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Abstract

In traditional colored range-searching problems, one wants to store a set of n objects
with m distinct colors for the following queries: report all colors such that there is at
least one object of that color intersecting the query range. Such an object, however,
could be an ‘outlier’ in its color class. Therefore we consider a variant of this problem
where one has to report only those colors such that at least a fraction τ of the objects
of that color intersects the query range, for some parameter τ . Our main results are on
an approximate version of this problem, where we are also allowed to report those colors
for which a fraction (1− ε)τ intersects the query range, for some fixed ε > 0. We present
efficient data structures for such queries with orthogonal query ranges in sets of colored
points, and for point stabbing queries in sets of colored rectangles.

1 Introduction

Motivation. The range-searching problem is one of the most fundamental problems in
computational geometry. In this problem we wish to construct a data structure on a set
S of objects in R

d, such that we can quickly decide for a query range which of the input
objects it intersects. The range-searching problem comes in many flavors, depending on
the type of objects in the input set S, on the type of allowed query ranges, and on the
required output (whether one wants to report all intersected objects, to count the number of
intersected objects, etc.). The range-searching problem is not only interesting because it is
such a fundamental problem, but also because it arises in numerous applications in areas like
databases, computer graphics, geographic information systems, and virtual reality. Hence,
it is not surprising that there is an enormous literature on the subject—see for instance the
surveys by Agarwal [1], Agarwal and Erickson [2], and Nievergelt and Widmayer [9].

In this paper, we are interested in range searching in the context of databases. Here one
typically wants to be able to answer questions like: given a database of customers, report
all customers whose ages are between 20 and 30, and whose income is between $50,000 and
$75,000. In this example, the customers can be represented as points in R

2, and the query
range is an axis-parallel rectangle.1 This is called the (planar) orthogonal range-searching
problem, and it has been studied extensively—see the surveys [1, 2, 9] mentioned earlier.

There are situations, however, where the data points are not all of the same type but fall
into different categories. Suppose, for instance, that we have a database of stocks. Each stock
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falls into a certain category, namely the industry sector it belongs to—energy, banking, food,
chemicals, etc. Then it can be interesting for an analyst to get answers to questions like: “In
which sectors companies had a 10–20% increase in their stock values over the past year?” In
this simple example, the input can be seen as points in 1D (namely for each stock its increase
in value), and the query is a 1-dimensional range-searching query.

Now we are no longer interested in reporting all the points in the range, but in reporting
only the categories that have points in the range. This means that we would like to have a data
structure whose query time is not sensitive to the total number of points in the range, but to
the total number of categories in the range. This can be achieved by building a suitable data
structure for each category separately, but this is inefficient if the number of categories is large.
This has led researchers to study so-called colored range-searching problems: store a given set
of colored objects—the color of an object represents its category—such that one can efficiently
report those colors that have at least one object intersecting a query range [3, 7, 10, 11].

We believe, however, that this is not always the correct abstracted version of the range-
searching problem in categorical data. Consider for instance the stock example sketched
earlier. The standard colored range-searching data structures would report all sectors that
have at least one company whose increase in stock value lies in the query range. But this
does not necessarily say anything about how the sector is performing: a given sector could be
doing very badly in general, but contain a single ‘outlier’ whose performance has been good.
It is much more natural to ask for all sectors for which most stocks, or at least a significant
portion of them, had their values increase in a certain way. Therefore we propose a different
version of the colored range-searching problem: given a fixed threshold parameter τ , with
0 < τ < 1, we wish to report all colors such that at least a fraction τ of the objects of that
color intersect the query range. We call this a τ -significant-presence query, as opposed to the
standard presence query that has been studied before.

Problem statement and results. We study significant-presence queries in categorical
data in two settings: orthogonal range searching where the data is a set of colored points in
R

d and the query is a box, and stabbing queries where the data is a set of colored boxes in R
d

and the query is a point. We now discuss our results on these two problems in more detail.
Let S = S1 ∪ · · · ∪Sm be a set of n points in R

d, where m is the number of different colors
and Si is the subset of points of color class i. Let τ be a fixed parameter with 0 < τ < 1. We
are interested in answering τ -significant-presence queries on S: given a query box Q, report
all colors i such that |Q ∩ Si| > τ · |Si|. For d = 1, we present a data structure that uses
O(n) storage, and that can answer significant-presence queries in O(log n + k) time, where k
is the number of reported colors. Unfortunately, the generalization of our approach to higher
dimensions leads to a data structure using already cubic storage in the planar case. To show
this fact, we obtain the following result which is of independent interest. Let P be a set of
n points in R

d, and t a parameter with 1 6 t 6 n/(2d). Then the maximum number of
combinatorially distinct boxes containing exactly t points from P is Θ(ndtd−1) in the worst
case.

As a data structure with cubic storage is prohibitive in practice, we study an approximate
version of the problem. More precisely, we study ε-approximate significant-presence queries:
here we are required to report all colors i with |Q ∩ Si| > τ · |Si|, but we are also allowed to
report colors with |Q∩Si| > (1−ε)τ ·|Si|, where ε is a fixed positive constant. For such queries
we develop a data structure that uses O(M1+δ) storage, for any δ > 0, and that can answer
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such queries in O(log n+k) time, where M = m/(τ2d−2ε2d−1) and k is the number of reported
colors. We obtain similar results for the case where τ is not fixed, but part of the query—see
Theorem 2.2. Note that the amount of storage does not depend on n, the total number of
points, but only on m, the number of colors. This should be compared to the results for the
previously considered case of presence queries on colored points sets. Here the best known
results are: O(n) storage with O(log n+k) query time for d = 1 [11], O(n log2 n) storage with
O(log n + k) query time for d = 2 [11], O(n log4 n) storage with O(log2 n + k) query time for
d = 3 [10], and O(n1+δ) storage with O(log n + k) query time for d > 4 [3]. These bounds all
depend on n, the total number of points; this is of course to be expected, since these results
are all on the exact problem, whereas we allow ourselves approximate answers.

In the point-stabbing problem we are given a parameter τ and a set B = B1 ∪ · · · ∪Bm of
n colored boxes in R

d, and we wish, for a query point q, to report all colors i such that the
number of boxes in Bi containing q is at least τ · |Bi|. We study the ε-approximate version
of this problem, where we are also allowed to report colors such that the number of boxes
containing q is at least (1− ε)τ · |Bi|. Our data structure for this case uses O(M1+δ) storage,
for any δ > 0, and it has O(log n + k) query time, where M = m/(τε)d. The best results for
standard colored stabbing queries, where one has to report all colors with at least one box
containing the query point, are as follows. For d = 2, there is a structure using O(n log n)
storage with O(log2 n + k) query time [10], and for d > 2 there is a structure using O(n1+δ)
storage with O(log n + k) query time [3].

2 Orthogonal range queries

Our global approach is to first reduce significant-presence queries to standard presence queries.
We do this by introducing so-called test sets.

2.1 Test sets for orthogonal range queries

Let P be a set of n points in R
d, and let τ be a fixed parameter with 0 < τ < 1. A set T of

boxes—that is, axis-parallel hyperrectangles—is called a τ -test set for P if:

1. any box from T contains at least τn points from P , and

2. any query box Q that contains at least τn points from P fully contains at least one box
from T .

We call the boxes in T test boxes. We can answer a significant-presence query on P by
answering a presence query on T : a query box Q contains at least τn points from P if and
only if it contains at least one test box. This does not yet reduce the problem to a standard
presence-query problem, because T contains boxes instead of points. However, like Agarwal
et al. [3], we can map the set T of boxes in R

d to a set of points in R
2d, and the query box

Q to a box in R
2d, in such a way that a box b ∈ T is fully contained in Q if and only if its

corresponding point in R
2d is contained in the transformed query box.2 This means we can

apply the results from the standard presence queries on colored point sets.
2In fact, the transformed query box is unbounded to one side along each coordinate-axis, so it is a d-

dimensional ‘octant’.
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Figure 1: Peeling a (τn)-box b in
two dimensions (τn = 12). The
black dots are the four points of
D(b). Initially, each point is ex-
treme in only one direction, as
indicated by the arrows. We can
choose any of them, let us take
T .

Figure 2: For p2, we
cannot take R, since it
is extreme in two di-
rections among the re-
maining points of D(b).
We have to take one of
the others, for example
L.

Figure 3: Now, all remain-
ing points of D(b) are ex-
treme in 2 directions: we
stop peeling here. R and
B together form the ba-
sis D∗(b) of b. We con-
clude that b has a peeling
sequence of type +x2,−x1.

It remains to find small test sets. As it turns out, this is not possible in general: below
we show that there are point sets that do not admit test sets of near-linear size. Hence, after
studying the case of exact test sets, we will turn our attention to approximate test sets.

Exact test sets. Let t be a parameter with 1 6 t 6 n. Define a t-box to be a minimal
box containing at least t points from P , that is, a box b containing at least t points such that
there is no strictly smaller box b′ ⊂ b that contains t or more points. It is easy to see that
any (τn)-box must be a test box, and that the collection of all (τn)-boxes forms a τ -test set.
Hence, the smallest possible test set consists exactly of these (τn)-boxes.

In the 1-dimensional case a box is a segment, and a minimal segment is uniquely defined
by the point from P that is its left endpoint. This means that any set of n points on the real
line has a test set that has size (1 − τ)n + 1. Unfortunately, the size of test sets increases
rapidly with the dimension, as the next lemma shows.

Lemma 2.1 For any set P of n points in R
d, there is a τ -test set that has size O(τd−1n2d−1).

Moreover, for some sets P , any τ -test set has size Ω(τd−1n2d−1).

Proof. By the observation made before, bounding the size of a test set boils down to
bounding the number of (τn)-boxes. In this proof, when we use the term direction we mean
one of the 2d directions +x1,−x1, ...,+xd,−xd. Let b be a (τn)-box, and let D(b) be a set of
points in b such that there is at least one point of D(b) on each facet of b. If there are more
such sets, let D(b) be a set with minimum cardinality.

The central concept in the proof is that of a peeling sequence, which is defined as follows:
a peeling sequence for D(b) is a sequence p1, p2, ... of points from D(b) with the following
property: any pi in the sequence is extreme in exactly one direction among the points in
D(b) − {p1, ..., pi−1}. Ties are broken arbitrarily, i.e. if multiple points are extreme in the
same direction, we appoint one of them to be the extreme point in that direction. The type of
a peeling sequence is the sequence ~d1, ~d2, ... of directions such that ~di is the unique direction
in which pi is extreme among D(b)−{p1, ..., pi−1}. Note that there are (2d)!/(2d− `)! = O(1)
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Figure 4: Constructing a (τn)-box with sequence type +x2,−x1

in two dimensions. First choose a basis of two points for the
remaining directions (the black dots). Then follow the sequence
type in reverse order. The extreme point for direction −x1 must
be one of the first τn points found when traversing the shaded
area in the direction of the arrow.

Figure 5: The ex-
treme point for the
first direction of the se-
quence, +x2, must be
the (τn)’th point in the
shaded area.

different sequence types of a given length `, so we have O(1) different sequence types of length
between 0 and d.

It is easy to see that there must be a peeling sequence σ(b) of length q = max(0, |D(b)|−d):
consider an incremental construction of the sequence, peeling off points from D(b) one at a
time, as illustrated in Figs. 1–3. There are 2d directions, so as long as there are more than d
points left there must be a point that is extreme in only one direction, which we can peel off.

Call D∗(b) := D(b) − σ(b) the basis of b. We charge the box b to its basis D∗(b), and we
claim that each basis is charged O((τn)d−1) times. Since there are O(nd) possible bases, this
proves the theorem. To prove the claim, consider a basis D∗, and choose a sequence type. Any
(τn)-box b whose basis D(b) is equal to D∗ and whose peeling sequence has the given type can
be reconstructed incrementally as follows—see Figs. 4 and 5 for an illustration. Start with
D = D∗. Now consider the last direction ~dq of the sequence type. Since the last point pq of
the peeling sequence is extreme only in direction ~dq, it must be contained in the semi-infinite
box which is bounded in all other directions by planes through points in D. Hence, only the
first τn points in this semi-infinite box are candidates for pq, otherwise the box would already
contain too many points. A similar argument shows there are only τn choices for pq−1, ..., p2.
The first point p1 from the sequence (which is the last point added in the reconstruction) is
then fixed, as b must contain exactly τn points—see Figure 5.

To prove the lower bound, consider the following configuration (shown in Fig. 6 for
the planar case). We pair the 2d directions +x1,−x1, ...,+xd,−xd into d pairs (~d11, ~d12),
(~d21, ~d22),. . . , (~dd1, ~dd2) so that no pair contains opposite directions, that is ~di1 6= −~di2 for
1 6 i 6 d. Let hi be the 2-plane spanned by the directions ~di1 and ~di2 and containing the
origin. On each 2-plane hi, we place n/d points pi(1), ..., pi(n/d) such that all of them are in
the positive quadrant with respect to the origin and both directions ~di1 and ~di2. We place
these points along a staircase. More precisely, we require that for 1 < j 6 n/d, the point
pi(j) is closer to the origin than pi(j − 1) with respect to direction ~di1, and further from
the origin with respect to direction ~di2. Any box containing at least one point from each of
these sets can now be specified by choosing two points pi(bi) and pi(b′i) in each 2-plane hi;
we define the box b to be the minimum bounding box of the points chosen. By choosing
b′i 6 bi + (τn− 1)/(d− 1)− 1 for 1 6 i < d, and b′d = bd − 1 +

∑d−1
i=1 (b′i − bi + 1), we get a box
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Figure 6: A lower bound on the number of (τn)-boxes in
two dimensions. The four directions are grouped in two
pairs (−x1,+x2) and (+x1,−x2). We place a staircase of
n/2 points in the positive quadrant for each pair (in two di-
mensions, these quadrants are coplanar; in higher dimensions
this is not necessarily the case). Choosing one defining point
on each staircase fixes two sides of a box. We have Θ(n2)
ways to do so.

Figure 7: Choosing one additional point on one staircase
fixes another side of the box. This additional point must
be one of the first Θ(τn) points found when walking up the
staircase from the first defining point on that staircase. On
the remaining staircase, we will have no choice but to choose
the point such that the box will contain exactly τn points.

containing exactly τn points. Having Θ(n) choices for each bi (1 6 i 6 d) and Θ(τn) choices
for each b′i (1 6 i 6 d − 1), we can construct Θ(τd−1n2d−1) different (τn)-boxes. �
Note that already in the plane, the bound is cubic in n.

Remark 2.1 A different way to state the result above is as follows. Let P be a set of n
points in R

d, and let t be a parameter with 1 6 t 6 n/(2d). Then the maximum number
of combinatorially distinct boxes containing exactly t points from P is Θ(ndtd−1). In other
words, we have proved a tight bound on the number of t-sets for ranges that are boxes
instead of hyperplanes. Since t-sets have been studied extensively—see e.g. [6] and [12]—we
suspected that the case of box-ranges would have been considered as well, but we have only
found a result on this for t = 2: Alon et al. [4] proved that the maximum number of 2-boxes
is (1 − 1

22d−1−1
)n2/2 + o(n2).

Remark 2.2 The lower-bound example in the proof of Lemma 2.1 is quite contrived, and
one may hope that much smaller test sets are possible if the points are distributed more
regularly. This is not the case, however. As an example, consider the planar case with
τ = 1/2, and suppose the point set P is distributed uniformly at random in the unit square.
Then the number of (n/2)-rectangles is still Θ(n3) with high probability. This can be seen as
follows. Consider the partitioning of the unit square into nine regions, as in Fig. 2.2. Since the
points are distributed uniformly, the expected number of points in a region of area α is αn.
Moreover, the number of points in the region is at least (2/3)αn with probability greater than
1 − exp(−αn/18), which follows from standard tail estimates on the binomial distribution.
Hence, the following properties hold simultaneously with high probability:

(1) each of the three darkly shaded regions in Fig. 2.2 has Θ(n) points;

(2) the lightly shaded region has at least n/2 points, which also implies that the six bot-
tommost regions together have at most n/2 points.
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Figure 8: Partitioning of the unit square used in the argument in Remark 2.2.

It follows from (1) that there are Θ(n3) triples of points such that each darkly shaded region
contains one point from the triple, and it follows from (2) that for each such triple there is
a rectangle with these points on the left, right, and bottom edge that contains exactly n/2
points.

Approximate test sets. The worst-case bound from Lemma 2.1 is quite disappointing.
Therefore we now turn our attention to approximate test sets. A set T of boxes is called an
ε-approximate τ -test set for a set P of n points if

1. any box from T contains at least (1 − ε)τn points from P ;

2. any query box Q that contains at least τn points from P fully contains at least one box
from T .

This means we can answer ε-approximate significant-presence queries on P by answering a
presence query on T .

Lemma 2.2 For any set P of n points in R
d (d > 1) and any ε with 0 < ε < 1/2, there is

an ε-approximate τ -test set of size O(1/(ε2d−1τ2d−2)). Moreover, there are sets P for which
any ε-approximate τ -test set has size Ω(1/(ε2d−1τd)).

Proof. To prove the upper bound, we proceed as follows. We will construct test sets
recursively, starting with the full set P as input. If the size of the current set P is less than
τn0, where n0 is the original number of points, there is nothing to do. Otherwise, we choose a
hyperplane h orthogonal to the x1-axis, such that at most half of the points in P lies on either
side of h. Then we construct three test sets, one for queries on one side of h, one for queries
on the other side, and one for queries intersecting h. The first two test sets are constructed
by applying the procedure recursively. The latter set is constructed as follows.

Let n be the number of points in the current set P . We construct a collection H2(P ) of
n(2d − 1)/(ετn0) hyperplanes orthogonal to the x2-axis, such that there are ετn0/(2d − 1)
points of P between any pair of consecutive hyperplanes.3 We do the same for the other axes,
except the x1-axis, obtaining sets H3(P ), . . . ,Hd(P ).

3If there are more points with the same x2-coordinate, we choose the hyperplanes such that we have at
most ετn0/(2d − 1) points strictly in between consecutive hyperplanes, and at least ετn0/(2d − 1) points in
between or on consecutive hyperplanes.
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From these collections of hyperplanes we construct our test set as follows. Take any
possible subset H∗ of 2d − 2 hyperplanes from H2(P ) ∪ · · · ∪ Hd(P ) such that H2(P ) up to
Hd(P ) each contribute exactly two hyperplanes to H∗. Let P (H∗) be the set of points in P
that lie on or between the hyperplanes contributed by Hi(P ), for all 2 6 i 6 d. Construct a
collection H1(H∗) of hyperplanes orthogonal to the x1-axis, such that there are ετn0/(2d−1)
points of P (H∗) between each pair of consecutive hyperplanes. For each such hyperplane
h′ ∈ H1(H∗), construct a test box b with the following properties:

1. b is bounded by h′, the hyperplanes from H∗, and one additional hyperplane parallel to
h′ and through a point of P (H∗);

2. b is a ((1 − ε)τn0)-box.

Of all the test boxes thus constructed, we discard those that do not intersect h. Hence we will
only keep boxes for which h′ is relatively close to h: there cannot be more than (1 − ε)τn0

points from P (H∗) between h and h′.
This implies that the total number of test boxes we create in this step is bounded by

(1 − ε)τn0 / (ετn0/(2d − 1)) 6 (2d − 1)/ε for a fixed set H∗. Hence, we create at most
(n(2d − 1)/(ετn0))2d−2 · (2d − 1)/ε boxes in total. The number T (n) of boxes created in the
entire recursive procedure therefore satisfies:

T (n) = 0 if n < τn0

T (n) 6 2T (n/2) +
(

2d−1
ετn0

)2d−2
· 2d−1

ε · n2d−2 otherwise.

This leads to |T | = T (n0) = O(1/(ε2d−1τ2d−2)).
We now argue that T is an ε-approximate τ -test set for P . By construction, every box in

T contains at least (1− ε)τn0 points, so it remains to show that every box Q that contains at
least τn0 points from P fully contains at least one box b from T . Let h be the first hyperplane
used in the recursive construction. If at least τn0 points in Q lie to the same side of h, we
can assume that there is a test box contained in Q by induction. If this is not the case, we
will show that a test box b inside Q was created for queries intersecting h. To see that such a
box must exist, observe that for any i with 2 6 i 6 d, there must be a hyperplane hi ∈ Hi(P )
that intersects Q and has at most ετn0/(2d − 1) points from Q ∩ P below it. Similarly,
there is a hyperplane h′

i ∈ Hi(P ) intersecting Q with at most ετn0/(2d − 1) points from
Q ∩ P above it. Note that hi 6= h′

i. Let H∗ be the set {h2, h
′
2, h3, h

′
3, . . . , hd, h

′
d}. Since each

of these hyperplanes ‘splits off’ at most ετn0/(2d − 1) points from Q, they define, together
with the facets of Q orthogonal to the x1-axis, a box contained in Q and containing at least
(1 − ε + ε/(2d − 1))τn0 points. From this, it follows that our construction, when processing
this particular H∗, must have produced a test box b ⊂ Q. The proof is illustrated in Fig. 9.

To prove the lower bound, recall the construction used in Lemma 2.1 for the lower bound
for the exact case. There we used d staircases of n/d points each. We then picked two
points from each staircase, with at most (τn − 1)/(d − 1) points between (and including)
them, except for the last staircase, where we picked only one point. Each such combination
of points defined a different (τn)-box, thus given Ω(τd−1n2d−1) different (τn)-boxes. Now,
for the approximate case, we consider a subset of (n/d)/(ετn + 2) so-called anchor points
along each staircase, such that two consecutive anchor points have ετn+1 points in between.
We now pick two anchor points from each staircase, except the last staircase, where we pick
one. We make sure that in between two chosen anchor points from the same staircase, there
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Figure 9: An example query range Q (shaded area) that in-
tersects h, showing also h2, h′

2 and the grid H1({h2, h
′
2}).

The three dark areas of Q each contain at most ετn0/3
points. Hence, if Q contains at least τn0 points, the bright
area of Q contains at least (1 − ε)τn0 points, and a test box
like the one shown above, bounded by h2, h′

2 and a grid line
from H1({h2, h

′
2}), must lie inside Q.

are at most (τn − 1)/(d − 1) points. We then pick a final point on the last staircase to ob-
tain a (τn)-box. Each of these boxes must be captured by a different test box, because the
intersection of two such boxes contains less than (1−ε)τn points. The lower bound follows. �

Putting it all together. To summarize, the construction of our data structure for ε-
approximate significant-presence queries on S = S1 ∪ · · · ∪ Sm is as follows. We construct
an ε-approximate τ -test set Ti for each color class Si. This gives us a collection of M =
O(m/(ε2d−1τ2d−2)) boxes in R

d. We map these boxes to a set Ŝ of colored points in R
2d, and

construct a data structure for the standard colored range-searching problem (that is, presence
queries) on P , using the techniques of Agarwal et al. [3]. Their structure was designed for
searching on a grid, but using the standard trick of normalization—replace every coordinate
by its rank, and transform the query box to a box in this new search space in O(log n) time
before running the query algorithm—we can employ their results in our setting.

The same technique works for exact queries, if we use exact test sets. This gives a good
result for d = 1, if we use the results from Gupta et al. [10] on quadrant range searching.

Theorem 2.1 Let S = S1 ∪ · · · ∪ Sm be a colored point set in R
d, and τ a fixed constant

with 0 < τ < 1. For d = 1, there is a data structure that uses O(n) storage such that exact
τ -significant-presence queries can be answered in O(log n + k) time, where k is the number
of reported colors. For d > 1, there is, for any ε with 0 < ε < 1/2 and any δ > 0, a data
structure for S that uses O(M1+δ) storage such that ε-approximate τ -significant-presence
queries on S can be answered in O(log n + k) time, where M = O(m/(ε2d−1τ2d−2)).

Remark 2.3 Observe that, since we only have constantly many points per color, we could
also use standard range-searching techniques. But this would increase the term k in the
reporting time to O(k/(ε2d−1τ2d−2)), which is undesirable.

The case of variable τ . Now consider the case where the parameter τ is not given in
advance, but is part of the query. We assume that we have a lower bound τ0 on the value of τ
in any query. Then we can still answer queries efficiently, at only a small increase in storage.
To do so, we build a collection of O(T ) substructures, where T = log(1/τ0)/ log(1 + ε/2).
More precisely, for integers i with 0 6 i 6 T , we define τi := (1 + ε/2)iτ0, and for each such
i we build a data structure for (ε/2)-approximate τi-significant-presence queries on S. To
answer a query with a query box Q and query parameter τ , we first find the largest τi smaller
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than or equal to τ , and we query with Q in the corresponding data structure. This leads to
the following result.

Theorem 2.2 Let S = S1 ∪ · · · ∪ Sm be a colored point set in R
d, and τ0 a fixed constant

with 0 < τ0 < 1. For d > 1, any 0 < ε < 1/2 and any δ > 0, there is a data structure
for S that uses O(M1+δ/ε) storage such that, for any τ > τ0, one can answer ε-approximate
τ -significant-presence queries on S in O(log n + k) time, where M = O(m/(ε2d−1τ2d−2

0 )) and
k is the number of reported colors.

Proof. By Theorem 2.1, the size of substructure i is O(M1+δ(τ0/τi)D) = O(M1+δ/
(1 + ε/2)Di), where M = O(m/(ε2d−1τ2d−2

0 )) and D = (2d − 2)(1 + δ). The total size of all
substructures is therefore O(M1+δ

∑T
i=0(1 + ε/2)−Di) = O(M1+δ/ε).

It remains to show that queries are answered correctly. Note that τi 6 τ 6 (1 + ε/2)τi.
Now, any color j with |Q ∩ Sj| > τi|Sj | will be reported by our algorithm, so certainly any
color with |Q ∩ Sj| > τ |Sj | will be reported. Second, for any reported color j we have:

|Q ∩ Sj| > (1 − ε/2) · τi|Sj |
> (1 − ε/2) · τ/(1 + ε/2) · |Sj |
> (1 − ε)τ · |Sj|.

This proves the correctness of the algorithm. �

3 Stabbing queries

Let B = B1 ∪ · · · ∪ Bm be a set of n colored boxes in R
d, where Bi denotes the subset of

boxes of color i. Let τ be a constant with 0 < τ < 1. For a point q, we use Bi(q) to denote
the subset of boxes from Bi that contain q. We want to preprocess B for the following type
of stabbing queries: given a query point q, report all colors i such that |Bi(q)| > τ · |Bi|. As
was the case for range queries, we are not able to obtain near-linear storage for exact queries
for d > 1, so we focus on the ε-approximate variant, where we are also allowed to report a
color if |Bi(q)| > (1 − ε)τ · |Bi|.

Our approach is similar to our approach for range searching. Thus we define an ε-
approximate τ -test set for a set Bi to be a set Ti of test boxes such that

1. for any point q with |Bi(q)| > τ · |Bi|, there is a test box b with q ∈ b;

2. for any test box b and any point q ∈ b, we have |Bi(q)| > (1 − ε)τ · |Bi|.
This means we can answer a query by reporting all colors i for which there is a test box b ∈ Ti

that contains q.

Lemma 3.1 For any set Bi of boxes in R
d, there is an ε-approximate τ -test set Ti consisting

of O(1/(ετ)d) disjoint boxes. Moreover, for ε < 1/(2d), there are sets of boxes in R
d for which

any ε-approximate τ -test set has size Ω(((1 − τ)/(ετ))d).

Proof. For each of the d main axes, sort the facets of the input boxes orthogonal to that
axis, and take a hyperplane through every (ετni/d)-th facet, where ni := |Bi|. This gives d
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collections of d/(ετ) parallel planes, which together define a grid with O(1/(ετ)d) cells. We
let Ti consist of all cells that are fully contained in at least (1 − ε)τ · |Bi| boxes from Bi.
Clearly Ti has the required number of boxes, and has property (2). (Note: using the fact
that, coming from infinity, we must cross at least d(1 − ε)/ε > (1/ε) − 1 hyperplanes before
we can come to a cell from Ti, we can in fact obtain a slightly stronger bound on the size of
Ti for the case where τ is large.)

It remains to show that Ti has property (1). Let q be a point for which |Bi(q)| > τ · |Bi|,
and let C be the cell containing q. Since any cell is crossed by at most ετni facets, we must
have C ∈ Ti.

The lower bound is proved as follows. For each of the main axes, take a collection of
(1 − τ)/(2dετ) hyperplanes orthogonal to that axis. Slightly ‘inflate’ each hyperplane to
obtain a very thin box. This way each intersection point of d hyperplanes becomes a tiny
hypercube. Next, each of these thin boxes is replaced by 2ετni identical copies of itself. Note
that each tiny hypercube is now covered by 2dετni boxes, and that there are ((1−τ)/(2dετ))d

such hypercubes. Add a collection of (1 − 2dε)τni big boxes, each containing all the tiny
hypercubes. The tiny hypercubes are now covered by exactly τni boxes, and the remaining
space is covered by at most (1−2ε)τni boxes. (Since we have used slightly less than ni boxes
in total, we need to add some more boxes, at some arbitrary location disjoint from all other
boxes.) Any test set must contain each of the hypercubes, and the result follows. �
To solve our problem, we construct a test set Ti for each color class Bi according to the lemma
above. This gives us a collection of M = O(m/(ετ)d) colored boxes. Applying the results of
Agarwal et al. [3] again, we get the following result.

Theorem 3.1 Let B = B1 ∪ · · · ∪Bm be a colored set of boxes in R
d, and τ a fixed constant

with 0 < τ < 1. For d = 1, there is a data structure that uses O(n) storage such that exact
τ -significant-presence queries can be answered in O(log n + k) time, where k is the number
of reported colors. For d > 1, there is, for any ε with 0 < ε < 1/2 and any δ > 0, a data
structure for B that uses O(M1+δ) storage such that ε-approximate τ -significant-presence
queries on B can be answered in O(log n + k) time, where M = O(m/(ετ)d).

Remark 3.1 Note that, since the test boxes from any given color are disjoint, we can simply
report the color of each box containing the query point q. Thus we do not have to use the
structure of Agarwal et al., but we can apply results from standard non-colored stabbing
queries [5]. This way we can slightly reduce storage to O(M logd−2+δ M) at the cost of a
slightly increased query time of O(logd−1 M + k). Also note that we can treat the case of
variable τ in exactly the same way as for range queries.

4 Concluding remarks

Standard colored range searching problems ask to report all colors that have at least one
object of that color intersecting the query range. We considered the variant where a color
should only be reported if some constant pre-specified fraction of the objects intersects the
range. We developed efficient data structures for an approximate version of this problem for
orthogonal range searching queries and for stabbing queries. One obvious open problem is
whether there exists a data structure for the exact problem with near-linear space. We have
shown that this is impossible using our test-set approach, but perhaps a completely different
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approach is possible. Another open problem is to close the gap between our upper and lower
bounds for the size of approximate test sets for orthogonal range searching. Finally, one can
develop structures that can report the color that has the most points in the query range.
Krizanc et al. [8] recently studied this problem for d = 1, and it would be interesting to
generalize their results to d > 2.
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