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Discovering Treewidth∗

Hans L. Bodlaender†

Abstract

Treewidth is a graph parameter with several interesting theoretical and practical
applications. This survey reviews algorithmic results on determining the treewidth
of a given graph, and finding a tree decomposition of small width. Both theoret-
ical results, establishing the asymptotic computational complexity of the problem,
as experimental work on heuristics (both for upper bounds as for lower bounds),
preprocessing, exact algorithms, and postprocessing are discussed.

1 Introduction

About a quarter of a century, the notion of treewidth has now played a role in many
investigations in algorithmic graph theory. While for a long time, the use of treewidth was
limited to theoretical investigations, and it sometimes was believed that it could not play
a role in practical applications, nowadays there is a growing tendency to use it in an actual
applied setting.

An interesting example of this practical use of treewidth can be found in the work by
Koster, van Hoesel, and Kolen [80], where tree decompositions are used to solve frequency
assignment instances from the CALMA project, and other partial constraint satisfaction
problems. The most frequent used algorithm to solve the inference problem for prob-
abilistic, or Bayesian belief networks (often used in decision support systems) uses tree
decompositions [85]. See e.g., also [2, 47].

Graphs of bounded treewidth appear in many different contexts. For an overview of
graph theoretic notions that are equivalent to treewidth, or from which bounded treewidth
can be derived, see [17]. Many probabilistic networks appear to have small treewidth in
practice. Yamagucki, Aoki, and Mamitsuka [114] have computed the treewidth of 9712
chemical compounds from the LIGAND database, and discovered that all but one had
treewidth at most three; the one exception had treewidth four. Thorup [109] showed that
the control flow graph of goto-free programs, written in one of a number of common imper-
ative programming languages (like C, Pascal) have treewidth bounded by small constants.
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See also [61]. Treewidth also has been used in graph drawing research, see e.g. [113].
Another interesting application of treewidth is for solving or approximating optimisation
problems on planar graphs, or applications of planar graphs, see e.g., [1, 7, 48, 50, 49].

Many problems can be solved in linear or polynomial time when the treewidth of the
input graph is bounded. (See e.g., [73, Section 10.4].) Usually, the first step of such an
algorithm is to find a tree decomposition of small width. In this paper, we give an overview
of algorithms for finding such tree decompositions. Nowadays, much work has been done
on this topic, and we now have a rich theory, and intriguing experimental approaches.

After some preliminaries in Section 2, we survey exact algorithms (Section 3), ap-
proximation algorithms and upper bound heuristics (Section 4), lower bound heuristics
(Section 5), and preprocessing and postprocessing methods (Section 6).

Other overviews of related topics can be found in [10, 12, 13, 16, 17, 42, 43, 51, 52, 54,
56, 74, 89, 90, 97, 98].

2 Preliminaries

The notion of treewidth was introduced by Robertson and Seymour in their work on graph
minors [99]. Equivalent notions were invented independently, e.g., a graph has treewidth at
most k, if and only if it is a partial k-tree. See [17] for an overview of notions equivalent to
or related to treewidth. In this paper, we assume graphs to be undirected and simple. Many
results also hold for directed graphs, and often they can be generalised to hypergraphs.
n = |V | denotes the number of vertices of graph G = (V, E), m = |E| its number of edges.

Definition A tree decomposition of a graph G = (V, E) is a pair ({Xi, i ∈ I}, T = (I, F )),
with {Xi, i ∈ I} a collection of subsets of V (called bags), and T = (I, F ) a tree, such that

1.
⋃

i∈I Xi = V .

2. For all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi.

3. For all v ∈ V , Tv = {i ∈ I | v ∈ Xi} forms a connected subtree of T .

The width of a tree decomposition ({Xi, i ∈ I}, T = (I, F )) is maxi∈I |Xi|−1. The treewidth
of G, τ(G), is the minimum width over all tree decompositions of G.
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Figure 1: A graph and a tree decomposition of width 2

Having a tree decomposition of small width in general implies that the graph has many
separators of small size. E.g., consider a tree decomposition ({Xi, i ∈ I}, T = (I, F )), and
choose a node r ∈ I as root of T . Consider some node i ∈ I, and let Gi be the subgraph
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of G induced by the set Vi of vertices in sets Xj with j = i or j is a descendant of i. Then,
the definition of tree decomposition implies that all vertices in Gi that have a neighbour in
G that does not belong to Gi belong to Xi. Hence, Xi separates all vertices in Vi−Xi from
all vertices in V − Vi. This property amongst others enables many dynamic programming
algorithms on graphs of bounded treewidth. A useful lemma on tree decompositions (which
can be seen as a rephrasing of the Helly property for trees, see [60, 28] is the following.

Lemma 1 Let ({Xi, i ∈ I}, T = (I, F )) be a tree decomposition of G. Let W be a clique
in G. Then there is an i ∈ I with W ⊆ Xi.

There are several equivalent definitions of the notion of treewidth. The various al-
gorithms for determining the treewidth and finding tree decompositions are based upon
different such notions. We review here those that we use later in this paper.

A graph G = (V, E) is chordal, if and only if each cycle in G of length at least four
has a chord, i.e., an edge between non-successive vertices in the cycle. There are two
equivalent definitions of chordality that we will use. A perfect elimination scheme of a
graph G = (V, E) is an ordering of the vertices v1, . . . , vn, such that for all vi ∈ V , its
higher numbered neighbours form a clique, i.e., for j1 > i, j2 > i, if {vi, vj1} ∈ E and
{vi, vj2} ∈ E, then {vj1, vj2} ∈ E. A graph G = (V, E) is the intersection graph of subtrees
of a tree, if and only if there is a tree T = (I, F ) and for each vertex v ∈ V a subtree Tv of
T , such that for all v, w ∈ V , v 6= w: {v, w} ∈ E, if and only if the trees Tv and Tw have
at least one vertex in common.

Theorem 2 (See [58, 60]) Let G = (V, E) be a graph, The following statements are
equivalent.

1. G is a chordal graph.

2. G has a perfect elimination scheme.

3. G is the intersection graph of subtrees of a tree.

A triangulation of a graph G = (V, E) is a chordal graph H = (V, F ) that contains G
as a subgraph: E ⊆ F . A triangulation H = (V, F ) is a minimal triangulation, when there
does not exist a triangulation H ′ = (V, F ′) with E ⊆ F ′ ⊂ F (F ′ 6= F ).

Given a tree decomposition ({Xi, i ∈ I}, T = (I, F )) of G, we can build corresponding
triangulation H = (V, F ): add to G an edge between each non-adjacent pair of vertices
{v, w} such that there is an i ∈ I with v, w ∈ Xi. I.e., each bag Xi is turned into a clique.
The graph H thus obtained is the intersection graph of subtrees Tv = T [{i ∈ I | v ∈ Xi}]
of T , thus chordal. The maximum cliquesize of H is exactly one larger than the width of
the tree decomposition (compare with Lemma 1.)

Lemma 3 The treewidth of a graph G equals the minimum over all triangulations H of G
of the maximum clique size of H minus one.
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We can also build a tree decomposition from an ordering v1, . . . , vn of the vertices of
the graph G. We first construct a triangulation H of G by the following fill-in procedure:
initially, H = G, and then for i = 1 to n, we add to H , edges between yet non-adjacent
higher numbered neighbours of vi. After having done this, v1, . . . , vn is a perfect elimination
scheme of H ; the model of H as intersection graph of subtrees of a tree can be easily
transformed to a tree decomposition of H and of G. Its width equals the maximum over
all vertices of its higher numbered neighbours in the ordering in H .

3 Exact algorithms

The Treewidth problem: given a graph G, and an integer k, decide if the treewidth of
G is at most k, is NP-complete [4]. This unsettling fact does not prevent us from wanting
to compute the treewidth of graphs, and fortunately, in many cases, there are methods to
effectively obtain the treewidth of given graphs.

3.1 Special graph classes

There are many results on the complexity of treewidth when restricted to special graph
classes. We mention here a few of these. A highly interesting recent result was obtained by
Bouchitté and Todinca, who found an algorithm to determine the treewidth of a graph in
time, polynomial in the number of its minimal separators [35, 34]. Many graph classes have
the property that each graph in the class has a polynomial number of minimal separators,
e.g., permutation graphs, weakly chordal graphs.

Other polynomial time algorithms for treewidth for special graph classes can be found
in e.g., [23, 29, 37, 38, 46, 76, 75, 77]. NP-completeness results appear amongst others in
[30, 62]. See also [92]. Other older results are surveyed in [13].

3.2 Exponential time algorithms

Based upon the results from Bouchitté and Todinca [35, 34], Fomin et al. [57] found an
exact algorithm for treewidth that runs in time O∗(1.9601n) time. (See [112] for the O∗

notation and an introduction to exponential time algorithms.)
Algorithms with a running time of O∗(2n) are easier to obtain: one can show that

the algorithm of [4] has this time, or build a dynamic programming algorithm following a
technique first established for TSP by Held and Karp [65]; experiments with this dynamic
programming algorithm are currently carried out [18].

For small graphs, the treewidth can be computed in practice using branch and bound.
Experiments have been published by Gogate and Dechter [59]. The algorithm searches for
an ordering of the vertices that corresponds to a tree decomposition of small width, see
Section 2, i.e., at each step, we select the next vertex in the ordering. Gogate and Dechter
establish several rules to cut off branches during branch and bound. The algorithm can
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also be used as a heuristic, by stopping the branch and bound algorithm at a specific time
and reporting the best solution found so far.

3.3 Fixed parameter cases

As we often want to use a tree decomposition for running a dynamic programming algo-
rithm that is exponential in the width, we often want to test if the treewidth is smaller
than some given constant k. Much work has been done of this fixed parameter case of
treewidth. Here we let k denote the constant for which we want to test if the treewidth is
at most k.

The first polynomial time algorithm for the problem was given by Arnborg, Corneil, and
Proskurowski [4]. Their algorithm runs in O(nk+2) time. A modification of this algorithm
has been proposed and successfully experimentally evaluated by Shoikhet and Geiger [106].

Downey and Fellows introduced the theory of fixed parameter tractability. A problem
with input parameter k and input size n is fixed parameter tractable, when there is a
function f and a constant c, such that there is an algorithm that solves the problem in
f(k) · nc time, (in contrast to algorithms using Ω(ng(k)) time for some increasing function
g). See [54]. The first result that showed that treewidth is fixed parameter tractable, i.e.,
solvable in O(nc) time for some constant c, for fixed treewidth k, was obtained by Robertson
and Seymour [99, 100]. This result was fully non-constructive: from the deep results of their
graph minor theory, one gets a non-constructive proof that there exists a characterisation
that can be tested in O(n2) time. Later results, by Lagergren [82], Reed [96], Lagergren and
Arnborg [83], Bodlaender and Kloks [22], and Bodlaender [14] improved upon either the
constructivity or the running time. Finally, in [15], a linear time algorithm was given that
checks if the treewidth is at most k, and if so, outputs the corresponding tree decomposition.
That algorithm uses about O(k3) calls to the dynamic programming algorithm from [22],
but the hidden constant in the ‘O’-notation of this algorithm is horrendous, even for small
values of k. Röhrig [101] has experimentally evaluated the linear time algorithm from [15].
Unfortunately, this evaluation shows that the algorithm uses too much time even for very
small values of k (e.g., when k = 4.) A parallel variant of the algorithm from [15] was
given by Bodlaender and Hagerup [21]. A variant with O(k2) calls to the algorithm of [22]
was given by Perković and Reed [93].

The linear time algorithm for fixed k is attractive from a theoretical point of view: in
many cases, an algorithm exploiting small treewidth would use the algorithm as a first step.
From a practical point of view, the algorithm is useless however due to its large constant
factor hidden in the O-notation, and the quest remains for algorithms that are efficient
from the implementation viewpoint. Fortunately, several heuristics appear to perform well
in practice, as we will see in the next section.

Also, for very small values of k, there are special algorithms. Testing if the treewidth
is one is trivially linear (the graph must be a forest), a graph has treewidth at most two,
if and only if each biconnected component is a series parallel graph (see e.g., [31]), and
testing if a graph is series parallel can be done in linear time by the algorithm of Valdes,
Tarjan, and Lawler [111]. Arnborg and Proskurowski [5] give a set of six reduction rules,
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such that a graph has treewidth at most three, if and only if it can be reduced to the empty
graph by means of these rules. These rules can be implemented such that the algorithm
runs in linear time, see also [88]. Experiments show that these algorithms run very fast
in practice (see e.g. [26]). A more complicated linear time algorithm for testing if the
treewidth of a graph is at most 4 has been given by Sanders [103]. As far as I know, this
algorithm has not yet been tried out in practice.

4 Approximation algorithms and upper bound heuris-

tics

There are many algorithms that approximate the treewidth. We can distinguish a number
of different types, depending on whether the algorithm is polynomial for all values of k,
and whether the algorithm has a guaranteed performance.

4.1 Polynomial time approximation algorithms with a perfor-

mance ratio

We first look at algorithms that are polynomial, even when k is not bounded, and that
give a guarantee on the quality of the output. The first such approximation algorithm for
treewidth was given in [19]. This algorithm gives tree decompositions with width at most
O(log n) times the optimal treewidth. (See also [74].) It builds a tree decomposition by
repeatedly finding balanced separators in the graph and subgraphs of it, see also below.
Bouchitté et al. [33] and Amir [3] recently improved upon this result, giving polynomial
time approximation algorithms with ratio O(log k) , i.e., the algorithms output a tree
decomposition of width O(k log k) when the treewidth of the input graph is k. It is a long
standing and apparently very hard open problem whether there exist a polynomial time
approximation algorithm for treewidth with a constant performance ratio.

4.2 Fixed Parameter Approximation Algorithms

There are also several approximation algorithms for treewidth that run in time, exponential
in k. They either give a tree decomposition of width at most ck (for some constant c), or
tell that the treewidth is more than k. See [3, 8, 53, 82, 96, 100]. See also [73, Section
10.5]. These algorithms more or less share a common structure. Consider the following
recursive procedure.

procedure BuildTD ( Graph G = (V, E), vertex set X ⊆ V , integer k)
Find a separator S in G such that each component of G[V −S] contains ‘few’

vertices of X.
If |S| is ‘too large’, then we reject as the treewidth of G is larger than k.
For each connected component W ⊆ V of G[V −S], run BuildTD (G[W ∪S],

S ∪ (W ∩ X)).
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If at least one of these calls reject, then also reject.
Otherwise, build a tree decomposition of G such that the root bag contains

all vertices of X, using the tree decompositions from the recursive calls.

The step to build the tree decomposition can be done as follows: we take one new bag
that contains S ∪ W , take the disjoint union of the tree decompositions obtained from all
calls BuildTD (G[W ∪S], S ∪ (W ∩X) for all components W of G[V −S], and make each
root bag of such a tree decomposition adjacent to the new bag. One can verify that this
gives a tree decomposition.

By using different algorithms to find the separators in the first step of the procedure
and different measures of when S is too large, the algorithms from [3, 8, 53, 82, 96, 100]
achieve different running times and bounds on the treewidth. A similar algorithmic method
is also used in [3, 19, 33, 74] for the approximation algorithms whose running time does
not exponentially depend on k.

4.3 Upper Bound Heuristics

Many of the heuristics that have been proposed and are used to find tree decompositions
of small width do not have a guarantee on their performance. However, amongst these,
there are many that appear to perform very well in many cases.

A large class of these heuristics is based upon the same principle. As discussed in
Section 2, a tree decomposition can be build from a linear ordering of the vertices. Thus,
we can build in some way a linear ordering of the vertices, run the fill-in procedure, and
turn the triangulation into a tree decomposition. Often, one already adds fill-in edges
during the construction of the linear order, and so we get the following type of algorithm:

H = G;
for i = 1 to n do

Select a vertex v from H according to some criterion.
Let v be the ith vertex in vertex ordering π.
Add an edge between each pair of non-adjacent neighbors of v.
Remove v and its incident edges from H .

Build the tree decomposition corresponding to π.

Different criteria in this procedure give different treewidth heuristics. The edges added
during the procedure are called fill-in edges. A very simple heuristic of this type is the
Minimum Degree heuristic: we repeatedly select the vertex v with the minimum number
of unselected neighbours as the next vertex in the ordering. The Minimum Fill-in heuristic
is similar, but now we select a vertex which gives the minimum number of added fill-in
edges for the current step. More complicated rules for selecting next vertices have been
proposed by Bachoore and Bodlaender [6], and by Clautiaux et al. [39, 40]. In some
cases, improvements are thus made upon the simpler Minimum Degree or Minimum Fill-in
heuristics.
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Also, sometimes orderings generated by algorithms originally invented for chordal graph
recognition ([102, 108, 9] have been used as linear ordering to generate the tree decom-
position from. These tend to give tree decompositions with larger width, but give for
some instances better bounds. See [79] for an experimental evaluation of several of these
heuristics.

These heuristics can also be described using tree decompositions only: Select some
vertex v (according to the criteria at hand, e.g., the vertex of minimum degree). Build
the graph G′, by turning the set of neighbours N(v) of v into a clique, and then removing
v. Recursively, compute a tree decomposition of G′. By Lemma 1, there must be a bag
i∗ with N(v) ⊆ Xi. Now, add a new node iv to G, with Xiv = {v} ∪ N(v), and make iv
adjacent to i∗ in the tree. One can check that this gives a tree decomposition of G.

A different type of heuristic was proposed by Koster [78]. The main idea of the heuristic
is to start with any tree decomposition, e.g., the trivial one where all vertices belong to
the same bag, and then stepwise refine the heuristics, i.e., the heuristic selects a bag and
splits it into smaller bags, maintaining the properties of tree decomposition.

There are several algorithms that, given a graph G, make a minimal triangulation of
G. While not targeted at treewidth, such algorithms can be used as treewidth heuristic.
Recently, Heggernes, Telle, and Villanger [63] found an algorithm for this problem that
uses o(n2.376) time; many other algorithms use O(nm) time.

See [110] for an online database with some experimental results.

4.4 Heuristics with local search methods

Some work has been done on using stochastic local search methods to solve the treewidth
problem or related problems. Kjærulff [72] uses simulated annealing to solve a problem
related to treewidth. Genetic algorithms have been used by Larrañaga et al. [84]. Clautiaux
et al. [40] use tabu search for the treewidth problem. The running times of these meta
heuristics is significantly higher, but good results are often obtained.

4.5 Approximation algorithms for special graph classes

Also, approximation algorithms have been invented with a guarantee on the performance
for special graph classes, e.g., a ratio of 2 can be obtained for AT-free graphs [36], and a
constant ratio can be obtained for graphs with bounded asteroidal number [33].

5 Lower bound heuristics

It is for several reasons interesting to have good lower bound heuristics for treewidth. They
can be used in a subroutines in a branch and bound algorithm (as, e.g., is done in [59]), or
in an upper bound heuristic (e.g., as part of the rule to select the next vertex of the vertex
ordering [40]), and inform us about the quality of upper bound heuristics. Also, when a
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lower bound for the treewidth is too high, it may tells us that it is not useful to aim at a
dynamic programming algorithm solving a problem with tree decompositions.

5.1 Degree based methods and contraction

It is easy to see that the minimum degree of a vertex in G, and the maximum clique size
of G are lower bounds for the treewidth. These bounds are often not very good, and the
maximum clique size is NP-hard to compute. An improvement to these bounds is made
with the degeneracy: the maximum over all subgraphs G′ of G of the minimum vertex
degree of G′ [107, 86]. The degeneracy can be easily computed: repeatedly remove a
vertex of minimum degree from the graph, and then report the maximum over the degrees
of the vertices when they were removed.

An improvement to the degeneracy can be obtained by instead of removing a vertex,
contracting it to one of its neighbours. This idea was found independently by Bodlaender,
Koster, and Wolle [27], and by Gogate and Dechter [59]. The MMD+ heuristic thus works
as follows: set ` = 0, then repeat until G is empty: find a vertex v of minimum degree
d in G; set ` = max(`, d); contract v to a neighbour (or remove v if v is isolated). In
[27], different rules to select the vertex to contract to are explored. The heuristic to select
the neighbour of v of smallest degree performs reasonably well, but the heuristic to select
the neighbour w of v such that v and w have the smallest number of common neighbours
usually gives better lower bounds. (When v and w have a common neighbour x, then
contracting v and w causes the two edges {v, x} and {w, x} to become the same edge. The
rule thus tries to keep the graph as dense as possible.)

In [27], the related graph parameter of contraction degeneracy: the maximum over all
minors G′ of G of the minimum vertex degree of G′ is introduced and studied. Computing
the contraction degeneracy is NP-hard [27], but it can be computed in polynomial time on
cographs [32].

A different lower bound rule, based on the Maximum Cardinality Search algorithm
has been invented by Lucena [87]. Maximum Cardinality Search (originally invented as
a chordal graph recognition algorithm by Tarjan and Yannakakis [108]) works as follows.
The vertices of the graph are visited one by one. MCS starts at an arbitrary vertex,
and then repeatedly visits an unvisited vertex which has the maximum number of visited
neighbours. Lucena showed that when MCS visits a vertex that has at that point k visited
neighbours, then the treewidth is at least k.

So, we can get a treewidth lower bound by constructing an MCS ordering of the ver-
tices of G, and then reporting the maximum over all vertices of the number of its visited
neighbours when it was visited. This bound is always at least the degeneracy (if G has a
subgraph G′ with minimum vertex degree k, then when the last vertex from G′ is visited,
it has at least k visited neighbours). A theoretical and experimental analysis of this lower
bound was made by Bodlaender and Koster [24]. E.g., it is NP-hard to find an MCS
ordering that maximises the yielded lower bound.

Other lower bounds based on the degree are also possible. Ramachandramurthi [94, 95]
showed that for all graphs that are not complete, the minimum over all non-adjacent pairs
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of vertex v and w of the maximum of the degree of v and w is a lower bound for the
treewidth of G. (This bound can be shown as follows. Consider a tree decomposition of
G, and repeatedly remove leaf nodes i from T with neighbour j in T with Xi ⊆ Xj . If we
remain with a tree decomposition with one bag, the claim clearly holds. Otherwise, T has at
least two leaf nodes, and each bag of a leaf node contains a vertex whose neighbours are all
in the same leaf bag.) This lower bound usually is not very high, but when combined with
contraction, it can give small improvements to the MMD+ lower bound. An investigation
of this method, and other methods combining degree based lower bounds with contraction
is made in [81].

5.2 Improved graphs

An interesting technique to obtain better lower bounds was introduced by Clautiaux et
al. in [39]. It uses the following result.

Lemma 4 Let v, w be two vertices in G, and let v and w have at least k + 2 disjoint
neighbours (vertex disjoint paths between them). Then G has treewidth at most k, if and
only if G + {v, w} has treewidth at most k.

The neighbour or path improved graph of G is the graph obtained by adding edges
between all pairs of vertices with at least k + 2 common neighbours (or vertex disjoint
paths). The method of [39] now can be described as follows. Set ` to some lower bound on
the treewidth of input graph G. Compute the (neighbour or path) improved graph G′ of
G (with k = `). Run some treewidth lower bound algorithm on G′. If this algorithm gives
a lower bound larger than `, then the treewidth of G is at least ` + 1, and we add one to
`, and repeat, until no increase to ` is obtained. In [39], the degeneracy is used as lower
bound subroutine, but any other lower bound can be used. Experimental results of this
type can be found in [27]. The method gives significant increases to the lower bounds for
many graphs, but also costs much time; the version where we use the neighbour improved
graph gives smaller bounds but uses also less time when compared to the path improved
graph. In [27], a heuristic is proposed, where edge contraction steps are alternated with
improvement steps. This algorithm works well for small instances, but appears to use (too)
much time on larger instances.

5.3 Brambles

For many instances, the lower bound methods described above give good lower bounds.
However, there are also instances where these ‘degree-based’ techniques do not work well,
e.g., for planar graphs and graphs that are similar to planar graphs. For instance, as each
planar graph has a vertex of degree at most five, the contraction degeneracy of a planar
graph is at most five. A different lower bound technique that appears to work well on
planar graphs and graphs that are ‘close to being planar’ is based on the use of brambles.
A bramble of a graph is a collection of mutually touching connected subsets of vertices;
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two subsets are said to touch if they intersect or there is an edge between two vertices, one
from each set. The order of a bramble is the smallest size of a set S of vertices such that
each set in the bramble contains at least one vertex from S. Seymour and Thomas [104]
have shown that the maximum order of a bramble of a graph G is exactly one larger than
the treewidth of G. In [20], heuristics are given and evaluated that construct brambles
in given graphs with large orders, thus giving an alternative method for treewidth lower
bounds.

6 Preprocessing and postprocessing

6.1 Preprocessing

There are several methods for preprocessing a graph before running an algorithm for
treewidth on it. With preprocessing, we hope to decrease the size of the input graph.
The algorithm for treewidth thus often runs on a smaller instance, and hence can be much
faster. E.g., we first preprocess the graph, and then run a slow exact algorithm on the
reduced instance.

6.1.1 Reduction rules

Bodlaender et al. [26] give several reduction rules that are safe for treewidth. Besides a
graph (initially the input graph), we maintain an integer variable low that is a lower bound
for the treewidth of the input graph. We have that initially low ≤ tw(G), (e.g., low= 0.
Each reduction rule takes G and low, and rewrites this to a smaller graph G′, with possibly
an updated value of low. A rule is safe, if, whenever we can rewrite a graph G with variable
low to G′ and low’, we have max(tw(G), low) = max(tw(G′), low′). It follows that when G′′

and low” are obtained from G with a series of applications of safe rules, then the treewidth
of G equals max(tw(G′′), low′′). The rules in [26] are taken from the algorithm from [5]
to recognise graphs of treewidth at most three, or generalisations of these. Two of these
rules are the simplicial rule: remove a vertex of degree d whose neighbours form a clique,
and set low to max(d, low), and the almost simplicial rule: when v is a vertex of degree
d ≤ low whose neighbourhood contains a clique of size d − 1, then add edges between
non-adjacent neighbours of v and remove v. Experiments show that in many instances
from practical problems, significant reductions can be obtained with these reduction rules
[26]. Generalisations of the rules were given by van den Eijkhof and Bodlaender [55].

6.1.2 Safe separators

A set of vertices S ⊆ V is a separator in a graph G = (V, E), if G[V − S] contains more
than one connected component. A separator is inclusion minimal, when it does not contain
another separator of G as proper subset. A separator S in G is safe for treewidth, when
the treewidth of G equals the maximum over all connected components W of G[V − S] of
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the treewidth of the graph G[W ∪ S] + clique(S) (i.e., the graph obtained with vertices
V ∪ S, and edges between adjacent vertices in G, and each pair of vertices in S).

Thus, when we have a safe (for treewidth) separator S in G, we can split G into the
parts of the form G[W ∪ S] + clique(S) for all connected components W of G[V − S], and
compute for each such part the treewidth separately. Hence, safe separators can be used
for preprocessing for treewidth.

There are several types of safe separators that can be found quickly. For instance,
every separator that is a clique is safe (see [91]), and clique separators can be found in
O(nm) time. Other safe separators are given in [25], e.g., inclusion minimal separators
of size r that contain a clique of size r − 1; all inclusion separators of size two; minimum
size separators S of size three such that at least two connected components of G[V − S]
contain at least two vertices. See also [25] for an experimental evaluation of the use of safe
separators.

6.1.3 Modular and join decompositions

A different form of preprocessing is possible by using modular or join decompositions
of graphs. We say that G1 = (V1, E1) and G2 = (V2, E2) are a join decomposition of
G = (V, E) if V = V1 ∪ V2 and E = E1 ∪ E2 ∪ {{v, w} | v ∈ V1, w ∈ V2}, i.e., G is
obtained by taking the disjoint union of G1 and G2 and adding all edges between a vertex
in V1 and a vertex in V2. If G1 and G2 are a join decomposition of G, then τ(G) =
min(τ(G1) + |V2|, τ(G2) + |V1|), so we can compute the treewidth of G easily from the
treewidth of G1 and G2. Finding a join decomposition can be done in quadratic time: look
whether the complement of G has more than one connected component. In experiments,
we found only a few cases where preprocessing by using the join decomposition lead to
a size reduction of the graph; in most cases, this was because the graph had a universal
vertex (a vertex adjacent to all other vertices); removing a universal vertex decreases the
treewidth by exactly one.

A generalisation of the join decomposition is to use the modular decomposition. In
[29], it is shown that the treewidth can be computed using a modular decomposition of
the graph. In theory, this can be used for preprocessing, but it is unlikely that in many
practical instances, this is of benefit.

6.2 Postprocessing

Once we have found a tree decomposition of G, it sometimes is possible to modify the tree
decomposition slightly to obtain one with a smaller width. This can be best explained by
looking at the triangulation of G that corresponds to the tree decomposition.

Many heuristics yield tree decompositions whose corresponding triangulations are not
always minimal triangulations, e.g., the minimum degree heuristic. (A few heuristics guar-
antee that the triangulation is always minimal.)

There are several algorithms, that, given a graph G = (V, E), and a triangulation
H = (V, F ) of G, find a minimal triangulation H ′ = (V, F ′) of G that is a subgraph of
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H : E ⊆ F ′ ⊆ F [11, 45, 64]. So, we can use the following postprocessing step when given
a tree decomposition: build the corresponding triangulation, find a minimal triangulation
(e.g., with an algorithm from [11, 64]) and then turn this minimal triangulation back into
a tree decomposition.

7 Conclusions

There are several interesting notions that are related to treewidth, and that obtained
also much attention in the past years, e.g., pathwidth, cliquewidth (see e.g. [44]). Very
closely related to treewidth is the notion of branchwidth (treewidth and branchwidth differ
approximately by at most a factor of 1.5). The branchwidth of planar graphs can be
computed in polynomial time [105], and thus it is intriguing that the corresponding problem
for treewidth is still open. Interesting experimental work on branchwidth has been done
by Hicks [67, 68, 69, 70, 71, 66]. Cook and Seymour [41] used branch decompositions for
solving the travelling salesman problem.

The many theoretic and experimental results on the treewidth problem show that find-
ing a tree decomposition of small width is far from hopeless, even while the problem itself
is NP-hard. Upper and lower bound heuristics appear to give good results in many practi-
cal cases, which can be further improved by postprocessing; preprocessing combined with
cleverly designed exact algorithms can solve many small instances exactly. There still are
several challenges. Two theoretical questions are open for a long time, and appear to be
very hard: Is there an approximation algorithm for treewidth with a constant performance
ratio (assuming P 6= NP )? Does there exist a polynomial time algorithm for computing
the treewidth of planar graphs, or is this problem NP-hard? Also, the quest for better
upper and lower bound heuristics, more effective preprocessing methods, etc. remains.
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