
Parametric Type Inferencing for Helium

Bastiaan Heeren and Jurriaan Hage
{bastiaan,jur}@cs.uu.nl

Inst. of Information and Computing Sci., Univ. Utrecht, P.O.Box 80.089, 3508 TB Utrecht,
Netherlands

Abstract. Helium is a compiler for a large subset of Haskell under develop-
ment at Universiteit Utrecht. A major design criterion is the ability to give
superb error messages. This is especially needful for novice functional pro-
grammers. In this paper we document the implementation of the Helium type
inferencer. For purposes of experimentation with various methods of type infer-
encing, the type inferencer can be parameterized in a number of ways. Among
the instances we find not only standard algorithms such asM andW, but also
more global type inferencers based on type graphs.

1 Introduction

One of the main drawbacks of learning to program a high-level polymorphic functional
language such as Haskell, is that the type error messages are often too complex for
novices to understand. One of the reasons is that the standard local algorithms such
as M [DM82] and W [LY98] were developed mainly for speed, and not for returning
good error messages. There exist many examples of ill-typed programs, where a more
global approach would yield better error messages.

One of the drawbacks of developing your own type inferencer for a large language
such as Haskell, is that eventually a compiler is needed to do real experimentation,
for instance in a classroom setting. At Universiteit Utrecht, Arjan IJzendoorn recently
started to work on a compiler for a subset of Haskell called Helium. Only language
constructs of Haskell for which informative error messages could be given, are in-
cluded.

As a side-effect, the compiler gives us an opportunity to compare the standard
algorithms with our own in a classroom setting, and we plan to do so in the near
future in freshmen courses on functional programming. In this paper we go into the
implementation of our type inferencing method, which is based on a clear separation
between collecting and solving type constraints. This separation also allows us to
emulate well-known type inferencing algorithms such as W and M, by modification
of the order in which the type constraints are solved. This provides a way to compare
these standard algorithms to global heuristics which may use elaborate data structures
such as type graphs (see Section 5). In this way we hope to gain insight into the quality
of the error messages and the computational penalties to be paid.

Apart from this main goal we also plan to show the reader how the type constraints
can be collected using the attribute grammar system UU AG developed at Universiteit
Utrecht by Doaitse Swierstra et al. (documentation can be found at [SBL]). Algorithms

such as W and M always drag some representation of a substitution around, which
is continually updated to reflect newly found information. In contrast, the relation
between the typing rules and their implementation in the UU AG system is straight-
forward and makes the implementation easy to maintain. This is certainly profitable,
because it is likely that new constructs will be added to Helium at a later stage.

The proof that our inferencing rules, combined with a constraint solver, is equiva-
lent to the type inferencing rules of Hindley-Milner [DM82], with appropriate restric-
tions on the expression language, can be found in Heeren, Hage and Swierstra [HHS02].
We point out that the expression language in the current paper is much larger. A dis-
cussion of the validity of the new typing rules lies outside the scope of the current
paper. Instead, we focus on more pragmatic aspects such as the efficiency of the im-
plementation and its amenability to experimentation.

The compiler is structured as follows. As most compilers, the Helium compiler can
be divided into a number of phases. The first of these phases consists of lexical scanning
and parsing, which is done using Daan Leijen and Erik Meijer’s collection of monadic
parser combinators Parsec [LM01]. The resulting abstract syntax trees, in a format
called UHA which is a local standard at Universiteit Utrecht, are then semantically
checked using the attribute grammar system UU AG. If the program passes all the
tests, then the UHA is desugared, normalized and optimized into a bare language
called ASM, which can be executed by the Lazy Virtual Machine of Daan Leijen. In
this paper we are only interested in explaining the type inferencing which is part of
semantic analysis.

The paper is structured as follows. After some preliminaries to fix notation, we
give the bottom-up type inference rules for our complete expression language, also
explaining how these type rules are programmed in the UU AG system. We then continue
by showing how to deal with multiple constraint solvers in our compiler, including a
greedy one (which itself can be instantiated to behave as algorithms like W and M),
as well as a solver which tries to find a minimal set of errors based on a global analysis
based on a type graph. Before we conclude in the final section, we give an example
comparing Hugs and GHC to the Helium type inferencer.

2 Preliminaries

Types and substitutions

The syntax of types and type schemes is given by:

(type) τ := α | T τ1 . . . τn where arity(T) = n
(type scheme) σ := ∀~α.τ

A type can be either a type variable or a type constructor applied to a number of
types. The arity of each type constructor is fixed. Typical examples are → Int Bool,
and → a (→ b a), the function space constructor being a binary type constructor. In
the following, we use the standard infix notation τ1 → τ2 for function types, and a
special notation for list and tuple types. The set of type constructors can be extended
with user defined data types such as Maybe, but we do not include it here.

A type scheme ∀~α.τ is a type in which a number of type variables ~α = α1, . . . , αn,
the polymorphic type variables, are bound to a universal quantifier. The free type
variables are called monomorphic. Note that n may be zero, in which case a type
scheme is simply a type. Although the type variables have an implicit order in any
given type scheme, the order itself is not important. For this reason we may view the
vector ~α as a set when the need arises.

The set of free type variables of a type τ is denoted by ftv(τ) and simply consists
of all type variables in τ . Additionally, ftv(∀~α.τ) = ftv(τ)− ~α.

A substitution, usually denoted by S, is a mapping of type variables to types. For
type variables D = {α1, . . . , αn} and types τ1, . . . , τn the substitution mapping αi to
τi is denoted by [α1 := τ1, . . . , αn := τn]. Implicitly we assume all type variables not in
D are mapped to themselves. As usual, a substitution only replaces free type variables,
so the quantified type variables in a type scheme are not affected by a substitution.
For completeness sake we note that the substitution > maps every type into a special
error type also denoted by >. This is simply to cope with the inability to unify types.

Generalizing a type τ with respect to a set of type variables M entails the quan-
tification of the type variables in τ that do not occur in M .

generalize(M, τ) =def ∀~α.τ where ~α = ftv(τ)−M

An instantiation of a type scheme is obtained by replacing the quantified type
variables with fresh type variables.

instantiate(∀α1 . . . αn.τ) =def [α1 := β1, . . . , αn := βn]τ
where β1, . . . , βn are fresh

A type τ1 is a generic instance of a type scheme σ = ∀~α.τ2, denoted τ1 ≺ σ, if there
exists a substitution S with {β | β 6= S(β)} ⊆ ~α such that τ1 = Sτ2.

In the following we shall often encounter (finite) sets of pairs of the form x : τ ,
where usually x is a variable and τ a type. For such a set X we define dom(X) = {x |
x :τ ∈ X} and ran(X) = {τ | x :τ ∈ X}.

Constraints

A constraint set, usually denoted by C, is a set of type constraints. We introduce three
forms of type constraint:

(constraint) C := τ1 ≡ τ2 | τ1 ≤M τ2 | τ ¹ σ

An equality constraint (τ1 ≡ τ2) reflects that τ1 and τ2 should be unified at a later stage
of the type inferencing process. The other two kinds of constraints are used to cope
with the polymorphism introduced by let-expressions. An explicit instance constraint
(τ ¹ σ) states that τ has to be a generic instance of σ. This constraint is convenient
if we know the type scheme before we start inferencing; this occurs for instance when
an explicit type for the expression was given. In general, the (polymorphic) type of
a declaration in a let-expression is unknown and must be inferred before it can be
instantiated. To overcome this problem we introduce an implicit instance constraint

(τ1 ≤M τ2), which expresses that τ1 should be an instance of the type scheme that is
obtained by generalizing type τ2 with respect to the set of monomorphic type variables
M , i.e., quantifying over the other type variables. Equality constraints on types can
be lifted to sets of pairs of types by (X ≡ Y) = {τ1 ≡ τ2 | x : τ1 ∈ X, x : τ2 ∈ Y } and
similarly for ≤M and ¹.

Once a constraint set has been generated, we look for the minimal substitution
that satisfies each constraint in the set. Satisfaction of a constraint by a substitution
S is defined as follows:

S satisfies (τ1 ≡ τ2) =def Sτ1 = Sτ2
S satisfies (τ1 ≤M τ2) =def Sτ1 ≺ generalize(SM,Sτ2)
S satisfies (τ ¹ σ) =def Sτ ≺ Sσ

After substitution, the two types of an equality constraint should be syntactically
the same. The logical choice for S in this case is the most general unifier of the two
types. For an implicit instance constraint, the substitution is not only applied to both
types, but also to the set of monomorphic type variables M . The substitution is ap-
plied to the type and the type scheme of an explicit instance constraint, where the
quantified type variables of the type scheme are, as usual, untouched by the substitu-
tion. Since in general generalize(SM,Sτ) is not equal to S(generalize(M, τ)), implicit
and explicit instance constraints really have different semantics. However, for every
implicit instance constraint there comes a point where it can be transformed into an
explicit instance constraint and from there into an equality constraint. We illustrate
this by an example.

Example 1. Let c = α3 ≤{α5} α1 → α2 be a constraint we want to solve. As a
result we have to make sure that we find a substitution S that satisfies c, or Sα3 ≺
generalize(S{α5},S(α1 → α2)) where the latter is equal to ∀β1β2.β1 → β2, because α1

and α2 are not known to be monomorphic. A most general substitution to satisfy this
constraint is S = [α3 := α→ β], where α and β are fresh type variables. What happens
if we later encounter c′ = α5 ≡ α1? We have already chosen α1 to be polymorphic in
c, although the constraint c′ now tells us that α1 is in fact monomorphic, because it is
equal to a type variable of which we know that it is monomorphic (and monomorphic
type variables can never become polymorphic again).

Although, it might seem that this problem does not occur for c′ = α5 ≡ α4, take
note that there may be other constraints through which this constraint makes either
α1 or α2 monomorphic. The only safe way is to postpone solving c until both its set
of monomorphic variables and the type on the right-hand side can no longer change.

However, to simply demand that α5 is not anymore present in any of the constraints
is too coarse a view. If the constraint set contains a constraint of the form α3 ≤{α5}
α2 → α1 or even α3 ≤∅ α5 → α1, then there is really no problem.

Lemma 1 in [HHS02] states collecting constraints according to our type inference
rules always results in a set of constraints that can be solved: equality constraints
and explicit instance constraints can be solved unconditionally. If we have only im-
plicit instance constraints left, then the implicit instance constraint generated by the
leftmost-innermost let-expression for which we still need to solve such a constraint,
always fulfills the condition for being solvable, as explained in the previous example.

expr = lit | var | constructor
| expr expr+

| if expr then expr else expr
| ’λ’ pat+ ’→’ expr
| case expr of alts

| let decls in expr

| ’(’ expr` ’)’ | ’[’ expr` ’]’
| expr ’::’ typescheme

pat = lit | var | constructor pat*

| ’(’ pat` ’)’ | ’[’ pat` ’]’
| var ’@’ pat | ’ ’

alt = pat ’→’ expr
decl = fbs | var ’::’ typescheme
fb = var pat* ’=’ rhs

rhs = expr (where decls)?

Fig. 1. Context-free grammar for the subset of Helium

We conclude that if we take the set of constraints and order them in a fashion
compatible with the conditions discussed in the previous paragraph, then we can solve
these constraints in that order.

3 Bottom-Up Type Inference Rules

In this section we give the type inference rules for a large part of Helium. The part of
Helium we consider is given in Figure 1 where we have concentrated on the expressions
and patterns1. In addition we have alternatives (for case expressions), explicit types
and where-clauses. The Helium language incorporates a few more constructs such
as data type declarations, type synonyms, list comprehension, monadic do-notation,
guarded function definitions and a module system. For the sake of brevity we omit
these.

In general, our approach to inferencing types is to label every subexpression with a
fresh type variable (usually called β) and to generate constraints for the restrictions to
be imposed at this point. Usually the type for an expression is simply a type variable
(during the solving process we find out exactly what type it represents), although
in some cases it is advantageous to return a type expression containing several new
variables. An expression of such kind is denoted 〈β1, . . . , βn〉.

Consider the type inference rules for expressions in Figure 2. The judgements in
these rules are of the form M, A, C `eBU e : τ . Here C is simply a set of constraints, e is
the expression, τ is the type of e, M is the set of monomorphic type variables and A
is the so called assumption set. An assumption set records the type variables that are
assigned to the free variables of e. Contrary to the standard type environment used
in the Hindley-Milner inference rules, there can be multiple (different) assumptions
for a given variable. In fact, for every occurrence of a free variable there will be a
different pair in A. As can be seen from the expressions for A and C in the rules,
there is implicitly a flow of information from the bottom up. In fact, the only piece of
information that is passed downwards is the set of monomorphic variables M . Note
that the rules allow for flexibility in coping with unbound identifiers.

1 For a non-terminal X we abbreviate ε | (X ′,′)∗X, a comma separated, possibly empty
sequence of X’s, by X`. Similarly, Xs is equivalent to a semicolon separated sequence of
X’s: Xs = ε | (X ′;′)∗X. Also, X? indicates optionality of X.

literal :τ

M, ∅, {β ≡ τ} `eBU literal : β
[Lit]

e
BU

M, {x :β}, ∅ `eBU x : β
[Var]

e
BU

C :σ

M, ∅, {β ¹ σ} `eBU C : β
[Con]

e
BU

M, A, C `eBU f : τ M, Ai, Ci `
e
BU ai : τi for 1 ≤ i ≤ n

M, A ∪
⋃
i
Ai, C ∪

⋃
i
Ci ∪ {τ ≡ τ1 → . . .→ τn → β} `eBU f a1 . . . an : β

[App]
e
BU

M, A1, C1 `
e
BU e1 : τ1 M, A2, C2 `

e
BU e2 : τ2 M, A3, C3 `

e
BU e3 : τ3

M, A1 ∪ A2 ∪ A3, C1 ∪ C2 ∪ C3 ∪ {τ1 ≡ Bool, τ2 ≡ β, τ3 ≡ β}
`eBU if e1 then e2 else e3 : β

[If]
e
BU

Bi, Ci `
p
BU pi : τi for 1 ≤ i ≤ n B =

⋃
i
Bi M ∪ ran(B), A, C `eBU e : τ

M, A\dom(B),
⋃
i
Ci ∪ C ∪ (B ≡ A) ∪ {β ≡ τ1 → . . .→ τn → τ}

`eBU (λp1 . . . pn → e) : β

[Abs]
e
BU

M, Bi, Ai, Ci `dBU di for 1 ≤ i ≤ n M, A, C `eBU e : τ
(A′, C′) = BindingGroupAnalysis(M, explicits, {(∅,A), (B1,A1), . . . , (Bn,An)})

M, A′,
⋃
i
Ci ∪ C ∪ C′ ∪ {β ≡ τ} `eBU let explicits; d1; . . . ; dn in e : β

[Let]
e
BU

M, A, C `eBU e : τ M, Ai, Ci `
a
BU ai : 〈φi, ψi〉 for 1 ≤ i ≤ n

M, A ∪
⋃
i
Ai, C ∪

⋃
i
Ci ∪ ({τ, φ1, . . . , φn} ≡ {β1}) ∪ ({ψ1, . . . , ψn} ≡ {β2})

`eBU (case e of a1; . . . ; an) : β2

[Case]
e
BU

M, Ai, Ci `
e
BU ei : τi for 1 ≤ i ≤ n

M,
⋃
i
Ai,

⋃
i
Ci ∪ {β ≡ (τ1, . . . , τn)} `eBU (e1, . . . , en) : β

[Tuple]
e
BU

M, Ai, Ci `
e
BU ei : τi for 1 ≤ i ≤ n

M,
⋃
i
Ai,

⋃
i
Ci ∪ ({τ1 . . . τn} ≡ {β1}) ∪ {β2 ≡ [β1]} `eBU [e1, . . . , en] : β2

[List]
e
BU

M, A, C `eBU e : τ

M, A, C ∪ {β ¹ σ, τ ¹ σ} `eBU (e :: σ) : β
[Typed]

e
BU

Fig. 2. The Bottom-Up type inference rules for expressions

The type rule [Lit]eBU expresses that for every literal (such as 1, False, ’a’...) we
generate the constraint β ≡ τ , where τ is the fixed type of the literal (such as Int,
Bool, Char,...). The need for introducing a type variable even for a literal shall become
apparent later. For a variable we simply generate a fresh type variable, while for
constructors we have to instantiate the type scheme for that constructor. We assume
that the type of the constructor is already known.

The rule for application is a basic one. If we have types τ and τ1, . . . , τn for the
function and the list of n arguments respectively, then we have to impose the constraint
that τ is in fact a function type taking arguments τ1, . . . , τn giving us a result of type
β (β is as always fresh). For a conditional, we generate constraints to enforce that the
condition e1 has type Bool and e2 and e3 must have equal types (enforced through
the intermediate type variable β).

A lambda abstraction abstracts over a number of patterns. These patterns contain
variables to which the variables in the body of the lambda can be bound. As in the
case of the assumption set, each occurrence of such a pattern variable is paired with
a unique type variable in B. These type variables are then passed along in M, so
that the body of the abstraction is informed about which type variables are definitely
monomorphic. This set is used when generating the implicit instance constraints for
let-expression in the body. The constraints generated for the lambda abstraction itself
should take into account that the type of each identifier is equal to the type of each
of its occurrences in the body (expressed by B ≡ A), and that the resulting type is an
appropriate function type.

For [Let]eBU we take into account that the types of some definitions are explicitly
given. In Helium, the binding groups are determined in part by the given explicit
typings. We explain the working of the function BindingGroupAnalysis by an example.
If we have two mutually recursive definitions in a let-expression of the form f = . . . g . . .
and g = . . . f . . ., then without explicit types for f or g, the definitions belong to the
same binding group and we generate equality constraints between the type variables
for the definition of g and every single use in f and g. Consequently, all occurrences of
f and g in these definitions are monomorphic. However, if the let-expression includes
an explicit polymorphic type for f , then f and g are no longer in the same binding
group and f may be used polymorphically in g and vice versa. In that case, we generate
an explicit instance constraint, based on the explicit type of f , for each use of f in g,
and if g is not explicitly typed itself, we generate an implicit instance constraint for
every use of g in f . The same applies to uses of f in the body of f . In other words, if an
explicit type for f is given, then polymorphic recursion is allowed. When generating
implicit instance constraints, we need the set M of monomorphic type variables.

A case expression consists of an expression e and a list of n alternatives. We collect
information for each alternative, resulting in a type for the pattern and one for the
expression. Of course, the types of the patterns must be the same and equal to the
type of the expression e. In addition, the types of the expressions on the right should
all agree as well. This is also the resulting type of the case expression.

Helium expressions can be explicitly typed, in which case both the type τ of the
expression itself as well as the returned type, have to be an instance of the explicitly

mentioned type σ. The check that σ is not more general than the type τ is postponed
until a later stage. To save space, we leave the remaining rules to the reader.

literal :τ

∅, {β ≡ τ} `pBU literal : β
[Lit]

p
BU

{x :β}, ∅ `pBU x : β
[Var]

p
BU

C :σ Bi, Ci `
p
BU pi : τi for 1 ≤ i ≤ n⋃

i
Bi,

⋃
i
Ci ∪ {β1 ¹ σ, β1 ≡ τ1 → . . .→ τn → β2} `pBU C p1 . . . pn : β2

[Con]
p
BU

Bi, Ci `
p
BU pi : τi for 1 ≤ i ≤ n⋃

i
Bi,

⋃
i
Ci ∪ {β ≡ (τ1, . . . , τn)} `pBU (p1, . . . , pn) : β

[Tuple]
p
BU

Bi, Ci `
p
BU pi : τi for 1 ≤ i ≤ n⋃

i
Bi,

⋃
i
Ci ∪ ({τ1 . . . τn} ≡ {β1}) ∪ {β2 ≡ [β1]} `pBU [p1, . . . , pn] : β2

[List]
p
BU

B, C `pBU p : τ

B ∪ {x :β}, C ∪ {τ ≡ β} `pBU x@p : β
[As]

p
BU

∅, ∅ `pBU : β
[Wc]

p
BU

Fig. 3. The Bottom-Up type inference rules for patterns

We now proceed with patterns in Helium, see Figure 3. Patterns occur in left-
hand sides of function definitions, in lambda abstractions, and occur in the left-hand
sides of case alternatives. The variables introduced in a pattern are, together with the
corresponding fresh type variable, passed bottom-up in the set of bindings B. The rules
for literals, variables, lists and tuples are the same as for expressions, except that we do
not need to pass a set of monomorphic variables down into the pattern. The constructor
rule combines the function application and constructor rules for expressions into one.
The as-pattern allows us to bind nontrivial patterns to variables. The corresponding
rule simply equates the type of the pattern with the type of the variable using a fresh
type variable. Wildcards do not introduce new restrictions, so we only give them a
dummy type β.

Finally consider the rules in Figure 4 for the remaining constructs that we deal
with in this paper. An alternative, as used in case expressions is a pattern followed by
an expression, separated by an arrow. This rule is very similar to the rule for lambda-
abstractions. As is to be expected, the rule for right-hand sides [RHS]rhs

BU is similar to
the rule for let-expressions. The only difference is that right-hand sides themselves are
not expressions that may be used as part of larger expressions. For that reason we
omit the, in this case unnecessary, introduction of a fresh type variable. The rules for
function bindings and declaration need a more careful explanation. A declaration of a
function consists of m functions bindings, all starting with the same function identifier,
here f . Each function binding consists of the function name, a list of patterns pi (here

B, C1 `
p
BU p : τ1 M ∪ ran(B), A, C2 `

e
BU e : τ2

M, A\dom(B), C1 ∪ C2 ∪ (B ≡ A) `aBU (p→ e) : 〈τ1, τ2〉
[Alt]

a
BU

M, A, C `eBU e : τ M, Bi, Ai, Ci `dBU di for 1 ≤ i ≤ n
(A′, C′) = BindingGroupAnalysis(M, explicits, {(∅,A), (B1,A1), . . . , (Bn,An)})

M, A′, C ∪
⋃
i
Ci ∪ C′ `rhs

BU (e where explicits; d1; . . . ; dn) : τ
[RHS]

rhs
BU

M, Ai, Ci `
fb
BU fbi : 〈τ1,i, . . . , τn,i〉 for 1 ≤ i ≤ m

M, {f :β1 → . . .→ βn},
⋃
i
Ai,

⋃
i
Ci ∪

⋃
j
{βj ≡ τj,i | 1 ≤ i ≤ m} `dBU fb1; . . . ; fbm

where f is the single function being declared by the function bindings fbi

[Decl]
d
BU

Bi, Ci `
p
BU pi : τi for 1 ≤ i ≤ n− 1 B =

⋃
i
Bi M ∪ ran(B), A, C `rhs

BU rhs : τn

M, A\dom(B),
⋃
i
Ci ∪ C ∪ (B ≡ A) `fbBU (f p1 . . . pn−1 = rhs) : 〈τ1, . . . , τn〉

[FB]
fb
BU

Fig. 4. The remaining Bottom-Up type inference rules

numbered from 1 to n− 1 to fit better with the [Decl]dBU rule) and a right-hand side.
The rule is very similar to that for the lambda abstraction except that we do not return
a function type, but construct a type sequence of n types (n− 1 parameters plus the
type of the right-hand side). The type sequences for the various function bindings are
collected in [Decl]dBU. Now we can see the reason why we did not construct a function
type: the types of the first pattern in each of the function bindings have to be the same,
and similar for the other patterns and the right-hand sides. Of course, this could have
been done by equating the function types, but this seems to us more intuitive and
more amenable to generating good type error messages.

4 Collecting the Constraints using UU AG

In this section we explain how the type inference rules of the previous section can
be implemented easily in the UU AG system. All fragments of code are shown in
Figure 5, and are intended to illustrate the implementation techniques used; they
are not complete. First we choose a representation for assumption sets and binding
sets. Because these sets can become quite large in practice, it is sensible to choose
a different and more efficient representation. The function removeKeys is used to
filter the assumptions in a set. The next step is to define the attributes of the non-
terminals in the abstract syntax tree, found in the ATTR section. Besides the top-
down (inherited) and the bottom-up (synthesized) aspects, there are chained attributes
that are passed along in both directions.

Note that the attributes exactly match the elements in a judgement for an expres-
sion. Additionally, the chained attribute unique provides a counter to generate fresh
type variables. Instead of using a list to collect the type constraints, a Rose tree that
follows the shape of the abstract syntax tree is constructed, where the nodes are dec-
orated with any number of constraints. In this way we retain some flexibility in the
order of the constraints.

type Assumptions = [(String,Type)]
type Bindings = [(String,Type)]
removeKeys xs ys = filter ((‘notElem‘ xs) . fst) ys

ATTR Expr [mono : Types (inherited)
| unique : Int (chained)
| aset : Assumptions (synthesized)

ctree : ConstraintTree
beta : Type]

SEM Expr
| If

lhs . aset = @guard.aset ++ @then.aset ++ @else.aset (1)
. ctree = Node [[@guard.beta ≡ boolType] ‘add‘ @guard.ctree (2)

, [@then.beta ≡ @beta] ‘add‘ @then.ctree
, [@else.beta ≡ @beta] ‘add‘ @else.ctree]

guard . unique = @lhs.unique + 1 (3)
loc . beta = TVar @lhs.unique (4)

SEM Expression
| Lambda

lhs . aset = removeKeys (map fst @pats.bset) @expr.aset
. ctree = [beta ≡ foldr (→) @expr.beta @pats.betas] ‘add‘

Node [@pats.ctree, @binds ‘spread‘ @expr.ctree]
pats . unique = @lhs.unique + 1
expr . mono = map snd @pats.bset ++ @lhs.mono
loc . beta = TVar @lhs.unique

. binds = [τ1 ≡ τ2 | x1 == x2

, (x1,τ1) ← @pats.bset, (x2,τ2) ← @expr.aset]

Fig. 5. Code fragments of the attribute grammar

Due to space restrictions we limit ourselves to giving the semantic functions for
the conditional expression and the lambda abstraction. We start with the conditional,
for which we give a pictorial representation of the dependencies between the various
attributes in Figure 6. The three sub-expressions of a conditional are referred to as
guard, then and else. Consider the attribute unique. Its value is used in two different
ways. First of all, we use it to generate a new variable in the local attribute beta. Note
that beta is also the name of a synthesized attribute of the If-node. The reason we
introduce it as a local attribute is because we also need it for cset. After incrementing,
unique is passed to the first child. The unique attribute of the second child depends
on the unique value coming out of the first child, and similarly for the third child.
Finally, the unique counter coming out of the third child is passed upwards. In other
words, the value of unique is threaded through the tree, being incremented along the
way.

The semantic rules are given in the SEM section of Figure 5. Here, the syntax for
referring to an attribute is @child.attribute, where lhs and loc are special keywords to

then elseguard

(1) (2)

(3)

(4)

Expr Expr Expr

If

loc

lhs
u m

u m a c b u u m a c b u u m a c b u

ubca

b

m = mono
u = unique
a = aset
c = ctree
b = beta

Fig. 6. Dependencies between the attributes for the conditional

refer to inherited attributes of the father node and attributes that are defined locally,
respectively. The three type constraints for a conditional are added to the constraint
trees of their corresponding subexpression with the function add. The number following
a semantic equation refers to the correspondingly numbered dashed lines in Figure 6;
the dotted edges represent the passing of unmodified attributes. For instance, mono is
passed on unchanged to the three children. We do not have to write the code for passing
these attributes ourselves. Instead, the compiler inserts these copy rules automatically.

For lambda abstractions, the assumptions concerning the bound variables are re-
moved from the assumption set, and the type variables that are introduced in the
patterns are inserted into the set of monomorphic type variables that is passed to the
body. A constraint is constructed for each matching combination of a tuple from the
assumption set and from the binding set. This set of constraints, which is the local
attribute binds, is added to the constraint tree with the function spread.

Flattening the constraint tree

The location where most type inferencers detect an inconsistency for an ill-typed
expression strongly depends on the order in which types are unified. By specifying
how to flatten the constraint tree we can imitate several type inferencing algorithms,
each with their own properties and characteristics. Among the instances are the well-
known algorithm W, and the folklore algorithmM.

We flatten a constraint tree by defining a treewalk over it that puts the constraints
in a certain order. Besides the standard preorder and postorder treewalks, one can
think of more experimental ones such as a right-to-left treewalk. In our current imple-
mentation we use the same treewalking strategy in each node of a constraint tree, but it
is a straightforward extension to use different strategies depending on the non-terminal
in the abstract syntax tree.

Special care is taken for inserting a constraint that corresponds to the binding
of a variable to a pattern variable; these constraints are inserted with the function

τ7≡τ0→τ1→τ6,

τ1≡τ4
τ3≡τ4→τ5, τ0≡τ3,
τ2≡τ5→τ6, τ0≡τ2,

Bottom-up

Algorithm M

Algorithm W
τ0≡τ2, τ0≡τ3,
τ1≡τ4, τ3≡τ4→τ5,
τ2≡τ5→τ6,
τ7≡τ0→τ1→τ6

τ3≡τ4→τ5, τ2≡τ5→τ6
τ0≡τ2, τ0≡τ3,
τ1≡τ4,
τ7≡τ0→τ1→τ6

Abs

App

Var ”f” App

Var ”f” Var ”x”

τ0 τ1

τ2

τ3 τ4

τ5

τ6

τ7

τ3≡τ4→τ5

τ2≡τ5→τ6

τ0≡τ3 τ0≡τ2 τ1≡τ4
τ7≡τ0→τ1→τ6

Var ”f” Var ”x”

Fig. 7. Spreading the constraints for λf x→ f (f x)

spread. Instead of decorating the node where the actual binding takes place, each single
constraint can instead be mapped onto the location of the bound variable. Figure 7
shows the spreading of three constraints. The constraint orders of three treewalks are
shown on the right: a postorder treewalk with spreading (W), a preorder treewalk with
spreading (M), and a postorder treewalk without spreading.

5 Solving the Constraints

In this section we consider a number of implementations for solving the collected
constraints. We describe the general characteristics of a constraint solver by listing all
the operations that it should be able to perform. We continue by explaining how various
greedy solving methods can be implemented within this framework. These greedy
algorithms can be tuned quite easily by specifying a small number of parameters.
Finally, we spend some time on how the constraints can be solved in a more global
way using type graphs which enables us to remove the left to right bias inherent in
inference algorithms such as W andM.

A type class for solving constraints

To pave the way for multiple implementations to solve a list of constraints, we present
a type class. Since it is convenient to maintain a state while solving the constraints, we
have implemented this class using a State monad that contains a counter to generate
unique type variables, a list of reported inconsistencies, and a substitution or some-
thing equivalent. A type solver can solve a set of constraints, in which each constraint
is carrying additional info, if it is an instance of the following class.

class Solver solver info where
initialize :: State solver info ()
makeConsistent :: State solver info ()
unifyTypes :: info → Type → Type → State solver info ()
newVariables :: [Int] → State solver info ()
findSubstForVar :: Int → State solver info Type

By default, the functions initialize, makeConsistent, and newVariables do nothing, that
is, leave the state unchanged. If unifyTypes is called with two non-unifiable types it
can either deal with the inconsistency immediately, or postpone it and leave it to
makeConsistent. The function applySubst, which performs substitution on types, is
defined in terms of a more primitive function called findSubstForVar. Now we present
the algorithm that does the job.

solve :: Solver solver info ⇒ Int → Constraints info → State solver info ()
solve unique constraints = do setUnique unique

initialize
mapM solveOne constraints
makeConsistent

After initialization, the constraints are solved one after another resulting in a possibly
inconsistent state. Calling makeConsistent will remove possible inconsistencies and as
a side effect adds error messages to the state. The code fragment in Figure 8 shows
how to solve a single constraint. (We have omitted info from the body of the function
for clarity.)

solveOne :: Solver solver info ⇒ Constraint info → State solver info ()
solveOne constraint = case constraint of

t1 ≡ t2 →
do unifyTypes info t1 t2

tp ¹ ts →
do unique ← getUnique

let (unique’, its) = instantiate unique ts
setUnique unique’
newVariables [unique..unique’-1]
solveOne (tp ≡ its)

t1 ≤m t2 →
do makeConsistent

t2’ ← applySubst t2
m’ ← mapM applySubst m
let scheme = generalize (ftv m’) t2’
solveOne (t1 ¹ scheme)

Fig. 8. solveOne

An equality constraint is solved by unification of the two types. The type scheme of
an explicit instance constraint is instantiated and the state is informed about the fresh
type variables that are introduced. An implicit instance constraint is solved by first
making the state consistent, and subsequently applying the substitution to the type

and the monomorphic type variables. Finally, we solve an explicit instance constraint
that is constructed from the generalized type.

Please note that due to laziness in Haskell the list of constraints generated by a
given treewalk is only constructed insofar we actually solve the constraints. Whenever
an error is encountered with the kind of solver that terminates once it has seen a type
error, the other constraints are not computed. Needless to say, laziness imposes its
own penalties.

Greedy constraint solving

The most obvious instance of the type class Solver is a substitution. The implemen-
tation of unifyTypes then simply returns the most general unifier of two types. The
result of this unification is incorporated into the substitution. When two types cannot
be unified, we immediately deal with the inconsistency. As a result, makeConsistent
can be the default skip function, because unifyTypes always results in a consistent
state: if a constraint would result in an inconsistent state, then it is ignored, although
an appropriate error message is generated (and added to the state). After the discovery
of an error, we can choose to continue solving the remaining constraints, which can
lead to the detection of more type errors.

For efficiency reasons, we represent a substitution by a mutable array in a strict
state thread, also because the domain of the substitution is dense. Instead of main-
taining an idempotent substitution, we compute the fixpoint in case of a type variable
lookup.

Constraint solving with type graphs

Because we are aiming for an unbiased method to solve type constraints, we discuss
an implementation which is based on the construction of a type graph inspired by
the path graphs described in [Por88]. The type graph allows us to perform a global
analysis of a set of constraints, which makes type inferencing a non-local operation.
Because of its generality, adding heuristics for determining the “correct” type error is
much easier.

Each vertex in the type graph corresponds to a subterm of a type in the constraint
set. A composed type has an outgoing edge labelled with (i) to the vertex that repre-
sents the ith subterm. For instance, a vertex that represents a function type has two
outgoing edges. All occurrences of a type variable in the constraint set share the same
vertex. Furthermore, we add undirected edges labelled with information about why
two (sub)terms are unified. For each equality constraint, an edge is added between
the vertices that correspond to the types in the constraint. Equivalence of two com-
posed types propagates to equality of the subterms. As a result, we add derived (or
implied) edges between the subterms in pairwise fashion. For example, the constraint
τ1 → τ1 ≡ Bool→ τ2 enforces an equality between τ1 and Bool, and between τ1 and τ2.
Therefore, we add a derived edge between the vertex of τ1 and the vertex of Bool, and
similar for τ1 and τ2. For each derived edge we can trace the constraints responsible for
its inclusion. Note that adding an edge can result in the connection of two equivalence

τ1τ9

Int

τ4Int

Int

→

→→

τ19

τ8

τ10

Bool

Int Intτ18

(2)

(2)

(1)(1)

#14

#17 #9

#10

#16

#19

→→

#11

τ3

τ5

τ6

#4

#5

→

τ17

→
#6

#22#12

τ12

τ2

τ7

τ14τ15

τ16
#15

#18

#7

τ11

#8

#21

#3#2

(1)

(1)

(2)(2)

→

τ13 τ0
#13

#20 #1

(1) (1)

(2)

(2)

(2)

(1)

(1)
(2)

Fig. 9. TypeGraph

classes, and this might lead to the insertion of more derived edges. Whenever a con-
nected component of the type graph contains two or more different type constructors,
we have encountered a type error. Infinite types can also be detected, but we skip the
details.

Example 2. Consider the following ill-typed program.
f 0 y = y
f x y = if y then x else f (x− 1) y

The set of type constraints that is collected for this program is as follows.

#1 τ0 ≡ τ2→τ3→τ1
#2 Int ≡ τ4 #3 τ4 ≡ τ2 #4 τ5 ≡ τ3
#5 τ5 ≡ τ6 #6 τ6 ≡ τ1 #7 τ7 ≡ τ2
#8 τ8 ≡ τ3 #9 τ8 ≡ τ10 #10 τ10 ≡ Bool

#11 τ7 ≡ τ11 #12 τ11 ≡ τ9 #13 τ0 ≡ τ13

#14 τ17 ¹ Int→ Int→ Int #15 τ7 ≡ τ16 #16 Int ≡ τ18

#17 τ17 ≡ τ16→τ18→τ15 #18 τ15 ≡ τ14 #19 τ8 ≡ τ19

#20 τ13 ≡ τ14→τ19→τ12 #21 τ12 ≡ τ9 #22 τ9 ≡ τ1

Figure 9 depicts the type graph for this set. The shaded area indicates a number of
type variables that are supposed to have the same type. The graph is clearly inconsis-
tent, because of the presence of both Int and Bool. Applying the heuristic of Walz and
Johnson [WJ86] to measure the proportion of each constant, would result in cutting
off the boolean. The recursive call in the program is responsible for the two derived
edges that complete a cycle. In general, edges that are part of a cycle are likely to be
considered valid since their removal will not change the equivalence class.

(2,12): Type error in conditional
Expression : if y then x else f (x - 1) y
Term : y
Type : Int
Does not match : Bool

(1,9): Type error in rhs of function binding
Expression : y
Type : Bool
Does not match : Int

(a) (b)
(2,19): Type error in conditional
Expression : if y then x else f (x - 1) y
Term : x
Type : Int
Does not match : Bool

ERROR (line 2): Type error in conditional
Expression : if y then x else f (x - 1) y
Term : f (x - 1) y
Type : Bool
Does not match : Int

(c) (d)
Example.hs:2:

Couldn’t match ‘Bool’ against ‘Int’
Expected type: Bool
Inferred type: Int

In the definition of ‘f’: if y then x else f (x - 1) y

(e)

Fig. 10. Type error messages

6 An Example

In this section we present possible error messages for Example 2. The code in this
example is erroneous, but it is not obvious which constraint, or subexpression, is the
source of the error. Notwithstanding, we do have the feeling that the reporting of some
subexpressions is to be preferred over others.

One option to make the type graph in Figure 9 consistent is to remove constraint
#10. Because this constraint was constructed at the node of a conditional to make
the guard expression have type Bool, we report the error message in Figure 10(a).
Similarly, one might think that #9 is a proper candidate for removal. Together with
#19, it corresponds to the binding of the two variables by the pattern variable y
in the second function binding. However, it is the context of the pattern variable
(the second argument of f , captured by #8) that causes the inconsistency. Another
alternative is to consider #6 to be invalid, which results in the error message shown
in Figure 10(b). Finally, a conditional expression must have the same type as its
then-branch (#12). Figure 10(c) shows a message which focuses on this inconsistency.
Contrast this with the fact that the then-branch is a location where most traditional
type inference algorithms cannot detect an inconsistency. The three error messages so
far indicate that besides being able to report multiple independent type error messages
(the removal of multiple edges in a type graph), it can be helpful to have several
alternative error messages available for the same error. This makes it more likely that
a programmer realizes what his mistake is.

That type classes, and in particular the overloading of numerical literals, obscure
error messages and affect the reported location, is illustrated by the following message
produced by Hugs.
ERROR "Ex.hs" (line 1): Instance of Num Bool required for definition of f

Figure 10(d) shows the Hugs error message where the literals are explicitly typed
to make a fair comparison, because otherwise type classes would muddle the picture.

The message points to the else-branch, which can be misleading. In the type graph,
this corresponds to the removal of constraint #21, which is part of a cycle. This error
message is not a good one, because replacing f (x-1) y with undefined does not even
yield a type correct program. The error reported by the Glasgow Haskell Compiler
comes closest to #22. The error message (see Figure 10(e)) points to such a large
expression that it is difficult to find the actual source of the error. Note that a smaller
subexpression could have been indicated (for instance Figure 10(c)).

7 Conclusion and Future Work

In this paper we have shown how type inferencing can be implemented in a generic
way to allow for experimentation with various methods of type inferencing. Along the
way we have shown how such a general inferencing framework can be made with a
minimum of work using the UU AG system, and we described various instantiations of
the framework. The example of the previous section shows that flexibility can indeed
be obtained.

This year, we plan to use the Helium compiler in a concrete educational setting.
As a result, we expect to obtain a collection of type-erroneous programs written by
novice students. From this collection we can extract various error messages that might
be given, and measure to what extent they help in finding the source of the error.

References

[DM82] L. Damas and R. Milner. Principal type schemes for functional programs. In Prin-
ciples of Programming Languages (POPL ’82), pages 207–212, 1982.

[HHS02] Bastiaan Heeren, Jurriaan Hage, and Doaitse Swierstra. Generalizing Hindley-
Milner type inference algorithms. Technical Report UU-CS-2002-031, Dept. of
Comp. Sci, Universiteit Utrecht, 2002. http://www.cs.uu.nl/research/techreps/UU-
CS-2002-031.html.

[LM01] Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combinators for
the real world. Technical Report UU-CS-2001-35, Dept. of Comp. Sci, Universiteit
Utrecht, 2001. http://www.cs.uu.nl/people/daan/parsec.html.

[LY98] Oukseh Lee and Kwangkeun Yi. Proofs about a folklore let-polymorphic type in-
ference algorithm. ACM Transanctions on Programming Languages and Systems,
20(4):707–723, July 1998.

[Por88] Graeme S. Port. A simple approach to finding the cause of non-unifiability. In
Robert A. Kowalski and Kenneth A. Bowen, editors, Proceedings of the Fifth Inter-
national Conference and Symposium on Logic Programming, pages 651–665, Seatle,
1988. The MIT Press.

[SBL] Doaitse Swierstra, Arthur Baars, and Andres Loeh. The UU-AG attribute grammar
system. http://www.cs.uu.nl/people/arthurb/ag.html.

[WJ86] J. A. Walz and G. F. Johnson. A maximum flow approach to anomaly isolation
in unification-based incremental type inference. In Conference Record of the 13th
Annual ACM Symposium on Principles of Programming Languages, pages 44–57, St.
Petersburg, FL, January 1986.

