
Optimal Spanners for Axis-Aligned
Rectangles

Tetsuo Asano

Mark de Berg

Otfried Cheong

Hazel Everett

Herman Haverkort

Naoki Katoh

Alexander Wol�

institute of information and computing sciences, utrecht university

technical report UU-CS-2004-008

www.cs.uu.nl

Optimal Spanners for Axis-Aligned Rectangles∗

Tetsuo Asano1 Mark de Berg2 Otfried Cheong2 Hazel Everett3

Herman Haverkort4 Naoki Katoh5 Alexander Wol�6

Abstract

The dilation of a geometric graph is the maximum, over all pairs of points in the

graph, of the ratio of the Euclidean length of the shortest path between them in the

graph and their Euclidean distance. We consider a generalized version of this notion,

where the nodes of the graph are not points but axis-parallel rectangles in the plane. The

arcs in the graph are horizontal or vertical segments connecting a pair of rectangles, and

the distance measure we use is the L1-distance. The dilation of a pair of points is then

de�ned as the length of the shortest rectilinear path between them that stays within the

union of the rectangles and the connecting segments, divided by their L1-distance. The

dilation of the graph is the maximum dilation over all pairs of points in the union of the

rectangles.

We study the following problem: Given n non-intersecting rectangles and a graph

describing which pairs of rectangles are to be connected, we wish to place the connecting

segments such that the dilation is minimized. We obtain four results on this problem:

(i) for arbitrary graphs, the problem is NP-hard; (ii) for trees, we can solve the problem

by linear programming on O(n2) variables and constraints; (iii) for paths, we can solve

the problem in time O(n3 logn); (iv) for buildings sorted vertically along a path, the

problem can be solved in O(n2) time, and a (1 + ε)-approximation can be computed in

linear time.

1 Introduction

Geometric networks arise frequently in our everyday life: road networks, telephone networks,

and computer networks are all examples of geometric networks that we use daily. They also

play a role in disciplines such as VLSI design and motion planning. Almost invariably, the

purpose of the network is to provide a connection between the nodes in the network. Often it

is desirable that the connection through the network between any pair of nodes be relatively

short. From this viewpoint, one would ideally have a direct connection between any pair of

∗Part of this research was done during the First Utrecht-Carleton Workshop on Computational Geometry.

H.H. acknowledges support by the Netherlands' Organization for Scienti�c Research (NWO).
1JAIST, Japan. Email: t-asano@jaist.ac.jp
2Technische Universiteit Eindhoven, the Netherlands. Email: fm.t.d.berg,o.cheongg@tue.nl
3LORIA, Nancy, France. Email: everett@loria.fr
4Institute of Information and Computing Sciences, Utrecht University, the Netherlands. Email:

herman@cs.uu.nl.
5Kyoto University, Japan. Email: naoki@archi.kyoto-u.ac.jp.
6Universit�at Karlsruhe, Fakult�at f�ur Informatik, Germany. Email: awol�@ira.uka.de.

1

nodes. This is usually infeasible due to the costs involved, so one has to compromise between

the quality and the cost of the connections.

For two given nodes in a graph, the ratio of their distance in the graph and their `direct'

distance is called the dilation or stretch factor for that pair of nodes, and the dilation of a

graph is the maximum dilation over all pairs of nodes. For geometric networks, this is more

precisely de�ned as follows. Let S be a set of n points (in the plane, say), and let G be a

graph with node set S. Now the dilation for a pair of points p, q is de�ned as the ratio of

the length of the shortest path in G between p and q, and the length of the segment pq.

(The length of a path is the sum of the lengths of its edges.) Again, the dilation of G is the

maximum dilation over all pairs of points in S. A graph with dilation t is called a t-spanner.

Ideal networks are t-spanners for small t with small cost.

Spanners were introduced by Peleg and Sch�a�er [PS89] in the context of distributed

computing, and by Chew [Che89] in the context of computational geometry. They have

attracted much attention since|see for instance the survey by Eppstein [Epp00]. The cost

of spanners can be measured according to various criteria. For example, it is sometimes

de�ned as the number of edges (here the goal is to �nd a spanner with O(n) edges), or as the

total weight of the edges (here the goal is to �nd a spanner whose total weight is a constant

times the weight of a minimum spanning tree). Additional properties, such as bounding the

maximum degree or the diameter, have been considered as well.

We generalize the notion of spanners to geometric networks whose nodes are rectangles

rather than points. Let S be a set of n non-intersecting, axis-parallel rectangles and let E be

a set of axis-parallel segments connecting pairs of rectangles. For any two points p, q in the

union of the rectangles, the dilation is now the ratio of the length of the shortest rectilinear

path in the network between p and q and their L1-distance. Here a path in the network is a

path that stays within the union of the rectangles and the connecting segments. The dilation

of the network is the maximum dilation over all pairs p, q. Again, our aim is to construct a

network whose dilation is small. To illustrate the concept, imagine one is given a number of

rectangular buildings, which have to be connected by footbridges. It is quite frustrating if,

to walk to a room opposite ones own room in an adjacent building, one has to walk all the

way to the end of a long corridor, then along the footbridge, and then back again along the

corridor in the other building. Hence, one would usually place the footbridge in the middle

between buildings. Following this analogy, we will call the rectangles in the input buildings

from now on, and the connecting segments bridges. We call the underlying graph of the

network the bridge graph.

The generalization we study introduces one important additional diÆculty in the construc-

tion of a spanner: for points one only has to decide which edges to choose in the spanner,

but for buildings, one also has to decide where to place the bridge between a given pair of

buildings. It is the latter problem we focus on in this paper: we assume the topology of

the network (the bridge graph) is given, and our only task is to place the bridges so as to

minimize the dilation.

Formally, our problem can be stated as follows: we are given a set S of axis-parallel disjoint

rectangles (buildings) in the plane, a graph G with node set S, and for each arc e of G a bridge

region Λe, an axis-aligned rectangle connecting the two buildings. Buildings may degenerate

to segments or points. The bridge graph G must only have arcs between buildings that can

2

be connected by a horizontal or vertical segment, and may not have multiple edges or loops.

The bridge regions must be disjoint from each other and the buildings. Our goal is to �nd a

set of horizontal or vertical bridges lying in the bridge regions that has minimum dilation.

Figure 1 shows a bridge graph (the bridge regions are shaded) and a set of possible bridges.

Note that the bridge regions Λ2 and Λ3 simply allow any bridge between the two buildings,

but bridge region Λ1 has been chosen so as to avoid intersecting s4 or the bridge between s3

and s4.

Our results are as follows.

• In general, the problem is NP-hard.

• If the bridge graph is a tree, then the problem can be solved by a linear program with

O(n2) variables and constraints.

• If the bridge graph is a path, then the problem can be solved in O(n3 logn) time.

• If the bridge graph is a path and the buildings are sorted vertically along this path,

the problem can be solved in time O(n2). A (1 + ε)-approximation can be computed

in linear time.

s1

s2

s3
s4�1

�2

�3

Figure 1: A bridge graph and a bridge con�guration

2 The bridge graph is arbitrary

In this section we show that the bridge-placement problem is NP-hard if the bridge graph

is allowed to be arbitrary. We prove this by a reduction from Partition. The input to

Partition is a set B of n positive integers, and the task is to decide whether B can be

partitioned into two subsets of equal sum. Partition is NP-hard [GJ79, Problem SP12].

Theorem 1 It is NP-hard to decide whether the bridges in a given bridge graph on n rect-

angular buildings can be placed such that the dilation is at most 2.

Let B := {β0, . . . , βn−1} be an instance of Partition. For 0 6 i < n, we de�ne αi :=

βi/(2
∑

06j<nβj). Note that
∑

06j<nαj = 1/2, and that B can be partitioned equally if and

only if {α0, . . . , αn−1} can be partitioned into two subsets of sum 1/4. We create a bridge

graph G(B) with 8n + 2 buildings, as follows:

� for each 0 6 i < n, we have two point-shaped buildings, namely Pi := (4i, 0) and

Qi := (4i + 2 − 2αi, 0);

3

� for each 0 6 i < n, we have four segment-shaped buildings, namely Ri := {4i}×[1−αi, 1]

and Si := {4i + 2 − 2αi}× [1 − αi, 1], and their mirrored images R ′
i := {4i}× [−1, αi − 1]

and S ′
i := {4i + 2 − 2αi} × [−1, αi − 1];

� for each 0 < i < n, we have two point-shaped buildings, namely Ti := (4i − 1, 1) and

T ′
i := (4i − 1,−1);

� we have two more point-shaped buildings S−1 := (0, 2n+3/4) and S ′
−1 := (0,−2n−3/4),

and two more segment buildings Rn := {4n} × [1, 2n + 3/4] and R ′
n := {4n} × [−2n −

3/4,−1].

The arcs in G(B) are as follows:

� for each 0 6 i < n, we have arcs (Pi, Ri), (Pi, R
′
i), (Qi, Si), (Qi, S

′
i), (Ri, Si), and (R ′

i, S
′
i);

� for each 0 < i < n, we have arcs (Si−1, Ti), (Ti, Ri), (S ′
i−1, T

′
i), (T ′

i , R
′
i), and (Ti, T

′
i);

� we have arcs (S−1, R0), (S ′
−1, R

′
0), (Sn−1, Rn), (S ′

n−1, R
′
n).

Observe that (Ri, Si) and (R ′
i, S

′
i) are the only bridges that can still be moved; all other bridges

are �xed by the geometry. The construction is illustrated in Figure 2; the bridges to be placed

are indicated as gray segments or rectangles. For the sake of clarity, we chose di�erent scales

on the x- and y-axis.

The reduction can clearly be done in polynomial time. The following lemma now implies

the theorem.

P0 Q0 P1 Q1 P2 Q2 P3 Q3

2n+ 3
4

S′
1 S′

2 S′
3

S′
−1

R ′
0 S′

0

R ′
n

−1

S1 S2 S3

S−1

R 0 S0

Rn

1

−2n− 3
4

0 40 8 12 4n
2α0

α0

α0

2

R ′
1 R ′

2 R ′
3

R 1 R 2 R 3

T1 T2 T3

T ′
1 T ′

2 T ′
3

Figure 2: An instance of the bridge decision problem.

Lemma 2 The set B can be partitioned into two subsets of equal sum if and only if the

bridges in G(B) can be placed such that the dilation is at most 2.

Proof. \If:" Suppose we can place the bridges in G(B) such that the dilation is at most 2.

Then the dilation must be at most 2 for any pair (Pi,Qi), which implies that either the bridge

(Ri, Si) must be placed in its bottommost position or (R ′
i, S

′
i) must be placed in its topmost

4

position. Let I denote the set of indices for which the former holds, and I ′ the set of indices
for which the latter holds.

Now consider S−1 and the top vertex of Rn. The L1-distance between them is 4n. The

shortest path between them in G(B) cannot visit any Pi or Qi, because the length of such

a path would be at least 4n + 2(2n + 3/4) so its dilation would be larger than 2. Hence,

the shortest path must visit R0, S0, T1, . . . , Rn−1, Sn−1 in order from left to right. Any i ∈
I induces an extra vertical distance 2αi. Adding the vertical distance between S−1 and

R0 and along Rn, and the horizontal distance traversed, we get a total length of at least∑
i∈I(2αi) + 2(2n − 1/4) + 4n. Hence,

∑
i∈I αi 6 1/4. A similar argument for S ′

−1 and the

bottom vertex of R ′
n shows that

∑
i∈I′ αi 6 1/4. It follows that I and I ′ induce an equal

partition of B.

\Only if": Suppose there is an equal partition of B. Then there are disjoint sets of indices

I and I ′ with I ∪ I ′ = {0, . . . , n − 1} such that
∑

i∈I αi =
∑

i∈I′ αi = 1/4. For i ∈ I place

the bridges (Ri, Si) and (R ′
i, S

′
i) in their bottommost position, and for i ∈ I ′ place the bridges

(Ri, Si) and (R ′
i, S

′
i) in their topmost position.

Consider two points p, q, each lying on a building, with px 6 qx. If px = qx, then q can

be reached without any detour. Otherwise, we distinguish two cases.

� The �rst case is that p or q (or both) have non-zero y-coordinate. Assume without loss

of generality that py > 0 or that py = 0 and qy > 0. Consider the path that goes up or

down from p until reaching y = 1, then goes to the right while staying above the x-axis

until the x-coordinate of q is reached, and then goes straight down or up to q.

If p = S−1 and q ∈ Rn, then the length of the path is bounded by

4n +
∑

i∈I

(2αi) + 2(2n − 1/4) = 8n.

Since |px − qx| = 4n, the dilation is at most 2.

If p 6= S−1 or q 6∈ Rn, the length of the path is bounded by

|px − qx| + 2
∑

i∈I

αi + |1 − py| + |1 − qy| = |px − qx| + 1/2 + |1 − py| + |1 − qy|.

If py and qy are not both 6 1, then |1 − py| + |1 − qy| = |py − qy|, otherwise, |1 − py| +

|1 − qy| = |py − qy| + 2|1 − max(py, qy)| 6 |py − qy| + 1/2. In both cases the length of

the path is at most |px − qx| + |py − qy| + 1, and from |px − qx| > 1 it follows that the

dilation is at most 2.

� The second case is that py = qy = 0. Now the vertical distance traversed by the shortest

path is at most 2+
∑

i∈I(2αi) = 5/2. Hence, if |px−qx| > 5/2, the dilation is at most 2.

But |px − qx| < 5/2 implies that p = Pi and q = Qi for some 0 6 i < n or that p = Qi

and q = Pi+1 for some 0 6 i < n. In the former case the dilation is 2 because either

(Ri, Si) is bottommost or (R ′
i, S

′
i) is topmost. In the latter case the dilation is less than

2 because the vertical distance traversed is exactly 2 and |px − qx| > 2.

5

3 The bridge graph is a tree

In this section we will show that the bridge-placement problem can be solved by a linear

program if the bridge graph is a tree. We start by introducing some terminology and notation,

and by proving some basic lemmas.

As before, we denote the bridge graph by G. Any set of bridges realizing G will be called

a con�guration.

p

q

π(p, q, B)

‖pq‖

Figure 3

p

q

e

f

π

`

Figure 4 Figure 5

p

q

Figure 6

Given a con�guration B and two points p and q in the union of all buildings, we use

π(p, q, B) to denote the family of rectilinear shortest paths from p to q within the con�gura-

tion (that is, paths whose links lie inside buildings or on bridges). The paths of this family

are essentially the same, they di�er only in how they connect two points inside the same

building, and so we will simply speak about the unique path π(p, q, B). The dilation of the

path π = π(p, q, B) is dil(π) := |π|/‖pq‖, where |π| is the total length of π and ‖pq‖ is the

L1-distance of p and q. Figure 3 shows a con�guration and an example path.

The dilation dil(B) of a con�guration B is de�ned as the maximum dilation of any

path with respect to B. Our aim is to �nd a con�guration of minimum dilation. We �rst

characterize pairs of points that are responsible for the dilation of a given con�guration.

Lemma 3 Let σ be the dilation of a con�guration B whose underlying graph is a tree. Then

there are points p and q with dil(π(p, q, B)) = σ such that the closed bounding box of p

and q does not contain any point of a building other than p and q, and at least one of the

points p and q is a building corner.

Proof. Among all pairs of points (p, q) that have maximum dilation with respect to B,

consider the subset of pairs where ‖pq‖ is minimum. Choose a pair (p, q) from this subset

where p is lexicographically smallest. Let β be the closed bounding box of p and q, and

assume there is a point r ∈ β distinct from p and q that belongs to a building. By our

choice of (p, q), we have |π(p, r, B)| < σ‖pr‖ and |π(r, q, B)| < σ‖rq‖. Since r ∈ β we have

‖pq‖ = ‖pr‖ + ‖rq‖. Combining with the triangle inequality we obtain

|π(p, q, B)| 6 |π(p, r, B)| + |π(r, q, B)| < σ‖pr‖ + σ‖rq‖ = σ‖pq‖ = |π(p, q, B)|,

a contradiction, so no such point r ∈ β exists.

It immediately follows that p and q are on the boundary of their buildings. It remains

to prove that at least one of them is a building corner. Assume to the contrary that both

are on the interior of a building edge. Then either p and q have the same x-coordinate and

6

lie on the top and bottom edge of their buildings, or they have the same y-coordinate and

lie on the left and right edge of their buildings. We discuss the �rst case, the second case

is analogous. Clearly, moving both p and q the same distance to the left or right does not

change ‖pq‖. But what about |π(p, q, B)|? Let ` be the vertical line through p and q, and let

e and f be the points where π(p, q, B) leaves the building containing p and q, respectively.

If e and f lie on opposite sides of ` as in Figure 4, we can move p and q slightly to the left

without changing dil(π(p, q, B)), a contradiction to the assumption that p is lexicographically

smallest. It follows that e and f lie on the same side of ` (including ` itself), and so |π(p, q, B)|

increases if we move p and q into the opposite direction, a contradiction to the assumption

that dil(π(p, q, B)) is maximal.

A point pair (p, q) as in the lemma|its bounding box contains no other point of any building

and at least one of p and q is a building corner|will be called a visible pair|see Figure 5

for examples. We denote the set of all visible pairs by V. Note that the second statement of

the lemma does not hold if there are cycles in the bridge graph|the maximum dilation may

occur between two points in the interior of building edges, as in Figure 6.

Lemma 4 For any set of n buildings, there are at most O(n2) visible pairs and they involve

at most 12n points. These points can be computed in O(n log n) time.

Proof. Clearly there are at most O(n2) visible pairs where both points are building corners.

These pairs involve only the at most 4n building corners. Consider a visible pair (p, q) where

only p is a building corner. Then q can be found by shooting a vertical or horizontal ray

from p until it hits another building. It follows that for each building corner p there are at

most two choices for q, so there are at most 8n such visible pairs, and at most 8n candidates

for non-corner points that can be involved in a visible pair. They can be found in O(n log n)

time by computing a vertical decomposition of the set of buildings, for both the vertical and

horizontal direction [BKOS97].

Lemmas 3 and 4 allow us to compute the dilation of a given con�guration eÆciently. The

quadratic bound is tight: even if the bridge graph is a path, there can be Ω(n2) visible pairs.

Given a bridge graph G, our goal is to minimize

max
(p,q)∈V

dil(π(p, q, B))

over all con�gurations B realizing G. We will now reformulate this problem as a linear

program.

Theorem 5 If the bridge graph G is a tree, then a placement of the bridges that minimizes the

dilation can be computed by solving a linear program with O(n2) variables and constraints,

where n is the number of bridges in the bridge graph.

Proof. For each edge e of G, we introduce a variable Xe specifying the position of the

corresponding bridge; Xe is the x-coordinate of a vertical bridge or the y-coordinate of a

horizontal bridge. We also introduce a variable Z. Our linear program will be such that

a variable assignment is feasible if and only if the bridge assignment prescribed by the Xe

7

is a con�guration realizing G with dilation 6 Z. Minimizing Z will then solve the bridge-

placement problem.

We will need a number of extra variables. We �rst de�ne a set of points U by taking all

points involved in a visible pair, as well as all bridge endpoints. By Lemma 4, the size of U

is O(n). Some of the points in U are of the form (const , const) (namely the points in a visible

pair), some are of the form (const , Xe) (the endpoints of a horizontal bridge), and some of the

form (Xe, const) (the endpoints of a vertical bridge). For each pair of points (u, v) from U

that lie in the same building, we introduce an extra variable Duv.

We can now describe the linear program. For each Xe, we need two simple constraints

of the form Xe > const and Xe 6 const , ensuring that the bridge indeed lies in the bridge

region. For each Duv, we add constraints enforcing Duv > ‖uv‖, as follows. Let u = (xu, yu),

v = (xv, yv) (recall that each coordinate is either a constant, or one of the variables Xe, for

some edge e). Then we add the constraints:

Duv > xu − xv + yu − yv

Duv > xv − xu + yu − yv

Duv > xu − xv + yv − yu

Duv > xv − xu + yv − yu

Clearly, these four constraints together guarantee that Duv > ‖uv‖.
Finally, we introduce one constraint for each visible pair (p, q) ∈ V. Let bl(p, q) be the

total length of all bridges traversed by π(p, q, B). Since G is a tree, the buildings and bridges

traversed by π(p, q, B) are independent of the con�guration, and so bl(p, q) is a constant.

We can now write

|π(p, q, B)| = bl(p, q) +
∑

uv

‖uv‖,

where the sum is over the entry and exit points u and v of π(p, q, B) for each building

traversed. Note that u, v ∈ U, and u and v lie in the same building. We introduce the

constraint

bl(p, q) +
∑

uv

Duv 6 Z · ‖pq‖.

We now argue that if a variable assignment is feasible in this LP, then the bridge assign-

ment prescribed by the Xe is a con�guration realizing G with dilation 6 Z. Indeed, consider

a visible pair (p, q). We have

|π(p, q, B)| = bl(p, q) +
∑

uv

‖uv‖ 6 bl(p, q) +
∑

uv

Duv 6 Z · ‖pq‖,

and so dil(π(p, q, B)) 6 Z.

On the other hand, assume there is a con�guration B realizing G. Let Xe be the placement

of the bridge e in B, let Duv = ‖uv‖, and let Z be the dilation of B. It is now easy to see

that this variable assignment is feasible.

It follows that the bridge-placement problem can be solved by minimizing Z with respect

to the LP described. The number of variables and constraints is O(n2).

8

4 The bridge graph is a path

In the previous section we have given a linear program for the bridge-placement problem for

the case where the bridge graph is a tree. Linear programs can be solved in practice, and

for integer coeÆcients, interior-point methods can solve them in time polynomial in the bit-

complexity of the input [Kar84]. It is not known, however, if they can be solved in polynomial

time on the real RAM, the standard model of computational geometry. In this section, we

give polynomial time algorithms for the case where the bridge graph is a path.

Since the bridge graph G is a path, we can number the buildings and bridges so that

bridge bi connects buildings si−1 and si, for 1 6 i 6 n (so there are n + 1 buildings and n

bridges). Before we continue, we need to introduce some more terminology. We consider a

path π = π(p, q, B) to be oriented from p to q. After traversing a bridge b, the path can

continue straight on to traverse the next bridge b ′ if b and b ′ are collinear. In all other cases,

it has to turn.

b9b10 b8

b12

b13

pπ

b1

b2

b4

b6

b7

b11

b14

q

s6

b5

b3

s10

s1

Figure 7: U-turns and their outer sides

Given a path π, a link ` of π is a maximal straight segment of the path. A link can

contain more than one bridge if they are collinear. For example, in Figure 7 there is a link

containing b1 and b2, and another link containing b8, b9, and b10.

The path π turns at both ends of a link (except for the �rst and last link). The link is a

right U-turn if π turns right before and after the link. A left U-turn is de�ned symmetrically.

In Figure 7, the links containing bridges (b1, b2), (b4, b5), and b12 are right U-turns, while

the links containing b7, (b8, b9, b10), b11, and (b13, b14) are left U-turns. Note that there can

be U-turns that do not contain any bridges, as the link of π inside building s6 in Figure 7.

The inner side and outer side of a U-turn are rectangular regions in�nite on one side,

and bounded by the line supporting the link and the two lines orthogonal to it through the

�rst and last points of the link. The outer side lies locally to the left of a right U-turn, or to

the right of a left U-turn, the inner side lies locally to the right of a right U-turn or to the

left of a left U-turn. In Figure 7, the outer sides of all U-turns are shaded.

U-turns are the links of a path that determine its dilation, as the following lemma shows.

9

Lemma 6 Let B and B ′ be con�gurations, (p, q) a visible pair, and π := π(p, q, B) and

π ′ := π(p, q, B ′) the paths between p and q with respect to the two con�gurations. If dil(π ′) <

dil(π) then there exists a U-turn ` containing bi . . . bj of π such that the corresponding bridges

b ′
i, . . . , b

′
j of B ′ lie strictly on the inner side of `.

Proof. For each U-turn ` of π, shade the outer side of `, as in Figure 7. It is easy to see

that π is a shortest rectilinear path from p to q that visits all the shaded regions in order. If

the claim were not true, then π ′ would also visit all these regions in order, and so |π ′| > |π|,

a contradiction.

4.1 The decision problem

We will give an algorithm that takes as input the set of buildings s0, . . . , sn and a real

number σ > 1, and computes a con�guration B with dil(B) 6 σ, or determines that no such

con�guration exists.

The algorithm computes n sets I1, I2, . . . , In, where Ii is a set of possible bridges between

si−1 and si. The sets are de�ned recursively as follows. Assume that I1, . . . , Ii−1 have already

been de�ned. For each visible pair (p, q) with p ∈ ⋃i−1
j=0 sj and q ∈ si we de�ne I(p, q) as

the set of bridges bi connecting si−1 and si such that the following holds: there is a set of

bridges b1 ∈ I1, b2 ∈ I2, . . . , bi−1 ∈ Ii−1 such that dil(π(p, q, (b1, . . . , bi))) 6 σ. Finally, Ii is

the intersection of all I(p, q).

Note that for each visible pair (p, q) we can choose the bridges in I1, . . . , Ii−1 indepen-

dently. This makes it possible to compute Ii eÆciently, as we will see below. On the other

hand, it implies that not every sequence of bridges chosen from the sets will be a con�guration

with dilation at most σ|our main lemma will be to show that such a sequence does indeed

exist.

The opposite direction is nearly trivial: If a con�guration with dilation at most σ exists,

it can be found in the sets we constructed, as we show now.

Lemma 7 Let B = (b1, b2, . . . , bn) be a con�guration such that bi 6∈ Ii for some i.

Then dil(B) > σ.

Proof. Let i be the smallest index with bi 6∈ Ii. Since bi 6∈ Ii, there exists a visible pair

(p, q) with p ∈ sj, j < i, and q ∈ si such that for any set of bridges chosen from I1, . . . , Ii−1

the path between p and q has dilation larger than σ. Since by our choice of i we have bk ∈ Ik

for k < i, we have indeed dil(π(p, q, B)) > σ.

We �rst argue that the sets Ii can be represented and managed easily.

Lemma 8 Let I1, I2, . . . , In be de�ned as above. Then the x-coordinates (y-coordinates) of

the bridges in each set form an interval.

Proof. It is suÆcient to show that the sets I(p, q) are intervals. Consider a visible pair

(p, q) with p ∈ sj and q ∈ si. Without loss of generality, assume the bridges in I(p, q) to be

10

vertical. Take three bridges a, b, c with x-coordinates ax < bx < cx and a, c ∈ I(p, q). We

will show that b ∈ I(p, q).

Due to symmetry, we can assume qx > bx. Since a ∈ I(p, q), there is a path π =

π(p, q, (b1, . . . , bi−1, a)) (fat gray in Figure 8) with dil(π) ≤ σ that uses bridges b1 ∈
I1, . . . , bi−1 ∈ Ii−1. Now we can exchange the part of π from where π enters a to where

π reaches q by a piece that uses b instead of a (dashed black in Figure 8). This new path is

at most as long as π, which shows that b ∈ I(p, q).

p

q

π

a b c

si

sj

Figure 8: Proof of Lemma 8

π
q


 `

bj+1

b′j

b′i
su

st Ij

bj

bi

p

Figure 9: Proof of Lemma 9.

Once we know I1, . . . , In, we can recursively compute a con�guration with dilation at most

σ: Choose an arbitrary bridge bn ∈ In. If bridges bn−1, bn−2, . . . , bi+1 have been computed,

choose a bridge bi ∈ Ii whose distance from bi+1 is minimal. Since Ii is an \interval of

bridges", this implies that either bi and bi+1 are collinear, or bi is one of the extreme bridges

in Ii. We now prove that this approach is correct.

Lemma 9 Let I1, . . . , In be given as de�ned above. A con�guration B with dilation dil(B) 6
σ exists if and only if In 6= ∅. If it exists, it can be computed in O(n) time from the intervals.

Proof. The \only if" part follows from Lemma 7. We show the \if" part by proving that

the con�guration B = (b1, . . . , bn) de�ned above has dilation 6 σ. Since this con�guration

can clearly be computed in linear time from the intervals, the last statement of the lemma

will follow at the same time.

Assume that dil(B) > σ. Then there is a visible pair (p, q), such that dil(π(p, q, B)) > σ.

Let π = π(p, q, B), and let su, st be the buildings containing p and q. Without loss of

generality we can assume u < t. Since bt ∈ It, there is a sequence of bridges b ′
1, . . . , b

′
t−1

with b ′
k ∈ Ik, such that the path π ′ = π(p, q, (b ′

1, . . . , b
′
t−1, bt)) has dilation at most σ.

We have dil(π ′) 6 σ < dil(π). By Lemma 6 there is a U-turn ` = (bi, . . . , bj) of π (without

loss of generality assumed to be a left U-turn) such that all the bridges b ′
i, . . . , b

′
j lie strictly

to the left of `, see Figure 9.

The last bridge of both π and π ′ is bt, so j < t. It follows that π passes through bj+1.

Since ` is a left U-turn, the bridge bj+1 is strictly to the left of bj. By de�nition of bj, however,

this implies that bj is the left endpoint of Ij, and b ′
j 6∈ Ij, a contradiction.

Given a point p in a building su, we can de�ne a con�guration Bp that is, in a sense,

optimal for p by choosing bridges b
p
1, . . . , b

p
n as follows. For k < u, choose an arbitrary

bridge b
p
k ∈ Ik. Choose bridge b

p
u as close as possible to p. The remaining bridges are

chosen recursively, by choosing b
p
k ∈ Ik to be as close to b

p
k−1 as possible. Let m

p
i denote

11

the endpoint of b
p
i on the building si. The following lemma shows that Bp is indeed optimal

for p.

Lemma 10 Let intervals I1, . . . , In be as de�ned above, let p ∈ su and q ∈ st, with u < t.

Furthermore, let B = (b1, . . . , bn) be a con�guration with bi ∈ Ii for i < t, and let B ′ be the
con�guration (b1, . . . , bu−1, b

p
u, . . . , b

p
t−1, bt, . . . , bn). Then dil(p, q, B ′) 6 dil(p, q, B).

Proof. Let π = π(p, q, B), and π ′ = π(p, q, B ′). Assume that dil(π ′) > dil(π). By Lemma 6

there is then a U-turn ` = (b
p
i , . . . , b

p
j) of π ′ (without loss of generality assumed to be a left

U-turn) such that the corresponding bridges of π lie strictly to the left of `. Since ` is a left

U-turn, the bridge b
p
i−1 (or the point p, if i − 1 = u) lies to the left of b

p
i . The de�nition

of b
p
i implies that b

p
i is then the leftmost bridge in Ii, a contradiction with bi ∈ Ii.

The following lemma shows that optimal paths are helpful in computing the intervals Ii.

Lemma 11 Let p ∈ su, q ∈ si, with u < i − 1. The interval I(p, q) can be computed in

constant time if b
p
i−1 and |π(p,m

p
i−1, B

p)| are known.

Proof. Recall that I(p, q) is de�ned as the set of all bridges bi connecting si−1 and si, such

that there is a set of bridges b1 ∈ I1, b2 ∈ I2, . . . , bi−1 ∈ Ii−1 with dil(π(p, q, (b1, . . . , bi))) 6
σ. By Lemma 10 this is equivalent to dil(π(p, q, (b

p
1, b

p
2, . . . , b

p
i−1, bi))) 6 σ. This path co-

incides with π(p, q, Bp) up to and including bridge b
p
i−1, which is the path π(p,m

p
i−1, B

p).

Since the length of this path is known, we can compute I(p, q) in constant time.

Lemma 12 The intervals I1, . . . , In de�ned above can be computed in O(n2) time and

O(n) space.

Proof. Let P denote the set of all building corners and all points p such that there is a

visible pair (p, q) with p ∈ su, q ∈ st, and u < t. By Lemma 4, P contains at most 12n

points and it can be computed in O(n log n) time.

For each building st, we create a list of visible pairs (p, q) with q ∈ st and p ∈ ⋃t−1
u=1 su such

that not both p and q are building corners. This can be done during the same computation.

The computation then proceeds in n stages, with stage i computing interval Ii. Through-

out, we maintain for each point p ∈ P the bridge b
p
i , as well as the length of the path

π(p,m
p
i , Bp).

Consider stage i. We compute the intervals I(p, q), for all pairs (p, q) with p ∈ ⋃i−1
u=0 su

and q ∈ si that are either visible pairs or where both p and q are building corners. (This

avoids the need to precompute and store O(n2) visible pairs.) Note that all the points p

appearing in such pairs are in P, and so there are at most 12n such pairs.

By Lemma 11, it takes constant time to compute I(p, q) using the information from

the previous stage. We can determine b
p
i and update the stored length for π(p,m

p
i , Bp) in

constant time as well.

It takes O(n) time to compute the intersection interval Ii, so the total time spent per

stage is O(n).

12

Lemmas 12 and 9 imply the following theorem.

Theorem 13 Given a bridge graph G on a set of n + 1 buildings that is a path and a real

number σ > 1, we can in time O(n2) compute a con�guration B realizing G with dil(B) 6 σ

or determine that no such con�guration exists.

It seems hard to improve this result when there are Θ(n2) visible pairs that could determine

the dilation. In fact, we do not even know how to decide in o(n2) time whether a given

con�guration has dilation 6 σ.

If the number of visible pairs of the given set of buildings is o(n2/ logn), it is possible to

do better. The diÆculty is that the size of the set P is still linear, and we cannot maintain b
p
i

for all points p ∈ P explicitely. Instead, we store b
p
i and |π(p,m

p
i , Bp)| in data structures that

allow us to update them eÆciently. We will need the simple data structure described in the

following lemma.

Lemma 14 There is a data structure that stores m real numbers a1, . . . , am, can be build

in time O(m), and supports the following operations in time O(logm):

• Given an index j ∈ {1, . . . ,m}, return aj,

• Given two indices j ′, j ′′ ∈ {1, . . . ,m} and a real number b, replace the value of aj

by aj + b for all j ′ 6 j 6 j ′′.

Proof. The data structure is basically a segment tree [BKOS97]. It is a balanced binary tree,

whose leaves correspond to the indices 1, . . . ,m in order. Each node v of the tree contains

a real number bv, and the value of aj for a leaf j is the sum of bv over the nodes on the

path from the root to j. Clearly it can be returned in time O(logm). For the last operation,

we �nd all the nodes v of the tree whose descendents' indices are in the interval [j ′, j ′′], but
where this statement is not true for the parent, and add b to bv.

Let again Λi be the bridge region connecting si−1 and si. Let b and b ′ be two bridges in Λi,

and consider them directed from si−1 to si. We let b ≺ b ′ if and only if b lies left of b ′.
Let now P be the set of points de�ned in Lemma 12, and let Pi := P ∩ ⋃i

j=0 sj. Consider the

union of all rectangles and all bridge regions. This is a single rectilinear polygon. We order

the points of P along the boundary of this polygon, in counter-clockwise order starting and

ending on sn (note that there are no points of P in sn) and denote this order again by ≺.
Lemma 15 Let p, p ′ ∈ Pi−1. If b

p
i ≺ b

p′
i then p ≺ p ′.

Proof. If p ′ ≺ p, then the paths π(p,m
p
i , Bp) and π(p ′,mp′

i , Bp′
) have to cross, which is

impossible.

Theorem 16 Given a bridge graph G on a set of n + 1 buildings that is a path, and a

real number σ > 1, we can in time O(k logn) compute a con�guration B realizing G with

dil(B) 6 σ or determine that no such con�guration exists, where k is the number of visible

pairs.

13

Proof. It is suÆcient to show how to compute the intervals Ii. We start by computing all

visible pairs. This can be done in time O(k log n) (note that k > n), by computing both

vertical and horizontal decompositions [BKOS97], and a modi�ed version of the algorithm for

reporting all direct visibility pairs by de Berg et al. [BCO92]. For each building st we build

a list of visible pairs (p, q) with q ∈ st and p ∈ Pt−1.

The algorithm proceeds again in n stages, computing Ii in stage i. We maintain two data

structures, P (paths) and B (bridges). P is the data structure of Lemma 14. It stores for

each p ∈ P a value ap, with the points sorted by ≺. If p ∈ su, then ap = 0 up to stage u,

and ap = |π(p,m
p
i , Bp)| after stage i > u has completed. B is a dictionary, storing all the

bridges b
p
i , for p ∈ Pi−1, in the order ≺. A bridge shared by several points is only stored

once. For each bridge b, we store the x- or y-coordinate, and two points p ′, p ′′ ∈ Pi−1 such

that b
p
i = b if and only if p ′ � p � p ′′. This is possible by Lemma 15.

In stage i, we retrieve the list of visible pairs (p, q) with q ∈ si. For each pair, we

compute I(p, q). If p ∈ si−1, this is done directly, in constant time. Otherwise p ∈ Pi−2, and

we compute I(p, q) from b
p
i−1 and |π(p,m

p
i−1, B

p)| in constant time by Lemma 11. We can

�nd the bridge b
p
i−1 in O(log n) time in B|by Lemma 15 B is sorted by points as well as

by bridges. The value |π(p,m
p
i−1, B

p)| is stored in P. It follows that the total time, over all

stages, for this computation is O(k logn).

It remains to discuss the updating of P and B. Consider the interval Ii−1. The part

of Ii−1 that continues straight on into Ii doesn't need to be touched. The bridges b
p
i−1 on

the left or right of Ii−1 that cannot continue straight on (all bridges, if the orientation of

Ii−1 and Ii is di�erent) are removed, and replaced by bridges on the edge of Ii. In addition,

we insert new bridges for all p ∈ P ∩ si. This can be done in time O(d logn), where d is

the number of bridges being removed and created. We can charge the cost of removing a

bridge to its creation. Since the number of bridges created during the course of the algorithm

is |P| + 2n = O(n), the total time for this is O(n log n).

Finally, we discuss the updating of P. For all the bridges of Ii−1 that go straight on to Ii,

we need to increase the path length by the same value. By Lemma 15, they correspond to

a single interval of points of P, and so this can be done in time O(logn). For each bridge

that has been removed, we increase the path length for its interval of points, in time O(logn)

per bridge removed. Finally, for each point p ∈ P ∩ si inserted in this stage, we set its path

length to the correct value. The total cost of updating is O(n log n) according to Lemma 14.

4.2 The optimization problem

We can now solve the original optimization problem using Megiddo's parametric search [Meg83].

Theorem 17 Given a bridge graph on a set of n+1 buildings that is a path, we can compute

a con�guration with the optimal dilation in time O(n3 logn), or in time O(nk log2 n), where

k is the number of visible pairs.

Proof. We run the algorithm of Lemma 12 with input σ∗, where σ∗ is the optimal dilation.

Since σ∗ is not known, we parameterize all coordinates used by the decision algorithm in

14

the form aσ + b. One can verify that all calculations performed by the algorithm are linear

functions on the coordinates, and any linear combination of expressions of the form aσ + b

is again of this form.

Whenever the algorithm needs to compare two \numbers" aσ+b and a ′σ+b ′, we compute

the value σ0 where aσ0 + b = a ′σ0 + b ′. We then run the decision algorithm of Theorem 13

using σ0, which tells us whether σ∗ 6 σ0. The answer implies which of the two \numbers"

is larger, and the parametrized algorithm can proceed. Note that if σ∗ = σ0, the outcome of

the comparison is arbitrary|inspection of the algorithm shows that this is not a problem.1

When the parametrized algorithm �nishes, it has computed a set of non-empty inter-

vals I1, . . . , In, since a con�guration with dilation 6 σ∗ exists. Since the outcome of the

parametrized algorithm changes for σ = σ∗, the algorithm must have made a comparison

against σ∗. It follows that σ∗ is the smallest σ0 tested during the algorithm that resulted in

a positive answer of the decision algorithm.

During the algorithm we maintain an interval of dilation values in which the optimal

value is known to lie. Whenever a comparison requires answering σ∗ 6 σ0 for a σ0 outside

this interval, we can immediately return the correct answer without running the decision

algorithm. At the end of the parametrized algorithm, we can report the upper end of the

interval as σ∗.
Following Megiddo [Meg83], we organize the parametric algorithm as a \parallel" algo-

rithm, using batches of independent computations. Recall that the algorithm of Lemma 12

proceeds in n stages, with stage i computing I(p, q) for O(n) pairs (p, q) with q ∈ si. The

computations for each pair are independent, and take time O(1). It follows that we can im-

plement them in total time O(n log n) plus O(logn) calls to the decision algorithm [Meg83].

Forming the intersection Ii is equivalent to the computation of a maximum and a minimum

of n \numbers" of the form aσ + b. Consider the \number" aσ + b as the line y = ax + b.

We compute the upper and lower envelope of all n lines, in time O(n log n) [BKOS97]. We

can now perform binary search on the vertices of the envelopes, using O(logn) calls to the

decision algorithm, to determine between which two vertices σ∗ falls. This allows us to return
the largest and smallest \number."

Each stage takes time O(n log n) plus O(log n) calls to the decision algorithm, so the

total running time is O(n3 logn). We can also use Theorem 16 to obtain total running time

O(nk log2 n).

4.3 The case of vertically sorted buildings

There is one interesting case were we can prove that there are only O(n) visible pairs, namely

when the buildings are sorted vertically along the path, that is, all bridges are directed

vertically upwards.

1The reader may wonder why we do not simply augment the algorithm of Theorem 13 to report whether

a con�guration with dilation strictly less than σ exists. This is indeed possible, for instance by allowing open

and half-open intervals Ii , but seems to be more complex than the observation that tests for equality are not

actually needed.

15

Lemma 18 If the bridge graph is a path, and the n + 1 buildings are sorted vertically along

the path, then there are at most O(n) visible pairs.

Proof. A visible pair appears in the vertical decomposition of the set of buildings.

Theorem 16 now leads to an O(n log n)-time decision algorithm for this case. It is possible

to do even better, as we will show in this section.

The improvement is based on a bracket structure formed by the visible pairs. Consider

a visible pair (p, q). The segment pq is vertical. Without loss of generality, let p be its

bottom end. The path π(p, q, B) is y-monotone, and since it cannot intersect pq, it lies

either completely to the left or to the right of pq. We call a visible pair (p, q) where the path

lies completely to the right of pq a left-hand visible pair, otherwise a right-hand visible pair.

Lemma 19 Given a set of n + 1 vertically sorted buildings as de�ned above, and two left-

hand visible pairs (p, q) and (p ′, q ′), with p ∈ su, q ∈ st, p ′ ∈ su′ , q ′ ∈ st′ . Assume that

u 6 u ′. Then either the pairs are independent and t 6 u ′, or (p, q) is bracketed around

(p ′, q ′), that is, px < p ′
x and u 6 u ′ < t ′ 6 t.

Proof. If u ′ < t, then the building su′ lies completely to the right of the segment pq, and

so we have px < p ′
x. The path π(p ′, q ′, B) lies completely to the right of the segment p ′q ′,

and so it cannot reach q before reaching st′ . This implies u 6 u ′ < t ′ 6 t.

In a left-hand visible pair (p, q), either p is the top-left corner of a building and q is on a

bottom edge of a building, or q is a bottom-left corner, and p is on the top edge of a building.

Lemma 19 leads to a simple algorithm to compute all left-hand visible pairs in linear time.

(The same procedure, with opposite orientation, can be used to �nd all right-hand visible

pairs.) All we need is a stack. In stage i, we repeatedly check whether px > qx, where p

is the top element of the stack and q is the bottom-left corner of si. While that is true, we

report (p, (px, qy)) as a visible pair and pop p from the stack. Finally, either the stack is

empty, or px < qx. In the latter case, we report ((qx, py), q) as a visible pair. Finally, we

push the top-left corner of si, and proceed to the next stage.

Theorem 20 Given a set of n + 1 vertically sorted buildings as de�ned above and a real

number σ > 1. We can in O(n) time compute a con�guration B with dilation dil(B) 6 σ, or

determine that none exists.

Proof. Again, we compute the intervals I1, . . . , In in n stages. The visible pairs are computed

during the process, using a \left-side stack" for the top-left corners and a \right-side stack"

for the top-right corners.

Let P be the set of top-left and top-right corners of the buildings s0, . . . , sn−1, and consider

the relation ≺ de�ned before. During the algorithm, we maintain the optimal bridges b
p
i

for p ∈ P. The bridges are stored in a doubly-linked list, sorted from left to right (or,

equivalently, by their de�ning point). Di�erently from the algorithms above, we store bridges

with the same x-coordinate several times, and we remove bridges when we pop their de�ning

point from its stack. As a result, at any time the top of the left-hand side stack corresponds

16

to the leftmost bridge, while the top of the right-hand side stack corresponds to the rightmost

bridge.

We keep a second linked list of all the points currently in the two stacks, in order. We

store the path length |π(p,m
p
i , Bp)| by storing the di�erence between two adjacent values

on the edges of the list. It follows that we can easily update an interval by adjusting two

di�erence values. Since all values we ever need to query for are the ones at the ends of the

list, queries take constant time. All updates are by removing end points or adding new ones,

and take again constant time.

It follows that all operations take constant time. We spend constant time per stage, plus

constant time per visible pair.

Parametric search now leads directly to the following theorem. Unlike in Theorem 17, we

make no attempt to parallelize the parametric algorithm.

Theorem 21 Given a bridge graph on a set of n+1 buildings that is a path, we can compute

a con�guration with the optimal dilation in time O(n2).

Finally, we can compute a (1 + ε)-approximation in linear time. We �rst show a quality

bound for an arbitrary placement of the bridges. For completeness, we cover the general case

as well.

Lemma 22 Given a bridge graph G on a set of n + 1 buildings that is a path, and any

con�guration B realizing G. Then dil(B) 6 (σ∗)2, where σ∗ is the optimal dilation. If the

buildings are sorted vertically along the path, then we have dil(B) 6 2σ∗.

si−1

si

b∗i
p′

q′

hi

di

Figure 10: Proof of Lemma 22

Proof. Let B∗ = (b∗
1, b

∗
2, . . . , b

∗
n) be an optimal con�guration, that is dil(B∗) = σ∗. Consider

the interval of possible bridges between si−1 and si, see Figure 10. Let di be the distance of

b∗
i to the farther endpoint of the interval, and let hi be the length of b∗

i . The pair of points

(p ′, q ′) indicated in the �gure has dilation (2di+hi)/hi 6 σ∗, which implies 2di 6 (σ∗−1)hi.

Consider now any visible pair (p, q). If π(p, q, B) uses bridges bu, . . . , bt, we have

|π(p, q, B)| 6 |π(p, q, B∗)| +
t∑

i=u

2di 6 |π(p, q, B∗)| + (σ∗ − 1)

t∑

i=u

hi

6 |π(p, q, B∗)| + (σ∗ − 1)|π(p, q, B∗)| 6 σ∗|π(p, q, B∗)| 6 (σ∗)2‖pq‖.

If the buildings are sorted vertically along the path, we can observe that ‖pq‖ >
∑t

i=uhi,

17

and so we have

|π(p, q, B)| 6 |π(p, q, B∗)| +
t∑

i=u

2di 6 σ∗‖pq‖ + (σ∗ − 1)

t∑

i=u

hi 6 2σ∗‖pq‖.

The lemma leads directly to a PTAS for the vertically ordered case: Start with an arbitrary

con�guration, compute its dilation σ, and approximate σ∗ by a binary search in the interval

〈σ/2, σ]. This gives us a (1 + ε)-approximation of σ∗ after O(log 1/ε) calls to the decision

algorithm, leading to the following result.

Theorem 23 Given a set of n+1 buildings sorted vertically along a path. We can compute a

con�guration with dilation at most (1+ε) times the minimum dilation in time O(n log(1/ε)).

References

[BCO92] M. T. de Berg, S. Carlsson, and M. H. Overmars. A general approach to dominance

in the plane. J. Algorithms, 13:274{296, 1992.

[BKOS97] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational

Geometry: Algorithms and Applications. Springer-Verlag, Berlin, 1997.

[Che89] L. P. Chew. There are planar graphs almost as good as the complete graph. J.

Comput. Syst. Sci., 39:205{219, 1989.

[Epp00] D. Eppstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia, edi-

tors, Handbook of Computational Geometry, pages 425{461. Elsevier Science

Publishers B.V. North-Holland, Amsterdam, 2000.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman, New York, NY, 1979.

[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear programming. Com-

binatorica, 4:373{395, 1984.

[Meg83] N. Megiddo. Applying parallel computation algorithms in the design of serial

algorithms. J. ACM, 30(4):852{865, 1983.

[PS89] D. Peleg and A. Sch�a�er. Graph spanners. J. Graph Theory, 13:99{116, 1989.

18

