describes a set of texts with the same content but different layouts. Finally,
the function pretty yields the text with the minimal number of lines that
does not exceed the given line-width limit.

To obtain the pretty printed expression shown at the beginning of the
paper, we only have to compositionally define a function that transforms an
abstract expression into a document:

data Exp = ETrue | EFalse | If Exp Exp Exp

toDoc :: Exp -> Doc

toDoc ETrue = text "True"

toDoc EFalse = text "False"

toDoc (If e1 e2 e3) =

group (nest 3 (

group (nest 3 (text "if" <> line <> toDoc e1)) <> line

group (nest 3 (text "then" <> line <> toDoc e2)) <> line

group (nest 3 (text "else" <> line <> toDoc e3))))

All previous implementations of Haskell pretty printing libraries use back-
tracking to determine the optimal layout. They limit backtracking to achieve
reasonable efficiency, but their time complexity is not just linear in the size
of the input. However, back in 1980 Dereck Oppen published an imperative
algorithm for a pretty printer with linear time complexity [6]. At the heart
of his algorithm lies an array that is updated in a complex pattern. Are de-
structive updates necessary to achieve efficiency? No, but the proof is not
straightforward. We develop here, starting with a simple but inefficient im-
plementation, step by step, guided by Oppen’s algorithm, a similar but purely
functional implementation in Haskell.

We implement Wadler’s pretty printing interface. The interfaces of Hughes’
and Peyton Jones’ libraries are more complex, but extending our implemen-
tation to support them seems straightforward. 1 Supporting the interface of

1 Hughes’ and Peyton Jones’ implementations do not always yield the optimal layout with
respect to Hughes’ semantics. The layouts that the implementations can produce seem
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pretty width d = fst (inter False width d)

where

inter :: Bool -- in fitting group

-> Int -- remaining space on current line

-> Doc -- input document

-> (String -- formatted output

,Int) -- remaining space on last line

inter f r (Group d) = inter (f || fits d r) r d

inter f r (Text z) = (z,r - length s)

inter f r (d1 :<> d2) = (s1 ++ s2,r2)

where

(s1,r1) = inter f r d1

(s2,r2) = inter f r1 d2

inter True r Line = (" ",r-1)

inter False r Line = ("\n",width)

Fig. 1. Recursive Implementation using fits

Azero’s and Swierstra’s library is impossible, because it is considerably more
expressive than the others.

2 Recursive Implementations

We can define a document simply as an algebraic data type with a constructor
for each function that yields a document:

data Doc = Text String

| Line

| Doc :<> Doc

| Group Doc

text = Text

line = Line

(<>) = (:<>)

group = Group

For simplicity we ignore the function nest for the moment. We will see in
Section 6 how it can easily be added to the final implementation 2 .

We define the function pretty as an interpreter of documents that imple-
ments the whole functionality. The only slightly difficult case is the formatting
of a group. We take Oppen’s approach: a group is formatted in a single line if
and only if it fits on the remaining space of the line. Previous Haskell libraries

to coincide with those of Wadler’s library, except for a difference in nesting discussed in
Section 6.
2 Therefore it is fortunate that separate functions nest and group exist, although for most
applications a single function combining the two is useful.
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take a slightly different approach which we discuss in Section 5.

The implementation is given in Figure 1. The function inter has to pass
some state information: first, if the interpreter is within a group that fits in
the remaining space on the current line; second, the size of the remaining
space on the current line.

For a Group document the interpreter has to determine if the group fits.
It obviously fits if the group is within another group that fits. Otherwise, a
function fits is used to determine if the document d fits within the remaining
space r.

A näıve implementation of fits evaluates the width of the document d

(with a Line equal to a single space) and compares the result with the re-
maining space r.

fits :: Doc -> Int -> Bool

fits d r = width d <= r

width :: Doc -> Int

width (Group d) = width d

width Line = 1

width (Text z) = length z

width (d1 :<> d2) = width d1 + width d2

Unfortunately, the additional traversals of the sub-documents to determine
their widths cause the function pretty to require exponential time for for-
matting some documents with nested groups.

The implementation is more efficient if fits traverses the document d at
most up to the width r. When that point is reached, it is clear that the
document does not fit.

fits :: Doc -> Int -> Bool

fits d r = isJust (remaining d r)

where

remaining :: Doc -> Int -> Maybe Int

remaining (Group d) r = remaining d r

remaining Line r = r ‘natMinus‘ 1

remaining (Text z) r = r ‘natMinus‘ length z

remaining (d1 :<> d2) r = do

r1 <- remaining d1 r

remaining d2 r1

natMinus :: Int -> Int -> Maybe Int

natMinus n1 n2 = if n1 >=n2 then Just (n1-n2) else Nothing

This pruning method is similar to Wadler’s method of pruning backtrack-
ing and hence we obtain the same time complexity: In the worst case it is
O(n · w), where n is the size of the input and w the line-width limit. This
pruning method has, however, a major drawback. We want to obtain O(n)
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pretty width d = fst3 (inter False width 0 d)

where

inter :: Bool -- in fitting group

-> Int -- remaining space on current line

-> Int -- absolute start position

-> Doc

-> (String

,Int -- remaining space on last line

,Int) -- next absolute start position

inter f r p (Group d) = (s,r’,p’)

where

(s,r’,p’) = inter (f || p’-p <= r) r p d

inter f r p (Text z) = (z,r-l,p+l)

where

l = length z

inter f r p (d1 :<> d2) = (s1 ++ s2,r2,p2)

where

(s1,r1,p1) = inter f r p d1

(s2,r2,p2) = inter f r1 p1 d2

inter f r p Line = (o,r’,p+1)

where

(o,r’) = if f then (" ",r-1) else ("\n",width)

fst3 :: (a,b,c) -> a

fst3 (x,_,_) = x

Fig. 2. Recursive Implementation that Returns the Next Start Position

time complexity, independent of w, but a further optimisation is not in sight.
The optimisation leads into a cul-de-sac.

On the other hand, we can obtain a linear implementation 3 from the
näıve definition by applying the tupling transformation: instead of a separate
function that traverses a document to determine its width, the interpreter
inter can determine the width in addition to its other tasks.

Because groups can be nested, it is not obvious how inter should be
defined to return the width of its input document. The solution is to introduce
an absolute measure of a document’s position. The absolute position gives
the column in which the document would start, if the whole document that is
passed to pretty was formatted on a single line. The function inter receives
the start position as argument and returns the next start position which is

3 The use of (++) for formatting a document d1 :<> d2 actually leads to quadratic time
complexity. However, we can use the same optimisation as is used in the Haskell class Show
to assemble the result string in linear time: inter has to return a value of type String ->
String instead of just a String and list concatenation becomes function composition. We
do not apply this optimisation here to not to distract from the main issues.
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free after its input document. The difference between the two positions is the
width of the input document.

Figure 3 shows the new implementation. It takes advantage of the lazy
evaluation of the recursive call of inter: the result position p’ is passed as part
of the first argument. The implementation has linear time complexity, because
a computation spends only constant time on each document constructor.

3 Iterative Implementations

Unfortunately our current implementation has a major drawback: only after
the full traversal of a group it is known if the group fits on the remaining line.
Hence a computation produces most of the output string for a group only after
it has traversed the whole group. The time delay may not be a problem in
practice, but the delayed computation of the output uses memory space linear
in the size of the group. We would like our pretty printer to use only a small
amount of space which is independent of the formatted document. Because
the document will usually be constructed lazily or even be read sequentially
from a file, pretty printing a document element should also only require a
limited look-ahead into the remaining document.

The recursive implementation with pruning has the desired space behaviour,
but it is not obvious how it can be married with the time efficient tuppled
implementation. The problem is that pruning at a certain width and the tree
structured recursion of inter do not fit together. Hence we move from tree
structured recursion to sequential iteration. Following Oppen we represent
the document as a list of tokens:

type Doc = [Token]

data Token = Text String | Line | Open | Close

A group is represented as the sequence of an Open token, the sequence
of the grouped document and a final Close token. Translation from the old
document data type to the new one is straightforward. Alternatively, an
efficient direct construction can be defined in continuation-passing style. We
assume in the following that documents are well-formed, that is, the Open and
Close tokens are well-bracketed.

We redefine the tuppled implementation for the token sequence. Because
we no longer use recursion that follows the structure of the document, we have
to make the nesting structure of the groups explicit by using stacks. For every
group the interpreter has to determine the next absolute start position. Hence
it has to return a stack of positions — represented by a list. At the end of a
group the interpreter needs to know if there is a surrounding fitting group. For
this purpose we could pass a stack of booleans, but a natural number which
states how deep the interpreter is in fitting groups is simpler. The interpreter
no longer needs to return the size of the space that remains on the last line,

188



Chitil

pretty width d = fst (inter 0 width 0 d)

where

inter :: Int -- depth of fitting groups

-> Int -- remaining space on current line

-> Int -- absolute start position

-> [Token]

-> (String

,[Int]) -- next absolute start positions

inter f r p (Open:ts) = (s,es’)

where

e’:es’ = es

(s,es) = inter (if f>0 then succ f

else (if (e’-p)<=r then 1 else 0))

r p ts

inter f r p (Close:ts) = (s,p:es)

where

(s,es) = inter (pred f) r p ts

inter f r p (Text z : ts) = (z ++ s,es)

where

(s,es) = inter f (r-l) (p+l) ts

l = length z

inter f r p (Line:ts) = (o:s,es)

where

(o,r’) = if f>0 then (’ ’,r-1) else (’\n’,width)

(s,es) = inter f r’ (p+1) ts

inter f r p [] = ("",[])

Fig. 3. Iterative Implementation that Returns Next Start Positions

because the document constructor (:<>) has vanished. Figure 3 shows the
implementation.

To see how the implementation works, consider a simple example. The
following table shows the values of most variables for each iteration step. The
document is given in the top row. We assume that the strings of the Text

tokens have length 1. The line-width limit is 3. The arrows indicate in which
directions values are passed. The inner group fits on a single line whereas the
outer one does not.

Open Text Line Open Text Line Text Close Close

f 0 → 0 → 0 → 0 → 1 → 1 → 1 → 1 → 0 → 0

r 3 → 3 → 2 → 3 → 3 → 2 → 1 → 0 → 0 → 0

p 0 → 0 → 1 → 2 → 2 → 3 → 4 → 5 → 5 → 5

es [] ← [5] ← [5] ← [5] ← [5,5] ← [5,5] ← [5,5] ← [5,5] ← [5] ← []
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Laziness leads to a kind of co-routine computation. The applications of
inter to Close tokens can be identified with a front process and the other
applications of inter, especially to Open tokens, as a back process. The front
process determines the position of each Close token and passes this infor-
mation in the variable es backwards to the back process. The back process
determines the position of each Open token and the remaining space on the
line. Together with the end position obtained from the front process it can
determine if the group still fits. Despite this image, however, there is no sim-
ple implementation of the interpreter through two real processes, because the
communication channel between them is a stack.

This iterative implementation has the same time and space behaviour as
our last recursive implementation. 4 However, in the example we can already
see that the outer group does not fit, when we reach the absolute position 4
(p = 4). The group does not fit, because it starts at position 0 and the line
space remaining for it is 3 (the values of p and r at the first Open token).
Unfortunately, the interpreter does not know these values 0 and 3 when it
reaches position 4.

Therefore we introduce an additional argument that is passed from left
to right: a stack which holds for each Open token of a group the sum of the
absolute position and the space remaining on the line; we call this sum the
group’s maximal end position. We also simplify the resulting stack of end
positions to a stack of booleans instead. At a Close token we just have to
take the top position from the maximal end positions stack, compare it with
the current position, and push the result on the stack of booleans which we
return. Figure 4 shows the modified implementation and the following table
shows the values of the new variables for our example document.

Open Text Line Open Text Line Text Close Close

f 0 → 0 → 0 → 0 → 1 → 1 → 1 → 1 → 0 → 0

r 3 → 3 → 2 → 3 → 3 → 2 → 1 → 0 → 0 → 0

p 0 → 0 → 1 → 2 → 2 → 3 → 4 → 5 → 5 → 5

ps [] → [3] → [3] → [3] → [5,3] → [5,3] → [5,3] → [5,3] → [3] → []

fs [] ← [F] ← [F] ← [F] ← [T,F] ← [T,F] ← [T,F] ← [T,F] ← [F] ← []

Now for the optimisation. At position 4 the information for determining
that the outer group does not fit is now available. The bottom of the stack
ps contains the maximal end position of the outermost group. Because it is
3, smaller than the current position, the outermost group cannot fit. Hence

4 In contrast to the recursive implementation the use of (++) does not lead to quadratic
time complexity here, because the first argument of (++) is not constructed by a recursive
call of inter. No optimisation of list concatenation is necessary. Compare for Footnote 3.
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pretty :: Int -> Doc -> String

pretty width d = fst (inter 0 width 0 [] d)

where

inter :: Int -- depth of fitting groups

-> Int -- remaining space on current line

-> Int -- absolute start position

-> [Int] -- maximal end positions

-> [Token]

-> (String

,[Bool]) -- fitting infos

inter f r p ps (Open:ts) = (s,fs’)

where

f’:fs’ = fs

(s,fs) = inter (if f>0 then succ f

else (if f’ then 1 else 0))

r p (r+p:ps) ts

inter f r p ps (Close:ts) = (s,(p<=p’):fs)

where

p’:ps’ = ps

(s,fs) = inter (pred f) r p ps’ ts

inter f r p ps (Text z : ts) = (z ++ s,fs)

where

(s,fs) = inter f (r-l) (p+l) ps ts

l = length z

inter f r p ps (Line:ts) = (o:s,fs)

where

(o,r’) = if f>0 then (’ ’,r-1) else (’\n’,width)

(s,fs) = inter f r’ (p+1) ps ts

inter f r p [] [] = ("",[])

Fig. 4. Iterative Implementation that Returns Fitting Information in a Stack

at this point we can already remove the end position from the bottom of the
“stack” ps and add False (F) to the bottom of the boolean “stack” fs:

Open Text Line Open Text Line Text CloseClose

f 0 → 0 → 0 → 0 → 1 → 1 → 1 → 1 → 0 → 0

r 3 → 3 → 2 → 3 → 3 → 2 → 1 → 0 → 0 → 0

p 0 → 0 → 1 → 2 → 2 → 3 → 4 → 5 → 5 → 5

ps [] → [3] → [3] → [3] → [5,3] → [5,3] → [5] → [5] → [] → []

fs [] ← [F] ← [F] ← [F] ← [T,F] ← [T,F] ← [T] ← [T] ← [] ← []
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4 Lazy Dequeues

Obviously we no longer simply use ps and fs as stacks but as double ended
queues. Fortunately we find in Okasaki’s book [4] the Haskell implementa-
tion of the banker’s dequeue. If used in a single threaded manner as here,
each operation runs in O(1) amortized time. Hence our optimised iterative
implementation still has linear time complexity.

There is a problem left: the intention of our optimisation is to enable the
interpreter to determine with a limited look-ahead if a group fits. By looking
at the bottom of the end positions dequeue, the decision can be made with
a look-ahead of at most the line-width limit. However, the interpreter adds
this information to the bottom of the dequeue fs and removes it from the
top of the dequeue fs at the Open token. To avoid further look-ahead these
operations must work without fully evaluating the dequeue fs. That means
in the example that the interpreter must be able to add and remove False

(F) without ever “touching” the True (T).

We can add and remove elements from a list without “touching” the re-
maining list, but can we do the same for dequeues? Yes, within the special
context of our pretty printer we can.

The two dequeues ps and fs are accessed in perfect synchrony: Each time
an operation is performed on one dequeue, exactly the inverse operation is
performed on the other dequeue. Hence we combine the operations on the
two dequeues. So

cons :: a -> Q1 a -> Q2 b -> (Q1 a, b, Q2 b)

adds an element to the front of the first dequeue and splits the second dequeue
into its front element and the tail dequeue;

rview :: Q1 a -> Q2 b -> b -> (Q1 a, a, Q2 b)

splits the first dequeue into an initial dequeue and a rear element and adds
an element to the rear of the second dequeue;

lview :: Q1 a -> b -> Q2 b -> (a, Q1 a, Q2 b)

splits the first dequeue into its front element and its tail dequeue and adds an
element to the front of the second dequeue.

The dequeue ps is passed from left to right and the dequeue fs is passed
from right to left. Furthermore, both dequeues are empty at the beginning and
at the end of interpreting the token sequence. Hence the internal structures of
the two dequeues are the same at each interpretation step. So we can use the
knowledge about the internal structure of ps, which may be fully evaluated,
to apply an operation to fs without evaluating any part of fs.

Because we use the structure of fs to manipulate ps, the operations cons
and lview are not identical up to swapping of arguments and result elements
but have different strictness properties. We define separate types for the two
dequeues to stress the asymmetry and enable a minor optimisation.

192



Chitil

pretty width d = fst (inter 0 width 0 empty1 d)

where

inter :: Int -- depth of fitting groups

-> Int -- remaining space on current line

-> Int -- absolute start position

-> Q1 Int -- maximal end positions

-> [Token]

-> (String

,Q2 Bool) -- fitting infos

inter f r p ps (Open:ts) = (s,fs’)

where

(ps’,f’,fs’) = cons (r+p) ps fs

(s,fs) = inter (if f>0 then succ f

else (if f’ then 1 else 0))

r p ps’ ts

inter f r p ps (Close:ts)

| isEmpty1 ps = inter (pred f) r p ps ts

| otherwise = (s,fs’)

where

(_,ps’,fs’) = lview ps True fs

(s,fs) = inter (pred f) r p ps’ ts

inter f r p ps (Text z : ts) = (z ++ s,fs)

where

(s,fs) = prune f (r-l) (p+l) ps ts

l = length z

inter f r p ps (Line : ts) = (o : s,fs)

where

(o,r’) = if f>0 then (’ ’,r-1) else (’\n’,width)

(s,fs) = prune f r’ (p+1) ps ts

inter _ _ _ _ [] = ("",empty2)

prune :: Int -> Int -> Int -> Q1 Int -> [Token]

-> (String,Q2 Bool)

prune f r p ps ts

| isEmpty1 ps || p <= p’ = inter f r p ps ts

| otherwise = (s,fs’)

where

(ps’,p’,fs’) = rview ps fs False

(s,fs) = prune f r p ps’ ts

Fig. 5. Iterative Implementation with Lazy Dequeues
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Without going into details of the implementation we note that a banker’s
dequeue is represented by two lists. One holds the top elements and the other
the bottom elements of the dequeue. An invariant requires that the lengths
of the lists are not too far apart. When addition or removal of an element
threatens to invalidate the invariant, list elements are moved from one list to
the other. The only operations applied to the two lists are reverse, (++) and
splitAt. We can easily define lazy variants of these standard list functions
which — given the length of a list argument or a result — construct the
list structure of the result without demanding evaluation of any of its list
arguments. Only demanding some list element of the result will lead to more
demand of the arguments. Here, for example, is the lazy variant of (++):

lappend :: Int -> [a] -> [a] -> [a]

lappend 0 _ zs = zs

lappend n xs zs = y : lappend (n-1) ys zs

where

y:ys = xs

Using the lazy variants to implement the dequeue operations cons, rview
and lview, we obtain the required lazy dequeues. The full implementation is
given in Appendix B.

With these dequeues we can finally define our time and space efficient
pretty printer. Figure 5 shows the implementation. For each Text and Line

token the function prune tests if some surrounding groups do not fit. Hence,
if when reaching a Close token the maximal positions dequeue is non-empty,
then the group certainly fits.

5 Overfull Lines

We took Oppen’s approach to formatting a group: a group is formatted in a
single line if and only if it fits on the remaining space of the line. Unfortunately
this approach may yield layouts with lines wider than the width limit, although
a fitting layout exists. A group that still fits on a line may be followed by
further text without a separating line. Because there is no line, the text
has to be added to the current line, even if does not fit. Breaking the group
may have avoided the problem.

Our solution is to normalise the token list with respect to the following
two rewriting rules before applying pretty:

Close, Text s ⇒ Text s, Close

Open, Text s ⇒ Text s, Open

The normalised token list has the property that between a Close token
and the next Text token there is always a Line token. Hence the aforemen-
tioned problem can no longer occur. Like Wadler’s pretty printer ours always
produces a fitting layout if it exists. Note that rewriting only moves Text to-
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kens in and out of groups. Hence the set of lines “belonging” to each group,
which are either all formatted as new lines or all as spaces, is unchanged. So
rewriting does not change the set of texts described by a document.

Normalisation can be implemented by a linear, straightforward traversal
of the token list, keeping track of the number of currently opened and closed
groups. Note that analogous normalisation of the tree structured documents,
which we used in Section 2, is hard to implement efficiently.

6 Indentation

To complete the library we still have to implement the function nest. There
are different interpretations of the expression nest n. In Wadler’s library it
increases the current left margin by n columns whereas in Oppen’s pretty
printer (and other libraries) it sets the left margin to the current column po-
sition plus n. We can easily implement either of these variants by introducing
two new tokens

data Token = . . . | NestOpen Int | NestClose

and interpreting them appropriately in the function inter which also acquires
a stack of current left margins as additional argument. Alternatively, we can
implement Wadler’s variant just as he does by a preceding transformation
which moves the indentation information to every Line token.

7 Conclusions

We have developed a purely functional pretty printer that only requires time
linear in the size of the input/output and space linear in the line-width limit.
It demonstrates that we do not need updateable data structures to achieve the
same efficiency as Oppen’s imperative algorithm and also throws some light
on this rather monolithic algorithm. Oppen’s algorithm consists of two parts
which also work together in a co-routine like fashion. For communication
between the two processes an array is used as dequeue. The difference is
that dequeue elements are updated where our implementation uses a second,
synchronous, lazy dequeue.

We have obtained a useful library. An extended version is part of the
distribution of the Haskell compiler nhc98 5 . The compiler itself uses the
library to provide pretty printing of the abstract syntax tree after any compiler
phase.

On a general level the derivation of our pretty printing implementation
demonstrates two points in algorithm design: First, defining a function re-
cursively along the structure of the main data type may not lead to the best
solution. We sometimes have to leave the limits of an implicit recursive control

5 http://www.cs.york.ac.uk/fp/nhc98
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structure by making it explicit as data structure. A data structure can be re-
placed by a more flexible one (here a stack by a dequeue). 6 Second, there are
useful lazy variants of non-inductively defined abstract data structures such
as dequeues.
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A The Complete Pretty Printing Library

module Pretty (Doc,text,line,(<>),group,nestInc,nestSet,pretty)

where

import LazyDequeue

-- Public interface:

-- precondition: string contains no formatting characters

-- \n \t etc.

text :: String -> Doc

text s = Doc (Text s :)

line :: Doc

line = Doc (Line :)

(<>) :: Doc -> Doc -> Doc

Doc l1 <> Doc l2 = Doc (l1 . l2)

group :: Doc -> Doc

group (Doc l) = Doc ((Open :) . l . (Close :))

-- increment indentation

-- the delta (i) may be any integer,

-- but runtime error if indentation becomes negative

nestInc :: Int -> Doc -> Doc

nestInc i (Doc l) =

Doc ((NestIncOpen i :) . l . (NestIncClose :))

-- set indentation to current column plus given increment

nestSet :: Int -> Doc -> Doc

nestSet i (Doc l) =

Doc ((NestSetOpen i :) . l . (NestSetClose :))

pretty :: Int -> Doc -> String

pretty width (Doc l) =

fst (inter width [0] 0 width 0 empty1

(normalise 0 0 (l [])))
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-- Internal parts:

newtype Doc = Doc ([Token] -> [Token])

data Token = Text String

| Line

| Open

| Close

| NestIncOpen Int

| NestIncClose

| NestSetOpen Int

| NestSetClose

-- normalise the stream of tokens with respect to the rules

-- Open, Close ==>

-- Open, t ==> t, Open

-- Close, t ==> t, Close

-- for all tokens t except Line, Open and Close

normalise :: Int -- number of deferred opening brackets

-> Int -- number of deferred closing brackets

-> [Token]

-> [Token]

normalise o c [] = replicate c Close

-- there should be no deferred opening brackets

normalise o c (Open : ts) = normalise (o+1) c ts

normalise o c (Close : ts)

| o == 0 = normalise o (c+1) ts

| otherwise = normalise (o-1) c ts

normalise o c (t@(NestIncOpen _) : ts) = t : normalise o c ts

normalise o c (t@NestIncClose : ts) = t : normalise o c ts

normalise o c (t@(NestSetOpen _) : ts) = t : normalise o c ts

normalise o c (t@NestSetClose : ts) = t : normalise o c ts

normalise o c (t@(Text _) : ts) = t : normalise o c ts

normalise o c (t@Line : ts) =

rep c Close . rep o Open . (t :) . normalise 0 0 $ ts

inter :: Int -- width

-> [Int] -- left margins (current on top)

-> Int -- depth of fitting groups

-> Int -- remaining space on current line

-> Int -- absolute start position

-> Q1 Int -- maximal end positions

-> [Token]

-> (String

,Q2 Bool) -- fitting infos
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inter _ _ _ _ _ _ [] = ("",empty2)

inter width ms f r p ps (Open:ts) = (s,fs’)

where

(ps’,f’,fs’) = cons (r+p) ps fs

(s,fs) = inter width ms (if f>0 then succ f

else (if f’ then 1 else 0))

r p ps’ ts

inter width ms f r p ps (Close:ts)

| isEmpty1 ps = inter width ms (pred f) r p ps ts

| otherwise = (s,fs’)

where

(_,ps’,fs’) = lview ps True fs

(s,fs) = inter width ms (pred f) r p ps’ ts

inter width ms f r p ps (Text t : ts) = (t ++ s,fs)

where

(s,fs) = prune width ms f (r-l) (p+l) ps ts

l = length t

inter width ms@(m:_) f r p ps (Line : ts) = (o s,fs)

where

(o,r’) = if f>0 then ((’ ’:),r-1)

else ((’\n’:) . rep m ’ ’, width-m)

(s,fs) = prune width ms f r’ (p+1) ps ts

inter width ms@(m:_) f r p ps (NestIncOpen i : ts) =

inter width (m+i : ms) f r p ps ts

inter width (_:ms) f r p ps (NestIncClose : ts) =

inter width ms f r p ps ts

inter width ms@(m:_) f r p ps (NestSetOpen i : ts) =

inter width (width-r+i : ms) f r p ps ts

inter width (_:ms) f r p ps (NestSetClose : ts) =

inter width ms f r p ps ts

prune :: Int -> [Int] -> Int -> Int -> Int -> Q1 Int -> [Token]

-> (String,Q2 Bool)

prune width ms f r p ps ts

| isEmpty1 ps || p <= p’ = inter width ms f r p ps ts

-- note: to evaluate p’ fs does not need to be evaluated

| otherwise = (s,fs’)

where

(ps’,p’,fs’) = rview ps fs False

(s,fs) = prune width ms f r p ps’ ts

-- continuation style variant of ‘replicate’

rep :: Int -> a -> [a] -> [a]

rep n x rs = if n <= 0 then rs else x : rep (n-1) x rs
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B Implementation of the Lazy Dequeues

module LazyDequeue(Q1,Q2,empty1,empty2,isEmpty1

,cons,rview,lview) where

-- q12List (Q1 _ f _ r) = f ++ reverse r

-- Q1 also contains the lengths of the two lists

-- Q2 does not contain lengths

data Q1 a = Q1 !Int [a] !Int [a]

data Q2 a = Q2 [a] [a]

reverse1 :: Q1 a -> Q1 a

reverse1 (Q1 lenf f lenr r) = Q1 lenr r lenf f

reverse2 :: Q2 a -> Q2 a

reverse2 (Q2 f r) = Q2 r f

empty1 = Q1 0 [] 0 []

empty2 = Q2 [] []

isEmpty1 (Q1 lenf _ lenr _) = lenf + lenr == 0

-- Keep lengths of the two lists in balance

check :: Int -> [a] -> Int -> [a] -> Q2 b -> (Q1 a, [b], [b])

check lenf f lenr r q2 =

if lenf > balanceConstant * lenr + 1 then

let

len = lenf + lenr

lenf’ = len ‘div‘ 2

lenr’ = len - lenf’

(f’, rf’) = splitAt lenf’ f

(r2, rf2) = lsplitAt lenr r2’

in (Q1 lenf’ f’ lenr’ (r ++ reverse rf’)

,lappend lenf’ f2’ (lreverse (lenr’-lenr) rf2)

,r2)

else

(Q1 lenf f lenr r, f2’, r2’)

where

Q2 f2’ r2’ = q2

balanceConstant = 3 :: Int
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cons :: a -> Q1 a -> Q2 b -> (Q1 a, b, Q2 b)

cons x (Q1 lenf f lenr r) q2’ = (q’, head f2, Q2 (tail f2) r2)

where

(q’, f2, r2) = check (lenf+1) (x:f) lenr r q2’

rview :: Q1 a -> Q2 b -> b -> (Q1 a, a, Q2 b)

rview (Q1 _ (x:_) _ []) q2’ y = (empty1, x, Q2 [y] [])

rview (Q1 _ [] _ []) _ _ = error "empty dequeue"

rview (Q1 lenf f lenr (x:r)) q2’ y = (q’, x, Q2 f2 (y:r2))

where

(q’, f2, r2) = check lenf f (lenr-1) r q2’

lview :: Q1 a -> b -> Q2 b -> (a, Q1 a, Q2 b)

lview q1 y q2 = (x, reverse1 q1’, reverse2 q2’)

where

(q1’, x, q2’) = rview (reverse1 q1) (reverse2 q2) y

-- The lazy variants of standard list functions:

-- The first argument gives the length

-- of the argument/result list.

lreverse :: Int -> [a] -> [a]

lreverse n xs = lreverseAcc n xs []

where

lreverseAcc 0 _ acc = acc

lreverseAcc n xs acc = lreverseAcc (n-1) ys (y:acc)

where

y:ys = xs

-- The first argument gives the length of the second argument.

lappend :: Int -> [a] -> [a] -> [a]

lappend 0 _ zs = zs

lappend n xs zs = y : lappend (n-1) ys zs

where

y:ys = xs

-- The first argument gives the position at which the input list

-- shall be split. The list must be at least that long.

lsplitAt :: Int -> [a] -> ([a], [a])

lsplitAt 0 xs = ([],xs)

lsplitAt n ys = (x:xs’,xs’’)

where

x:xs = ys

(xs’,xs’’) = lsplitAt (n-1) xs
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Abstract

We describe a facility for improving optimization of Haskell programs using rewrite
rules. Library authors can use rules to express domain-specific optimizations that
the compiler cannot discover for itself. The compiler can also generate rules in-
ternally to propagate information obtained from automated analyses. The rewrite
mechanism is fully implemented in the released Glasgow Haskell Compiler.

Our system is very simple, but can be effective in optimizing real programs. We
describe two practical applications involving short-cut deforestation, for lists and
for rose trees, and document substantial performance improvements on a range of
programs.

1 Introduction

Optimising compilers perform program transformations that improve the ef-
ficiency of the program. However, a compiler can only use relatively shallow
reasoning to guarantee the correctness of its optimisations. In contrast, the
programmer has much deeper information about the program and its intended
behaviour. For example, a programmer may know that

integerToInt (intToInteger x) = x

(where Integer is the type of infinite-precision integers, and Int is 32-bit
integers), but the compiler has little chance of working this out for itself.
While programmers are unlikely to write such expressions themselves, they can

1 Email: simonpj@microsoft.com
2 Work performed in part while visiting Microsoft Research Ltd.
3 Email: apt@cs.pdx.edu
4 Email: thoare@microsoft.com

203



Peyton Jones, Tolmach, and Hoare

easily appear when aggressive inlining brings together code that was written
separately.

In this paper we explore a very simple idea: allow the programmer to
specify program properties that the compiler can use to improve performance,
by treating each property as a rewrite rule. In effect, we give the programmer
the ability to extend the compiler with domain-specific optimisations, giving
it specialised knowledge about the particular vocabulary of functions that
are used heavily in a particular program. Our setting is that of the purely
functional language Haskell, because the lack of side effects makes it possible to
state many properties simply, without complex side conditions, and to exploit
them using only local information.

We make the following contributions:

• We describe a concrete design, which is fully implemented in the released
Glasgow Haskell Compiler, an optimising compiler for Haskell (Section 2;
Section 4).

• We describe two practical applications of the technique, one to perform list
fusion in the Haskell standard Prelude (Section 3) and other to perform tree
fusion in an application-specific library (Section 6).

• We show that rewrite rules can also be generated automatically as a result
of compiler analyses, and then constitute a useful way to exploit specialised
versions of functions (Section 5).

The idea of allowing the programmer to specify domain-specific compiler
extensions is not new (Section 7), but it has not yet been widely successful.
Our principal selling point is simplicity. Rewrite rules are expressed declara-
tively using the syntax of Haskell itself, and not in a separate meta-language.
They use very simple first-order pattern matching, have no side conditions,
and are applied using a trivial strategy. Yet they are effective in real programs,
assuming some cooperation from library writers.

We currently make no attempt to verify that programmer-specified rules
are consistent with the underlying function definitions that they purport to
describe. Rather, a programmer who adds a rule implicitly incurs a proof
obligation, in much the same way as a user of GHC’s unsafePerformIO. In
addition, a rule’s effect on program performance can be tricky to predict. For
these reasons, the rules mechanism in its present form is primarily intended
for use by “expert” programmers and library authors, who understand GHC’s
optimization behavior.

Having the rules explicitly codified does, however, raise the possibility of
feeding the same program into a theorem prover, and having it prove that
the rules are consistent with the implementation, perhaps with some human
assistance — although we have not explored this avenue so far.

Adding explicit equational properties to programs has already been advo-
cated for other purposes. They can serve to document the intended behavior
of the program, independently of the implementation, and have been used to
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explore efficient algorithms and as a design methodology that reduces the inci-
dence of programming error [4]. Another advantage may be reaped in testing
and debugging of programs, where they can play the role of a test oracle [8].
Perhaps the additional incentive of efficiency gains in compilation will help
convince the world that equational specification is a worthwhile part of the
programming process.

2 The basic idea

Consider the familiar map function that applies a function to each element of
a list. Written in Haskell, map looks like this:

map f [] = []

map f (x:xs) = f x : map f xs

Now suppose that the compiler encounters the following call of map:

map f (map g xs)

We know that this expression is equivalent to

map (f . g) xs

(where “.” is function composition), and we know that the latter expression
is more efficient than the former because there is no intermediate list. But the
compiler has no such knowledge.

One possible rejoinder is that the compiler should be smarter — but the
expert programmer will always know things that the compiler cannot figure
out. Another suggestion is this: allow the programmer to communicate such
knowledge directly to the compiler. That is the direction we explore here.

The Glasgow Haskell Compiler (GHC) allows the programmer to add a
rule to the program thus:

{-# RULES

"map/map" forall f g xs.

map f (map g xs) = map (f . g) xs

#-}

The “{-# ... #-}” brackets enclose a pragma, which is ignored by a non-
optimising compiler. The RULES keyword identifies the pragma as defining a
rewrite rule. The "map/map" part is an arbitrary string that names the rule;
this name is used when reporting which rules fired during a compilation run
in diagnostic mode. The body of the rule expresses the identity that

map f (map g xs) = map (f . g) xs

while the forall part identifies which of the variables in the rule body are
universally quantified (f, g, and xs in this case), and which are constants
bound elsewhere (map in this case).
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The general form of a programmer-specified rule is

"name" forall (v1::t1) . . . (vm::tm).f e1 . . . en = e

for m,n ≥ 0. Here name is a string identifying the rule, as described above.
The vi are bound variables with associated types ti; the types can be omitted
unless required to make the rule type-check, and the entire forall clause can
be omitted if there are no bound variables. f is an unquantified function or
constant identifier (i.e., not one of the forall’d variables), and the ei are
arbitrary Haskell expressions. A RULES pragma can occur only at the top
level of the program, and all the free variables of the rule, on both sides of the
equation, must be in scope.

One can regard the rules for a function as extra (redundant) equations
defining the function, thus:

map f [] = []

map f (x:xs) = f x : map f xs

map f (map g xs) = map (f . g) xs

Unlike ordinary defining equations, of course, rules are not restricted to having
constructors in the patterns on the left hand side.

Rewrite rules express identities that the programmer knows to be true,
but GHC also assumes that they are oriented, so that the right hand side is
preferable to the left. Throughout compilation, GHC tries to spot instances
of the left hand side of a rule, and rewrite that call to the right hand side.

2.1 Assumptions

The ability to add rewrite rules to a program is a pretty powerful weapon,
and raises a host of issues. In particular:

• GHC makes no attempt to verify that the rule is consistent with the under-
lying function definitions, apart from ensuring that the left and right hand
sides of the rule have the same type. The whole point is that the rule asserts
something that GHC is not smart enough to work out for itself! Moreover,
if rule and implementation disagree, the implementation is just as likely to
be wrong as the rule, perhaps even more so.

Indeed, we might not even want the rule to be “true” in a concrete sense!
For example, consider an abstract data type for sets. It is sound to give
a rule expressing the fact that union on sets is commutative. But sup-
pose our implementation represents a set by an unordered list. Then the
concrete representation of (a ‘union‘ b) may differ from (b ‘union‘ a),
even though they represent the same sets.

• GHC makes no attempt to ensure that the right hand side is more “efficient”
than the left hand side. One might like to say “simply write down some true
properties, and the compiler will use them to optimise the program”, but
that is well beyond what we offer. Instead, as we discuss in Section 4, we
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rely on the (fallible) programmer to specify oriented rewrite rules, and even
a simple rewrite strategy. Using rules effectively therefore requires some
understanding of how GHC works.

• GHC makes no attempt to ensure that the set of rules is confluent, or even
terminating. For example, the following rule will send GHC into an infinite
loop if it encounters a call to foo.

{-# RULES

"commute" forall x y. foo x y = foo y x

#-}

There is a considerable literature on proving the confluence or termination
of sets of rewrite rules; in particular, commutativity and associativity have
received special study [3]. However, for us matters are seriously complicated
by the other automatic rewrites that the compiler performs (beta reduction,
inlining, case switching, let-floating, etc. [32]), so we are not able to take
direct advantage of this work.

For an optimising compiler, confluence seems too strong, since that would
implausibly suggest a canonical optimised form for a program. Termination
is certainly important, but has not proved to be a problem in practice.

2.2 Restrictions

As noted above, the pattern on the left hand side of a rule must be a function
application (for some fixed function) or a constant. Here, for example, is a
plausible rule that we cannot write:

{-# RULES

"let/let" forall x y e1 e2 e3. -- ILLEGAL!

let { x = let { y = e1 } in e2 } in e3

= let { y = e1 } in let { x = e2 } in e3

#-}

The rule is illegal because the left hand side is not a function application.
This restriction has two advantages. First, it underpins the idea introduced
above, that a rewrite rule is simply an extra (redundant) equation defining
a function. Second, it makes rule matching much more efficient, because the
rules can be indexed by the function on the left hand side. At each call of f,
GHC need only check matches for rules for f. If the left hand side of a rule
could instead be an arbitrary expression, matching would likely be much less
efficient.

The function-application restriction does mean that rules cannot be used
to replace many of GHC’s built-in transformations. Inlining, let-floating, beta
reduction, case swapping, case elimination, and so on are all too complex
to explain using our restricted language of rules. There are, however, some
compiler transformations – such as specialisation – for which rules do prove
directly useful, as we discuss in Section 5.
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2.3 Library writers and library clients

Reading these assumptions and restrictions, one might reasonably ask: are
rewrite rules going to be of practical use? It is certainly easy to shoot oneself
in the foot.

For this reason, we regard a set of rewrite rules as something much more like
a domain-specific compiler extension than a general programming paradigm.
We expect rewrite rules to be written mainly by the author of a library. Such
authors often go to great lengths to craft efficient data structures and algo-
rithms. Rewrite rules give them the ability to explain deep truths about their
code to the compiler, and thereby extend its ability to optimise client pro-
grams. We assume also a willingness to cooperate in the optimisation, to the
extent of adapting library code to take advantage of the optimisation rules,
as well as the other way round. In return, we hope to preserve a level of
simplicity, in which the correctness of the optimisation rules (but not their
effectiveness, unfortunately) is as easy to establish as that of all the other
clauses in a declarative program.

In GHC the rewrite rules defined in a module are embedded in the compiler-
readable meta-data (its “.hi file”) that accompanies the module’s object code.
The client of the library never sees the rules, but GHC can nevertheless use
them to optimise compositions of calls to functions supplied by the library.
Rules are not explicitly exported or imported. Instead, when compiling mod-
ule M, GHC can “see” all the rules given in any module imported by M, or
in any module imported by these imports, and so on transitively. (Haskell’s
instance declarations have exactly the same property.)

A rule is not required to be in the same module as the function whose def-
inition it extends. For example the "map/map" rule does not have to be given
in the module that defined map. So rules can incrementally extend a function’s
definition. This is important, because a rule may describe the interaction of
an imported function with one defined locally. Rules can also be given for a
class member function, in which case they work on the corresponding function
in each class instance.

Rewrite rules make perfect sense even if the library is written in another
language, in which case the rules express facts about the foreign library. For
example, in Reid’s graphics library for Haskell he provides a whole section of
the user manual devoted to algebraic optimisation laws that are satisfied by
the library interface [33].

3 Rules in practice

In the rest of the paper we report on our experience of applying rewrite rules
in practice. We have found two main classes of applications:

• Programmer-written rules in library code. This was our initial motivation,
and we have used it to achieve list fusion (this section) and more ambitious
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tree fusion (Section 6).

• Automatically-generated rules, derived from some kind of program analysis,
invisibly to the programmer (Section 5). This was an unexpected, but very
persuasive, practical benefit of implementing the rewrite-rule technology.

3.1 Short-cut Deforestation

Our initial motivating example for adding rewrite rules was the case of list
fusion. In earlier work, Gill, Launchbury, and Peyton Jones described so-
called short-cut deforestation, a technique for eliminating intermediate lists
from programs [16]. At the centre of the method is the single rewrite rule
"foldr/build":

foldr :: (a->b->b) -> b -> [a] -> b

foldr k z [] = z

foldr k z (x:xs) = k x (foldr k z xs)

build :: (forall b. (a->b->b) -> b -> b) -> [a]

build g = g (:) []

{-# RULES

"foldr/build"

forall k z (g::forall b.(a->b->b) -> b -> b) .

foldr k z (build g) = g k z

#-}

The definition of foldr is conventional. The function build takes a “list” g,
functionally abstracted over its cons and nil constructors, and applies g to the
ordinary list constructors (:) and [] to return an ordinary list. (g’s type is a
rank-2 polymorphic type, as discussed in [16]; we must specify it explicitly in
order to make the rule type-check.) The rule states that when foldr consumes
the result of a call to build, one can eliminate the intermediate list by applying
g directly to k and z.

To give an example of applying this rule we must write list-consuming and
producing functions using foldr and build respectively. For example:

-- (sum [5,4,3,2,1]) = 15

sum :: [Int] -> Int

sum xs = foldr (+) 0 xs

-- (down 5) = [5,4,3,2,1]

down :: Int -> [Int]

down v = build (\c n -> down’ v c n)

down’ 0 cons nil = nil

down’ v cons nil = cons v (down’ (v-1) cons nil)
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Again, the definition of sum in terms of foldr is conventional. The function
down returns a list of integers, from its argument down to 1. We express it
as a call to build, using an auxiliary function down’ which is abstracted over
the functions it uses to construct its result. (We have called these functions
cons and nil for old times’ sake, but they are simply the formal parameters
to down’ and their names are insignificant.) It is somewhat inconvenient to
write sum and down in this way, but that is the task of the author of the List

library.

Now we can try fusion on the call (sum (down 5)):

sum (down 5)

= {inline sum and down}

foldr (+) 0 (build (down’ 5))

= {apply the foldr/build rule}

down’ 5 (+) 0

The intermediate list has been eliminated; instead down’ does the arithmetic
directly.

3.2 A real (albeit small) example

List fusion works well when the programmer does “bulk” operations over lists,
and then it can be stunningly effective. Here is an example taken verbatim
from the paraffins code [29], a small program that computes a list of all the
hydrocarbon paraffins of a given size:

three_partitions :: Int -> [(Int,Int,Int)]

three_partitions m

= [ (i,j,k) | i <- [0..(m ‘div‘ 3)],

j <- [i..(m-i ‘div‘ 2)],

let k = m - (i+j)

]

-- A test harness

main = print (length (three_partitions 4000))

The form [0..n] is Haskell’s notation for the list of integers between 0 and n.
The list comprehension builds the list of all triples (i,j,k) where i is drawn
from the list [0..(m ‘div‘ 3)], and j is drawn from a similar list, and k is
computed directly from i and j. Finally, the test harness prints the length
applying three_partitions to 4000.

GHC translates range notation, [0..n], into an application of build, much
as we did for down above. It translates a list comprehension into a build, using
foldr to consume the sub-lists. Finally, the Prelude library function length

is implemented using a foldr.

So in this program, all the intermediate lists are removed, leading to a dra-
matic drop in allocation. Without fusion, this program allocates 188 Mbytes;
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Fig. 1. Distribution of fusion effects on programs in “real” and “spectral” divisions
of nofib benchmark suite, under ghc4.08.2.

when fusion is enabled, it allocates only 16 Mbytes. (Most of the allocation
for the fused version is used for the stack, because the length computation is
not properly tail-recursive, so the stack grows 1.3M activation records.)

3.3 Benchmark Results

Over a broader range of programs from the nofib benchmark set [29] the
effect of enabling list fusion is very patchy, as Figure 1 shows. Fusion has no
measurable effect on most programs but it gives a useful 5-25% reduction in
allocation for a few. Only a very few programs are made worse, and the worst
of these by less than 4%. One program, a parser called parstof, shows a 96%
reduction; this turns to be because fusion transforms the (artificial) outer loop
of the benchmark, causing the sample text input to be parsed once instead of
40 times!

The geometric mean improvement, about 5% if we omit parstof, seems
disappointingly low, but we are undismayed. Compiler optimisations are like
therapeutic drugs. Some, like antibiotics, are effective on many programs;
such optimisations tend to be built into a compiler. Others are targeted at
particular “diseases”, on which they are devastatingly effective, but have no
effect at all on most other programs. The rules mechanism allows library
authors to add targeted, domain-specific optimizations without modifying the
internals of the compiler.

We also hope that programmers may adopt a more modular programming
style if they expect fusion to take place. For example, it is clearer to write

concat (map f xs)

than it is to write

foldr ((++) . f) [] xs
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Yet programmers will sometimes write the latter form because it does not
build an intermediate list. Section 6 gives an extended example of the way in
which fusion can make modular programming practically efficient.

Finally, note that our measurements relate to un-modified benchmark pro-
grams. None of the functions in these programs use build, so fusion only oc-
curs for compositions of functions from the Standard Prelude, whose functions
we re-implemented using foldr and build. If the compiler were to transform
user-written functions to use foldr and build we might see greater benefits
— but that is beyond the scope of this paper, and in any case certainly would
require compiler modification [25].

4 From theory to practice: the sticky details

So far we have implied that one simply needs to add one rewrite rule, and re-
implement some key functions using foldr and build. In practice, though,
we encountered a number of obstacles, which we discuss in this section, after
first explaining our implementation of rewriting.

4.1 Implementation

The implementation of the rule rewriting mechanism within GHC is largely
straightforward. The front-end has been extended to handle rule parsing,
type checking, and translation into the Core intermediate language. The
GHC optimiser is structured as a number of separate passes over Core ex-
pressions [32,31]. The most fundamental pass – iterated many times – is the
simplifier, which performs inlining, case simplification, and eta-expansion in
the course of a single top-to-bottom traversal of the program. To support
rewriting, we just modified the simplifier to check each function application
it encounters against a list of active rules; if the application matches the rule
LHS pattern, it is replaced by a suitably instantiated version of the RHS.
Matching is performed modulo eta-reduction, so that, e.g., an application of
\x -> f x matches a rule with head f. We need to take a little care to make
sure that the rule remains attached to the right function if alpha-renaming
takes place.

Including rules adds a modest overhead to GHC compilation time. For
example, using the list fusion rules described in Section 3 increases compilation
times an average of 5% over the nofib benchmark suite. Some of this increase
is probably due to performing conventional optimisations that are enabled by
rule-based rewrites. In any case, we have made no serious attempt to analyse
or optimise this aspect of compiler performance, so it can probably be sped
up should this prove important.
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4.2 Phases

The first obstacle faced when defining rules is a subtle interaction between
function inlining — a transformation that GHC does aggressively [31] — and
rule application. Returning to our sum/down example, we can see:

• sum and down must both be inlined before the rule can fire.

• On the other hand foldr and build must not be inlined. For example,
inlining build before firing the rule would give

foldr (+) 0 (down’ 5 (:) [])

and we have lost the fusion opportunity.

• However, once we have run out of opportunities to use the foldr/build

rule, we should inline build. Recall that its definition is both small and
higher-order:

build g = g (:) []

Inlining a function like this is very beneficial (g is often an explicit lambda).

These considerations led us initially to the following two-phase strategy:

(i) “Black list” any function that appears on the left hand side of a rule.
Run the simplifier, applying rewrite rules, but refraining from inlining
any black-listed functions.

(ii) Empty the black list, and repeat the exercise, so that previously-blacklisted
functions will now be inlined.

Alas, two phases are not necessarily enough. In general, a program uses
many layers of abstract data types, each implemented using the layer below.
First we want to apply rewrite rules for the top-level ADT; then we want to
expose its implementation (only to the compiler, of course) by inlining, and
apply rewrite rules for the next layer; then we want to inline that layer and
apply rewrite rules for the layer below; and so on.

Organising rules into phases is a form of rewriting strategy, a subject that
has received considerable attention [36,22,9,37] However, one of the merits of
rewrite rules is their simple, declarative nature: “here is a true fact: please use
it whenever possible”. We resist polluting this story with elaborate rewrite
strategies. Nevertheless, it seems that some very simple strategy, such as a
phase organisation is necessary. To gain experience, we have implemented the
following very simple scheme.

The compiler runs the simplifier repeatedly, each run having a smaller 5

phase number than the previous one. A function may have an inline pragma,
and this pragma can tell the compiler which phase to inline the function in.
For example:

5 Our present implementation uses increasing phase numbers, but we plan to reverse this
shortly.
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{-# INLINE 1 build #-}

build g = g (:) []

means “inline build in phase 1 (or smaller), even if it appears on the left-
hand-side of a rule”.

This scheme is clearly very crude. It requires the programmer to know
something about GHC’s phases, which is undesirable; and assigning phase
numbers is not modular, requiring a global view of the program. Another
question is whether it is better to annotate INLINE pragmas or the rules
themselves. Various more elaborate schemes have occurred to us — using the
module hierarchy, for example — but we have taken the view that we should
refine the scheme in the light of practical experience, rather than implement
an over-elaborate scheme right away.

4.3 Backing out

Suppose fusion does not take place. That is, suppose we have an isolated call
(down 34). It would be bad to actually implement down using build and
down’, because doing so involves much more run-time function-passing than
a straightforward implementation of down. It is unacceptable for programs to
run slower in the (common) places when fusion fails than using the original
library.

One solution is to rewrite down’ to be non-recursive, and inline vigorously:

down :: Int -> [Int]

down v = build (\c n -> down’ v c n)

down’ v cons nil = go v

where

go 0 = nil

go v = cons v (go (v-1))

Now suppose we have inlined down at a call (down 34), but alas it has not
fused with a foldr. We can now inline as follows:

build (\c n -> down’ 34 c n) -- Did not fuse

= { Inline build }

down’ 34 (:) []

= { Inline down’ }

(go 34) where

go 0 = []

go v = v : go (v-1)

This code is as good as the original, straightforward implementation of down
— because it is the original, straightforward implementation of down! The
trouble is that we have effectively made a complete copy of the straightforward
code at every call site. While this is acceptable for a function as small as down,
it would be quite undesirable for larger functions.
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An alternative solution, and the one we generally adopt, is to have the
library author add a new definition and rewrite rule:

downList :: Int -> [Int]

downList 0 = []

downList v = v : downList (v-1)

{-# RULES "downList"

forall v. down’ v (:) [] = downList v #-}

An isolated call to (down 34) would now transform as follows:

down 34

= {Inline down}

build (down’ 34)

= {Inline build}

down’ 34 (:) []

= {Apply "downList" rule}

downList 34

The "downList" rule spots the special case in which down’ is applied the
standard list constructors, and transforms the call to use the directly-coded
downList function.

4.4 One-shot lambdas

Here is the definition of map in terms of foldr and build:

map f xs = build (\c n -> foldr (c . f) n xs)

Now, suppose we find an application (map f (build g)). We want to trans-
form the call like this:

map f (build g)

= {Inline map} DANGER!

build (\c n -> foldr (c . f) n (build g))

= {Apply foldr/build rule}

build (\c n -> g (c . f) n)

The difficulty is in the step marked DANGER!. Here we substitute (build g) for
xs in the body of map, but this occurrence of xs is under a lambda abstraction.
In general, one can make a program run arbitrarily more slowly by substituting
a redex inside a lambda abstraction, so GHC usually does something more
conservative:

map f (build g)

= {Inline map} SAFE!

let xs = build g

in build (\c n -> foldr (c . f) n xs)

Alas now the foldr/build rule cannot fire!
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The solution is to observe that the abstraction (\c n -> ...) is a one-
shot lambda; that is, it is a function that is only called once. Why? Because
it is the argument to build, and build simply calls its argument, passing (:)

and []. Substituting inside one-shot lambdas is perfectly safe.

The Right Thing To Do is to analyse the program for one-shot lambdas
and act accordingly. A type-based analysis that achieves this (among other
things) is described by Wansbrough [38], but it is not yet fully implemented
in GHC. Instead we have a temporary hack that spots the special case of an
application of build.

4.5 Sharing

Consider this function

f x = sum (filter (> x) [1..10])

One might expect all intermediate lists to be eliminated from this function,
but GHC correctly spots that the expression [1..10] can be floated out:

one_to_ten = [1..10]

f x = sum (filter (> x) one_to_ten)

Alas, now the filter consumer cannot fuse with the [1..10] producer. Floating
out one_to_ten would be a good transformation if the producer — in this case
[1..10] — were more expensive. It would be worth losing the fusion, in order
to share the computation of one_to_ten among all calls to f. But in the case
of [1..10], it would be better to lose sharing to gain fusion.

This problem turned out to be central when Elliott et al. tried to use
rewrite rules to optimise Pan programs [12]. In Pan, it is crucial to inline
absolutely everything, caring nothing for sharing, apply rewrite rules, and
then do aggressive common sub-expression and code-motion transformations
to make up for the loss.

This is a problem that is unlikely to have a cut-and-dried solution, but we
are exploring the idea of using virtual data types. The programmer declares
some data types as virtual, meaning that all data structures of virtual type
should be eliminated. In particular, the compiler can ignore loss of sharing
when considering inlining a value of virtual type. It remains to be seen how
usable such a feature would be.

5 Dynamically-generated Rules

Thus far we have concentrated on rewrite rules that are written by the pro-
grammer, but we have found that it is often useful for the compiler itself to
generate rewrite rules dynamically. We give three examples in this section.
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5.1 Specialisation

Haskell’s type classes give rise to overloaded functions with types like this:

invert :: Num elt => Matrix elt -> Matrix elt

Such overloaded functions are somewhat inefficient: invert takes a tuple (or
“dictionary”) of functions as an extra argument, which give the arithmetic
operations over values of type elt. Optimising compilers for Haskell allow the
programmer to write a SPECIALISE pragma, thus:

{-# SPECIALISE

invert :: Matrix Int -> Matrix Int

#-}

This pragma encourages the compiler to build a specialised version of invert,
in which the matrix elements are known to be of type Int, giving much more
efficient code. (GHC will also infer such pragmas from the types at which
invert is called, but only within a single module.)

Suppose, then, that the compiler has constructed the specialised function,
and called it (say) invert_Int. The next task is to make sure that suitable
calls to invert are replaced by calls to invert_Int. This is where rules come
in. The compiler dynamically generates a rewrite rule like this:

{-# RULES

"invert/Int" forall d::Num Int.

invert @ Int d = invert_Int

#-}

Unlike our earlier, programmer-specified rules, this rule is written in GHC’s
explicitly-typed intermediate language, called “Core”. In Core, every binder
has an explicit type, and polymorphism is expressed using explicit type ab-
straction and application. The rules written by the user in the (implicitly-
typed) Haskell source code are translated into the Core language by the type-
checker (which adds type information) followed by the desugarer (which con-
verts Haskell’s rich syntax into Core’s much more limited forms).

In this case invert is polymorphic, and so takes a type argument, in-
dicated by the “@ Int” on the left hand side of the rule. It also takes an
argument corresponding to the Num elt constraint, namely the tuple of arith-
metic operations referred to earlier. So the rule simply says that a call to
invert applied to type Int and tuple d can be rewritten to invert_Int.
Haskell’s type system ensures that there is only one possible value for the tu-
ple of methods d::Num Int — namely the numeric operations on Int values
— and these methods are “baked into” invert_Int, so the rule can simply
discard the argument d.

5.2 Evaluated arguments

In array-intensive code, one often encounters a loop like this:
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f :: Int -> Int -> Int

f x y = if x == 0 then 0

else y + f (x-1) (y+1)

GHC represents values of type Int using the following data type:

data Int = I# Int#

where Int# is the type of unboxed, 32-bit integers. GHC will compile f thus:

f :: Int -> Int -> Int

f x y = case x of { I# xv -> fw xv y }

fw :: Int# -> Int -> Int

fw xv y

= if (xv ==# 0#) then I# 0#

else

case y of { I# yv ->

case fw (xv -# 1#) (I# (yv +# 1#)) of { I# rv ->

I# (yv +# rv) }}

f has turned into a mere “wrapper” that evaluates x before calling the “worker”,
fw [30]. It can do this because f is sure to evaluate x. However, f is not certain
to evaluate y, so the evaluation of y must be in the else branch of the con-
ditional in the worker, fw. That means that the worker must re-box y before
calling itself (“I# (yv +# 1#)”), and in the common case, y will immediately
be un-boxed again. This is bad.

What can be done? Again, it is a matter of specialisation. Recognising
that there is a recursive call to fw in which the second argument is a construc-
tor application, GHC can make a specialised version of fw, and generate an
appropriate rule, thus:

fw1 :: Int# -> Int# -> Int

fw1 xv yv = let y = I# yv

in ...original RHS of fw....

{-# RULES "fwV" forall xv yv.

fw xv (I# yv) = fw1 xv yv

#-}

After simplifying the right hand side of fw1, using the rule, we get just what
we want:

fw1 :: Int# -> Int# -> Int

fw1 xv yv

= if (xv ==# 0#) then I# 0#

else

case fw1 (xv -# 1#) (yv +# 1#) of { I# rv ->

I# (yv +# rv) }
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fw remains as an “impedance matcher” embodying the first iteration of the
loop, before calling fw1. However the rule remains to transform any call of f
with an already-evaluated second argument into a call to fw1.

All of this is done invisibly by the compiler — the programmer is not in-
volved at all. The transformation is fully implemented in GHC, enabled by
“-O2”. The analysis, generation of specialised code, and generation of the
rewrite rule, takes only 225 lines of Haskell. The rewrite-rule infrastructure
automatically takes care of applying the rule when it is relevant, and propa-
gating the rule across separate compilation boundaries.

5.3 Usage types

We are exploring another example of the same pattern. Wansbrough’s work
on usage types suggests that considerable efficiency gains can be made by
specialising functions based on their usage patterns [38]. For example, consider
map again:

map f [] = []

map f (x:xs) = f x : map f xs

If map is called in a context in which the result list is consumed at most
once, then the thunks for f x and map f xs do not need to be self-updating;
instead the updates can be omitted. To express this, GHC adds extra usage-
type arguments to map, both at its definition and at its call sites. Once this
is done, a specialised version of map can be compiled for the case when the
usage-type argument is “once”, and a rule generated to match such calls, in
exactly the same way as for specialising overloading.

5.4 Summary

In each example, we can discern the same pattern:

• Based on pragmas or program analysis, perform a local transformation (e.g.,
generating the specialised version of invert).

• Generate a rule that explains how that transformation can be useful to the
rest of the program. In some cases the rule looks at the type arguments, in
others at value arguments.

• Apply the rule throughout the rest of the program.

This may not sound like much, but it is extremely helpful to have a single,
consistent way to propagate the benefits of a transformation to the rest of
the program. For example, it is not enough for the specialiser to generate
specialised versions of a function and find all appropriate call sites for the
specialised function. There may not be any calls to invert at type Int when
the specialiser runs. Such calls may only show up after some other inlinings
have exposed them. Or they may be in other modules altogether, so the
rule must be propagated across module boundaries (which is relatively easily
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done).

Programmer-defined RULES pragmas are only allowed at top level, but this
is a purely syntactic restriction. Rewrite rules make perfect sense for nested
functions bound by a local let or letrec, and GHC will indeed generate dy-
namic rules using the ideas of this section for local functions. This is important
in practice, because inlining generates many nested function definitions.

6 Application: Constraint Satisfaction Problems

Next we give an example user application — solving constraint satisfaction
problems (CSPs) — in which rewrite rules help support high-level, modular
programming style. The added rules, which describe short-cut deforestation
on rose trees, are confined to a library, and they make a representative kernel
of the application run three times faster, by eliminating essentially all the
overhead due to the modular style.

6.1 Modular search

Many interesting algorithms for solving CSPs are conceptually based on trees,
whose nodes represent states in the search space. Solutions to the search prob-
lem are found by locating nodes that represent complete, consistent states. In
a conventional imperative recursive implementation, these search trees are
merely notional; they correspond to the tree of procedure activation histo-
ries. In Haskell, one can make the state tree into an explicit (lazy) data
structure instead [19,5]. This approach permits search algorithms to be mod-
ularized into separate functions (really coroutines) that communicate via a
lazily-constructed tree labeled with consistency information. The component
functions perform generation of all possible states, consistency labeling, prun-
ing of inconsistent states, and collection of solutions. In earlier work, Nordin
and Tolmach showed that a large variety of useful algorithms — which look
quite different from one another when written imperatively — can be obtained
in the lazy framework just by varying the labeling and pruning functions [28].

The underlying algorithm is a simple composition of functions, where all
the intermediate results are trees or lists.

solver :: Labeler a -> Pruner a -> CSP -> [State]

solver labeler pruner csp =

(filter (complete csp) . map fst . leaves .

prune pruner . (labeler csp) .

mkSearchTree) csp

Here CSP is a type describing instances of constraint satisfaction problems; for
example, we might have a function

queens :: Int -> CSP

to generate instances of the familiar n-queens problem. State is the type of
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partial solutions. Function

mkSearchTree :: CSP -> Tree State

constructs a tree of all possible partial solutions to a given CSP. Here Tree

is the type of ordinary “rose trees,” in which each node has a value and an
arbitrary number of children. The labeler argument to solver has this type:

type Labeler a =

CSP -> Tree State -> Tree (State, a)

It specifies how to attach consistency annotations to each node in the tree.
The pruner argument, of type

type Pruner a = (State,a) -> Bool

says how to inspect the annotations to determine whether the node is con-
sistent; prune removes subtrees rooted at inconsistent nodes. leaves returns
the leaves of the tree as a list in left-to-right order. The subsequent list opera-
tions throw away the annotations and weed out nodes representing incomplete
solutions.

To obtain simple back-tracking search, we can provide a Labeler that
checks the consistency of each node individually, and annotates the node with
the boolean result of the check.

labelInconsistencies :: CSP -> Tree State -> Tree (State,Bool)

labelInconsistencies csp = mapTree f

where f s = (s,not (consistent csp s))

btsolver :: CSP -> [State]

btsolver = solver labelInconsistencies snd

More sophisticated algorithms use labelers that may look at more than one
node at a time or store more information in the annotations. For example, a
well-known algorithm called forward checking can be implemented by a labeler
that stores a (lazily constructed) cache table of consistency information at each
node.

labelCSCache :: CSP -> Tree State ->

Tree (State,Cache ConflictSet)

extractConflict :: (State,Cache ConflictSet) -> Bool

fcsolver :: CSP -> [State]

fcsolver = solver labelCSCache extractConflict

Interesting new combinations of algorithms can be obtained by appropriate
composition of labeling functions, giving us a “mix and match” approach to
algorithm construction. The modular algorithms that result are much simpler
to read, write, and modify than their imperative counterparts, and have the
same asymptotic behavior (in both space and time).
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However, the modular Haskell code is much slower than equivalent C code,
if only by a constant factor. We measured performance of a representative
kernel of code that implements standard backtracking search on the n-queens
problem and counts the number of solutions found. The modular version of
this function is written

qsolns :: Int -> Int

qsolns n = length (btsolver (queens n))

On the 11-queens problem, qsolns runs about 30 times slower than a con-
ventional recursive C algorithm that doesn’t use trees at all. More strikingly,
perhaps, it is almost four times slower than a non-modular Haskell transliter-
ation of the C algorithm. This difference suggests that we try to fuse the tree
traversals to avoid building the nodes of the several intermediate trees.

In the remainder of this section, we describe short-cut deforestation for
rose trees, and discuss our experience in using rules with this application. Full
code for the kernel modular code and the corresponding monolithic function
are given in the Appendix.

6.2 Fusion on rose trees

We treat rose trees as an abstract data type, with public functions initTree,
mapTree, prune, and leaves. The internal representation data type and
foldTree operation are standard:

data Tree a = T a [Tree a]

foldTree :: (a -> [b] -> b) -> Tree a -> b

foldTree f t = go t

where go (T a ts) = f a (map go ts)

We introduce a buildTree analogous to build on lists, and the corresponding
fusion rule:

buildTree :: forall a.

(forall b. (a -> [b] -> b) -> b) -> Tree a

buildTree g = g T

{-# RULES

"foldTree/buildTree"

forall k (g::forall b.(a->[b]->b) -> b) .

foldTree k (buildTree g) = g k

#-}

Now we must take care that all tree-producing functions use buildTree,
and all tree-consuming functions use foldTree. Since Tree is as ADT, we
don’t need to worry about client code using the T constructor directly.
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Function initTree generates a tree from a function that computes the
children of a node [19]; mapTree is the analogue of the familiar functions on
lists.

initTree :: (a -> [a]) -> a -> Tree a

initTree f a = buildTree g

where g n = go a

where go a = n a (map go (f a))

mapTree :: (a -> b) -> Tree a -> Tree b

mapTree f t = buildTree g

where g n = foldTree h t

where h a ts = n (f a) ts

prune p t removes every subtree of t whose root value matches predicate
p. Since we cannot represent empty trees, we require that p always return
False on the root node of the entire tree, which is always appropriate in our
applications.

prune :: (a -> Bool) -> Tree a -> Tree a

prune p t = buildTree g

where

g n = head (foldTree f t)

where f a ts | p a = []

| otherwise = [n a (concat ts)]

Finally, leaves extracts the values at the leaves of a tree into a list in
left-to-right order.

leaves :: Tree a -> [a]

leaves = foldTree f

where f leaf [] = [leaf]

f _ ts = concat ts

Ideally, we would like leaves to be written as a list build, so that it can fuse
with list consumers further down the pipeline. Unfortunately, this seems to
require doing a higher-order tree fold, which produces an intermediate list of
function closures; GHC doesn’t handle such lists very effectively, and it proves
more efficient to stick with the simple definition shown here.

We mark all the functions to be inlined if possible.

6.3 Short-cut deforestation pays again

Given these definitions, GHC is able to completely fuse away all the rose trees
in qsolns; i.e., no T constructors are applied at all! Indeed, modifying the
implementation of our rose tree ADT to perform cheap deforestation improves
performance of (qsolns 11) by a factor of more than three, bringing it to
within 15% of the running time of a hand-fused, non-modular Haskell imple-
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mentation. Moreover, this improvement comes without requiring any changes
to the search application code itself.

All is not quite so straightforward as it may seem, however. All the prob-
lems we examined in the context of list fusion appear again for trees:

• Effective application of the fusion law requires that GHC inline more en-
thusiastically than it normally would. For example, our pipeline of tree
operations generates many fusion opportunities that require inlining under-
neath the lambda of a buildTree argument. This is, in fact, a safe thing
to do, since the lambda is “one shot,” but GHC doesn’t know this – and
since we are thinking of trees as a user-defined library, it would be obviously
inappropriate to hack this fact about buildTree into the compiler, the way
we did for list build. As it happens, for the particular kernel of code we
show here, GHC can use the fact that the lambda representing the entire
program is one shot to deduce – after repeated iteration of inlining – that
these buildTree lambdas are one shot as well. But in general, we need
linearity analysis.

• If fusion fails, the tree library should make sure that the resulting code is not
worse than it would have been had fusion never been attempted. As with
lists, we must either ensure that inlining foldTree produces good code, or
provide a “back-out” mechanism, with appropriate attention to phasing of
inlining (c.f. Section 4.3).

• For full effectiveness, we need to make sure that inlining of list functions
(e.g., on the lists of children in nodes) occurs only after inlining of tree
functions (c.f. Section 4.2). We can arrange this by attaching an earlier
phase number to the tree function inlining directives.

• Most seriously, we might easily write programs for which fusion fails for
legitimate reasons, e.g. because there are several consumers for a given
producer, or simply because we’ve made a mistake when writing a rule.
But we’ll get no feedback from the compiler about such failures. This is
clearly a crucial area for further work.

7 Related Work

The basic concepts of our rules system are far from new. There have been
a great many attempts to build frameworks for user-directed or application-
specific optimization, often by adding additional semantic specifications to
functions.

These ideas have been of particular interest in the high-performance com-
puting community. Scientific codes often use well-established, high-level li-
braries, such as LINPACK or PLAPACK. Because these libraries need to
work efficiently over a wide range of machine architectures and data sets, they
typically have multiple implementations, each with its own complex inter-
face. For portability and maintainability, client code should be written using
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portable, high-level library calls, leaving the compiler to determine the appro-
priate low-level calls to use and optimizing the client code accordingly. To
achieve this, library interfaces can be annotated with additional specification
information. Systems and proposals along these lines include TAMPR [6],
Broadway [17,18], MetaScript [20], and Active Libraries [35].

Another set of systems has developed from the algebraic specification com-
munity. For example, the OPAL language [11] combines functional program-
ming and algebraic specification in a uniform framework. OPAL laws are used
to justify or guard rewrites of functional code; since laws are first-order pred-
icate formulas over equality of functional expressions, this makes the system
very powerful (and of course undecidable). It is unclear to what extent the
existing implementation of OPAL supports automated optimization.

Compared to existing systems and proposals, ours is notable primarily for
what it leaves out. More precisely, we can identify the following contrasts
between our systems and others:

No meta language. Both left-hand and right-hand sides of our rules are just
Haskell source expressions. With the exception of TAMPR [6], most of the
other tools known to us operate on internal program representations, such as
abstract syntax trees or control-flow graphs, and they typically allow right-
hand sides to be defined using some kind of meta-programming facility. The
choice of a meta-programming language is delicate. A specialized language
or notation such as metal [13] is concise, but must be learned from scratch by
the library author and can be unduly constraining; using a general-purpose
programming language, such as LISP (as in early work on Aspect-Oriented
Programming [21,27]) is more flexible, but requires the author to take great
care to maintain essential invariants.

Simple rewrite strategy We rely on a very simple, built-in strategy, mod-
ified by “phases”, for determining when and where rules should be applied.
As rule sets become more elaborate, authors may need to exercise explicit
control over strategy, e.g., as in Stratego [37].

Simple pattern-matching. We rely on the programmer to use high-level
operators, such as foldr, that encapsulate control flow. Thus we don’t need
to provide sophisticated contextual pattern matching to identify loops or
recursions, unlike systems like OPTRAN [26], Dora/Tess [15], and KHEP-
ERA [14]. Nor do we have to deal with the unpredictability and possible
high cost of higher-order matching, as used in MAG [10].

No side conditions. We work with a purely functional language, which means
that many useful optimizing transformations are context-independent and
don’t require elaborate side-conditions. By contrast, most useful transfor-
mations on imperative programs must be justified by non-syntactic, and
often non-trivial, analysis, e.g., of control flow, dependence, aliasing, etc.
Thus many tools for imperative languages focus on specifying analyses in
addition to transformations; examples include DFA&OPT-MetaFrame [23],
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Sharlit [34], Genesis [39], OPTIMIX [2], Intentional Programming [1], and
recent work of Lacey and de Moor [24].

No termination guarantees; no AC rewriting. Our rules are all directed,
and we cannot easily express commutative laws without causing endless
rewriting. In a modern algebraic transformation system like Maude [9],
equations are entirely symmetric in their left and right hand sides, which
can be arbitrary terms; they can be used for transformation in either direc-
tion. Common algebraic properties of an operator can be declared by built-
in keywords such as [assoc] and [comm]; in executing the transformations
in a program, all pattern matching is conducted modulo these properties,
which makes for shorter and more elegant programs.

In summary, we offer simplicity in exchange for more limited functionality.
Simplicity is important, both for implementors and library authors. From an
implementation point of view, our experience is that simple ideas are seldom
easy to implement in a full-scale, optimising compiler, while complex ideas
require heroism that is hard to sustain in the long term.

From a programming point of view, too, simplicity is important. Most par-
ticularly, the fact that the transformations are expressed entirely in Haskell
itself, and not in some (necessarily different, and more indirect) meta-language
is a huge advantage. We know of no optimising compiler in widespread use
that supports domain-specific extensions; we suspect that this is partly due
to the complexity of their meta-programming mechanisms. Of course, GHC’s
rules are not in widespread use by programmers either — but they are used
behind the scenes in every run of GHC, both for list fusion (Section 3) and spe-
cialisation (Section 5). It is also possible that our approach is just too simple:
we do not yet know how the tradeoff between simplicity and expressiveness
will play out.

8 Conclusions and further work

We have described a simple, but fully implemented and deployed, way to write
domain-specific extensions to a compiler for Haskell, by means of rewrite rules.
We have demonstrated that, though simple, rewrite rules are useful in practice.
Indeed, the list fusion rules have been deployed in the Prelude of the released
GHC compiler for two years. In recent work, Chakravarty and Keller are
using GHC’s rewrite rules to perform array fusion in their work on nested
data-parallel programming [7]; their application is more sophisticated than
any we have described here.

The previous section described many directions in which one could imagine
making our system more expressive, but we plan to develop more experience of
its practical use before elaborating it much further. Indeed, the most pressing
area for further work is not even mentioned in Section 7: it is the question of
how best to provide feedback to the programmer about which rules have fired
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and, more especially, which have not and why not. Since rewrites are done on
Core, which is quite far from Haskell, providing comprehensible feedback is a
hard problem.

The status of this paper is as a report of work in progress. We present it
in the hope that it will attract the interest of the writers of library packages,
and will encourage them to experiment with the feature and report on its
inadequacies. For the longer term, we wish to promote the principle that a
programmer should supply further declarative information together with the
code of the program; and suggest that compilers and other programming tools
should take maximum advantage of these declarations.
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Appendix: Constraint Satisfaction Problems

Here is the complete code for the constraint satisfaction problem (CSP) search
kernel described in Section 6

Problem Definition

A CSP is characterized by a number of variables vars, a number of values
vals, and a consistency relation rel between pairs of assignments of values
to vars. We represent assignments using an infix constructor :=. To solve
the CSP, we must assign a value to each variable such that all pairwise com-
binations of assignments are in rel. A well-known example is the n-queens
problem, under the standard optimization that we only try to place one queen
in each column; this can be modeled as a CSP with n variables (the columns),
n values (the rows), and a relation that permits two assignments provided the
corresponding positions are on different rows or different diagonals.

type Var = Int

type Value = Int

data Assignment = Var := Value

type Relation = Assignment -> Assignment -> Bool

data CSP = C {vars, vals :: Int, rel :: Relation}
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queens :: Int -> CSP

queens n = C{vals=n,vars=n,rel=safe}

where safe (col1 := row1) (col2 := row2) =

(row1 /= row2) &&

abs (col1 - col2) /= abs (row1 - row2)

Search States

We model each state in the space of possible solutions as a sequence of as-
signments, together with the number of the most recently assigned variable.
States are built from emptyState by repeated use of extensions, which takes
a state and constructs a list of extended states formed by assigning each pos-
sible value to the next variable.

data State = S [Assignment] Var

emptyState :: CSP -> State

emptyState C{vars=vars} = S [] 0

extensions :: CSP -> State -> [State]

extensions C{vars=vars,vals=vals} (S as lastvar) =

[S ((nextvar := val):as) nextvar |

let nextvar = lastvar+1, nextvar <= vars, val <- [1..vals]]

complete :: CSP -> State -> Bool

complete C{vars=vars} (S _ lastvar) = lastvar == vars

consistent :: CSP -> State -> Bool

consistent _ (S [] _) = True

consistent C{rel=rel} (S (a:as) _) = all (rel a) as

A solution is a complete state that is consistent at every level.

Rose Trees

Here is sample library code for rose trees written without concern for fusion.
For convenience, we do use foldTree in the definition of prune and leaves.

data Tree a = T a [Tree a]

initTree :: (a -> [a]) -> a -> Tree a

initTree f a = go a

where go a = T a (map go (f a))

foldTree :: (a -> [b] -> b) -> Tree a -> b

foldTree f t = go t
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where go (T a ts) = f a (map go ts)

mapTree :: (a -> b) -> Tree a -> Tree b

mapTree f (T a ts) = T (f a) (map (mapTree f) ts)

prune :: (a -> Bool) -> Tree a -> Tree a

prune p t =

head (foldTree f t)

where f a ts | p a = []

| otherwise = [T a (concat ts)]

leaves :: Tree a -> [a]

leaves = foldTree f

where f leaf [] = [leaf]

f _ ts = concat ts

Rose trees supporting fusion

The code for these was shown in Section 6.2 .

Backtracking Search for CSPs

mkSearchTree :: CSP -> Tree State

mkSearchTree csp = initTree (extensions csp) (emptyState csp)

type Labeler a = CSP -> Tree State -> Tree (State, a)

type Pruner a = (State,a) -> Bool

labelInconsistencies :: Labeler Bool

labelInconsistencies csp = mapTree f

where f s = (s,not (consistent csp s))

solver :: Labeler a -> Pruner a -> CSP -> [State]

solver labeler pruner csp =

(filter (complete csp) . map fst . leaves .

prune pruner . (labeler csp) .

mkSearchTree) csp

btsolver :: CSP -> [State]

btsolver = solver labelInconsistencies snd

qsolns :: Int -> Int

qsolns n = length (btsolver (queens n))
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Hand-fused Code

A hand-fused version of qsolns in Haskell:

qsolns’ :: Int -> Int

qsolns’ n = f (emptyState csp)

where

csp = queens n

f state | complete csp state = 1

| otherwise = g (extensions csp state)

g [] = 0

g (s’:rest) | consistent csp s’ = f s’ + g rest

g (_:rest) = g rest
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