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Abstract

In almost all languages all arguments to functions are to be given explicitly.
The Haskell class system however is an exception: functions can have class predi-
cates as part of their type signature, and dictionaries are implicitly constructed and
implicitly passed for such predicates, thus relieving the programmer from a lot of
clerical work and removing clutter from the program text. Unfortunately Haskell
maintains a very strict boundary between the implicit and the explicit world; if the
implicit mechanisms fail to construct the hidden dictionaries there is no way the
programmer can provide help, nor is he able to override the choices made by the
implicit mechanisms. In this paper we describe, in the context of Haskell, a mech-
anism that allows the programmer to explicitly construct implicit arguments. This
extension blends well with existing resolution mechanisms, since it only overrides
the default behavior. We include a description of the use of partial type signa-
tures, which liberates the programmer from having to choose between specifying
a complete type signature or no type signature at all. Finally we show how the
system can easily be extended to deal with higher-order predicates, thus enabling
the elegant formulation of some forms of generic programming.

1 Introduction

The Haskell class system, originally introduced by both Wadler and Blott [43] and
Kaes [27], offers a powerful abstraction mechanism for dealing with overloading (ad-
hoc polymorphism). The basic idea is to restrict the polymorphism of a parameter by
specifying that some predicates have to be satisfied when the function is called:

f :: Eq a⇒ a→ a→ Int
f = λ x y→ if x == y then 3 else 4

In this example the type signature for f specifies that values of any type a can be passed
as arguments, as long as the predicate Eq a is satisfied. Such predicates are introduced
by class declarations, as in the following version of Haskell’s Eq class declaration:

class Eq a where
(==) :: a→ a→ Bool
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The presence of such a class predicate in a type requires the availability of a collection
of functions and values which can only be used on a type a for which the class predicate
holds. For brevity, the given definition for class Eq omits the declaration for /=. A
class declaration alone is not sufficient: instance declarations specify for which types
the predicate actually can be satisfied, simultaneously providing an implementation for
the functions and values as a witness for this:

instance Eq Int where
x == y = primEqInt x y

instance Eq Char where
x == y = primEqChar x y

Here the equality functions for Int and Char are implemented by the primitives primEqInt
and primEqChar. The compiler turns such instance declarations into records (dictio-
naries) containing the functions as fields, and thus an explicit version of this internal
machinery reads:

data EqD a = EqD {eqEqD :: a→ a→ Bool} -- class Eq
eqDInt = EqD primEqInt -- Eq Int
eqDChar = EqD primEqChar -- Eq Char

Inside a function the elements of the predicate’s dictionaries are available, as if they
were defined as top-level variables. This is accomplished by implicitly passing a dic-
tionary for each predicate occurring in the type of the function. So the actual imple-
mentation of f (apart from all kind of optimisations) is:

f :: EqD a→ a→ a→ Int
f = λ dEq x y→ if (eqEqD dEq) x y then 3 else 4

At the call site of the function f the dictionary that corresponds to the actual type of
the polymorphic argument must be passed. Thus the expression f 3 4 can be seen as
an abbreviation for the semantically more complete f eqDInt 3 4.

Motivating examples The translation from f 3 4 to f eqDInt 3 4 is done implicitly;
a programmer has little or no control over the passing of dictionaries. This becomes
problematic as soon as a programmer desires to express something which the language
definition cannot infer automatically. For example, we may we want to call f with an
alternate instance for Eq Int, which implements a different equality on integers:

instance Eq Int where
x == y = primEqInt (x ‘mod‘ 2) (y ‘mod‘ 2)

Unfortunately this extra instance declaration would introduce an ambiguity, and is thus
forbidden by the language definition; the instances are said to overlap. However, a
programmer could resolve the issue if he was only able to explicitly specify which of
these two possible instances should be passed to f .
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As a second example we briefly discuss the use Kiselyov and Chan [31] make of the
type class system to configure programs. In their modular arithmetic example inte-
ger arithmetic is configured by a modulus: all integer arithmetic is done modulo this
modulus. The modulus is implemented by a class function modulus:

class Modular s a | s→ a where modulus :: s→ a
newtype M s a = M a
normalize :: (Modular s a, Integral a)⇒ a→ M s a
normalize a :: M s a = M (mod a (modulus (⊥ :: s)))
instance (Modular s a, Integral a)⇒ Num (M s a) where

M a +M b = normalize (a + b)
... -- remaining definitions omitted

The problem now is to create for a value m of type a an instance of Modular s a for
which modulus returns this m. Some ingenious type hackery is involved where phantom
type s (evidenced by ⊥’s) uniquely represents the value m, and as such is used as an
index into the available instances for Modular s a. This is packaged in the following
function which constructs both the type s and the corresponding dictionary (for which
modulus returns m) for use by k:

withModulus :: a→ (∀s.Modular s a⇒ s→ w)→ w
withModulus m k = ...

They point out that this could have been done more directly if local type class instances
would have been available:

data Label
withModulus :: a→ (∀s.Modular s a⇒ s→ w)→ w
withModulus m k
= let instance Modular Label a where modulus = m

in k (⊥ :: Label)

The use of explicit parameter passing for an implicit argument proposed by us in this
paper would have even further simplified the example, as we can avoid the phantom
type Label and related type hackery altogether and instead create and pass the instance
directly.
As we may infer from the above the Haskell class system, which was originally only in-
troduced to describe simple overloading, has become almost a programming language
of its own, used (and abused as some may claim) for unforeseen purposes.

Haskell’s point of view Haskell’s class system has turned out to be theoretically
sound and complete [21], although some language constructs prevent Haskell from
having principal types [10]. The class system is flexible enough to incorporate many
useful extensions [20, 24]. Its role in Haskell has been described in terms of an imple-
mentation [23] as well as its semantics [13, 9]. Many language constructs do their work
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automatically and implicitly, to the point of excluding the programmer from exercising
influence. Here we feel there is room for improvement, in particular in dealing with
implicit parameters.
The compiler is fully in control of which dictionary to pass for a predicate, determined
as part of the resolution of overloading. This behavior is the result of the combination
of the following list of design choices:

• A class definition introduces a record type (for the dictionary) associated with a
predicate over type variables.

• Instance definitions describe how to construct a value for the record type for the
class predicate specialized for a specific type (or combination of types in the case
of multiparameter type classes).

• The type of a function specifies the predicates for which dictionaries have to be
passed at the call site of the function.

• Which dictionary is to be passed at the call site of a function is determined by:

– required dictionaries at the call site of a function; this is determined by the
predicates in the instantiated type of the called function.

– the available dictionaries introduced by instance definitions.

Internally the compiler uses a predicate proving machinery and heuristics [25,
35, 9] to compute the proper dictionaries.

• Which dictionaries are to be passed is fully fixed by the language definition.

• The language definition uses a statically determined set of dictionaries intro-
duced by instance definitions and a fixed algorithm for determining which dic-
tionaries are to be passed.

The result of this is both a blessing and a curse. A blessing because it silently solves a
problem (i.e. overloading), a curse because as a programmer we cannot easily override
the choices made in the design of the language (i.e. via Haskell’s default mechanism),
and worse, we can in no way assist the compiler if no unique solution according to
the language semantics exists. For example, overlapping instances occur when more
than one choice for a dictionary can be made. Smarter, more elaborate versions of
the decision making algorithms can and do help [14], but in the end it is only the
programmer who can fully express his intentions. The system at best can only make a
guess.
The issue central to this paper is that Haskell demands from a program that all choices
about which dictionaries to pass can be made automatically and uniquely, whereas we
also want to be able to specify this ourselves explicitly. If the choice made (by Haskell)
does not correspond to the intention of the programmer, the only solution is to convert
all involved implicit arguments into explicit ones, thus necessitating changes all over
the program. Especially for (shared) libraries this may not always be feasable.
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Our contribution Our approach takes explicitness as a design starting point, as op-
posed to the described implicitness featured by the Haskell language definition. To
make the distinction between our and Haskell’s approach clear in the remainder of
this paper, we call our explicit language and its implementation Explicit Haskell (EH)
whereas we refer to Haskell language and its implementations by just Haskell.

• In principle, all aspects of an EH program can be explicitly specified, in par-
ticular the types of functions, types of other values, and the manipulation of
dictionaries, without making use of or referring to the class system.

• The programmer is allowed to omit explicit specification of some program as-
pects; EH then does its utmost to infer the missing information.

Our approach allows the programmer and the EH system to jointly construct the com-
pletely explicit version of a program, whereas an implicit approach inhibits all explicit
programs which the type inferencer cannot infer but would otherwise be valid. If the
type inferencer cannot infer what a programmer expects it to infer, then the program-
mer can provide the required information. In this sense we get the best of two worlds:
the simplicity of systems like system F [12, 40] and Haskell’s ease of programming.
In this paper explicitness takes the following form:

• Dictionaries introduced by instance definitions can be named; the dictionary can
be accessed by name as a record value.

• The set of class instances and associated dictionaries to be used by the proof
machinery can be used as normal values, and normal (record) values can be used
as dictionaries for predicates as well.

• The automatic choice for a dictionary at the call site of a function can be over-
ruled.

• Types can be partially specified, thus having the benefit of explictness as well as
inference, but avoiding the obligation of the “all or nothing” explicitness usually
enforced upon the programmer. Although this feature is independent of explicit
parameter passing, it blends nicely with it.

• Types can be composed of the usual base types, predicates and quantifiers (both
universal and existential) in arbitrary combinations.

We will focus on all but the last items of the preceding list: the explicit passing of values
for implicit parameters. Although explicit typing forms the foundation on which we
build [6, 5], we discuss it only as much as is required.
Related to programming languages in general, our contribution, though inspired by
and executed in the context of Haskell, offers language designers a mechanism for
more sophisticated control over parameter passing, by allowing a mixture of explicit
and implicit parameter passing.
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Outline of this paper In this paper we focus on the exploration of explicitly specified
implicit parameters, to be presented in the context of EH, a Haskell variant [4, 7, 6, 5] in
which all features described in this paper have been implemented. In Section 2 we start
with preliminaries required for understanding the remainder of this paper. In Section 3
we present examples of what we can express in EH. The use of partial type signatures
and their interaction with predicates is demonstrated in Section 4. In Section 5 we
give some insight in our implementation, highlighting the distinguishing aspects as
compared to traditional implementations. In Section 6 we discuss some remaining
design issues and related work. We conclude in Section 7.

Limitations of this paper Our work is made possible by using some of the features
already available in EH, for example higher ranked types and the combination of type
checking and inferencing. We feel that our realistic setting contributes to a discussion
surrounding the issues of combining explicitly specified and inferred program aspects
[42] as it offers a starting point for practical experience. For reasons of space we have
made the following choices:

• We present examples and part of our implementation, so the reader gets an im-
pression of what can be done and how it ties in with other parts of the implemen-
tation [4].

• We do not present all the context required to make our examples work. This
context can be found elsewhere [6, 7, 5].

• We focus on prototypical implementation before considering formally proving
properties of EH.

• We do not prove properties like soundness, completeness and principality. In
Section 6 we will address the reasons why have chosen not to deal with those
issues here.

• Our type rules therefore describe an algorithm which has been implemented us-
ing an attribute grammer system [18, 2]. An attribute grammar provides better
separation of implementation aspects whereas type rules are more concise in
their presentation; we therefore have chosen to incorporate typing rules in this
paper. We describe the similarities between typing rules and their attribute gram-
mar counterpart in a companion paper [8].

2 Preliminaries

Intended as a platform for both education and research, EH offers advanced features
like higher ranked types, existential types, partial type signatures and records. Syn-
tactic sugar has been kept to a minimum in order to ease experimentation with and
understanding of the implementation; other mechanisms like syntax macro’s [3] pro-
vide the means for including additional syntax into the language without having to
change the compiler.
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Values (expressions, terms):
e ::= int | char literals
| i program variable
| e e application
| λi→ e abstraction
| let d in e local definitions
| (l = e, ...) record
| (e | l B e, ...) record update
| e.l record selection
| e (!ef π!) explicit implicit application
| λ(!if π!)→ e explicit implicit abstraction

Declarations of bindings:
d ::= i = e value binding
| i :: σ value type signature
| data σ = I σ data type
| class π⇒ π where d class
| instance π⇒ π where d introduced instance
| instance if π⇒ π where d named introduced instance
| instance i :: π⇒ π where d named instance
| instance ef π value introduced instance

Identifiers:
ι ::= i lowercase: (type) variables
| I uppercase: (type) constructors
| l field labels

Figure 1: EH terms (emphasized ones explained throughout the text)
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Fig. 1 and Fig. 2 show the terms and types featured in EH. Throughout this paper
all language constructs will be gradually introduced and explained. In general, we
designed EH to be as upwards compatible as possible with Haskell. We point out some
aspects required for understanding the discussion in the next section:

• An EH program is single stand alone term. All types required in subsequent ex-
amples are either silently assumed to be similar to Haskell or will be introduced
explicitly.

• All bindings in a let expression are analysed together; in Haskell this constitutes
a binding group.

• We represent dictionaries by records. Records are denoted as parenthesized
comma separated sequences of field definitions. Extensions and updates to a
record e are denoted as (e | ...), with e in front of the vertical bar ‘|’. The notation
and semantics is based on existing work on extensible records [11, 26]. Record
extension and updates are useful for re-using values from a record.

The universe of types as used in this paper is shown in Fig. 2. A programmer can spec-
ify types using the same syntax. We mention this because often types are categorized
based on the presence of (universal) quantifiers and predicates [15, 37]. We however
allow quantifiers at higher ranked positions in our types and predicates as well. For
example, the following is a valid type expression in EH:

(∀a.a→ a)→ (∀b.b→ b)

Existential types are part of EH, but are omitted here because we will not use them
in this paper. Quantification has lower priority than the other composite types, so in a
type expression without parentheses the scope of the quantifier extends to the far right
of the type expression.
We make no attempt to infer higher ranked types [29, 30, 17]; instead we propagate
explicitly specified types as good as possible to wherever this information is needed.
Our strategies here are elaborated in a forthcoming publication [5].

3 Implicit parameters

In this section we give EH example programs, demonstrating most of the features re-
lated to implicit parameters. After pointing out these features we continue with explor-
ing the finer details.

Basic explicit implicit parameters Our first demonstration EH program contains
the definition of the standard Haskell function nub which removes duplicate elements
from a list. A definition for List has been included; definitions for Bool, filter and not
are omitted. In this example the class Eq also contains ne which we will omit in later
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Types:
σ ::= Int | Char literals
| v variable
| σ→ σ abstraction
| π⇒ σ implicit abstraction
| σ σ type application
| ∀v.σ universally quantified type
| (l :: σ, ...) record

Types for impredicativity inferencing:
σ ::= ...
| v [ϕ] type alternatives

� ::= σ distinguishing notation for σ with v [ϕ]

Figure 2: EH types

examples. Notice that a separate nubBy, which is in the Haskell libraries enabling the
parameterisation of nub with an equality test, is no longer needed:

let data List a = Nil | Cons a (List a)
class Eq a where

eq :: a→ a→ Bool
ne :: a→ a→ Bool

instance dEqIntf Eq Int where -- (1)
eq = primEqInt
ne = λx y→ not (eq x y)

nub :: ∀ a.Eq a⇒ List a→ List a
nub = λxx→ case xx of

Nil → Nil
Cons x xs→ Cons x (nub (filter (ne x) xs))

eqMod2 :: Int → Int → Bool
eqMod2 = λx y→ eq (mod x 2) (mod y 2)
n1 = nub (!dEqIntf Eq Int!) -- (2)

(Cons 3 (Cons 3 (Cons 4 Nil)))
n2 = nub (!(eq = eqMod2 -- (2)

, ne = λx y→ not (eqMod2 x y)
)f Eq Int

!)
(Cons 3 (Cons 3 (Cons 4 Nil)))

in ...

This example demonstrates the use of the two basic ingredients required for being
explicit in the use of implicit parameters (the list items correspond to the commented
number in the example):
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1. The notationf binds an identifier, here dEqInt, to the dictionary representing
the instance. The record dEqInt from now on is available as a normal value.

2. Explicitly passing a parameter is syntactically denoted by an expression between
(! and !). The predicate after thef explicitly states the predicate for which the
expression is an instance dictionary (or evidence). The dictionary expression for
n1 is formed by using dEqInt, for n2 a new record is created: a dictionary can
also be created by updating an already existing one like dEqInt; in our discussion
(Section 6) we will come back to this.

This example demonstrates our view on implicit parameters:

• Program values live in two, possibly overlapping, worlds, explicit and implicit.

• Parameters are either passed explicitly, by the juxtapositioning of explicit func-
tion and argument expressions, or passed implicitly (invisible in the program
text) to an explicit function value. In the implicit case the language definition
determines which value to take from the implicit world.

• Switching between the explicit and implicit world is accomplished by means of
additional notation. We go from implicit to explicit by instance definitions with
the naming extension, and in the reverse direction by means of the (! !) construct.

The Modular motivating example now can be simplified to (merging our notation into
Haskell):

class Modular a where modulus :: a
newtype M a = M a
normalize :: (Modular a, Integral a)⇒ a→ M a
normalize a = M (mod a modulus)
instance (Modular a, Integral a)⇒ Num (M a) where

M a +M b = normalize (a + b)
... -- remaining definitions omitted

withModulus :: a→ (Modular a⇒ w)→ w
withModulus (m :: a) k
= k (!(modulus = m)f Modular a!)

Higher order predicates We also allow the use of higher order predicates. Higher
order predicates are already available in the form of instance declarations. For example,
the following program fragment defines the instance for Eq (List a) (the code for the
body of eq has been omitted):

instance dEqListf Eq a⇒ Eq (List a) where
eq = λx y→ ...

The important observation is that in order to be able to construct the dictionary for
Eq (List a) we need a dictionary for Eq a. This corresponds to interpreting Eq a ⇒
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Eq (List a) as stating that Eq (List a) can be proven from Eq a. The implementation for
this instance is a function taking the dictionary for Eq a and constructing the dictionary
for Eq (List a). Such a function is called a dictionary transformer.
We allow higher order predicates to be passed as implicit arguments, provided the need
for this is specified explicitly. For example, in f we can abstract from the dictionary
transformer for Eq (List a), which can then be passed either implicitly or explicitly:

f :: (∀ a.Eq a⇒ Eq (List a))⇒ Int → List Int → Bool
f = λp q→ eq (Cons p Nil) q

The effect is that the dictionary for Eq (List Int) will be computed inside f as part of its
body, using the passed dictionary transformer and a more globally available dictionary
for Eq Int. Without the use of this construct the dictionary would be computed only
once globally by:

let dEqListInt = dEqList dEqInt

The need for higher order predicates really becomes apparent when genericity is im-
plemented using the class system. The following example is taken from Hinze [16]:

let data Bit = Zero | One
data GRose f a = GBranch a (f (GRose f a))

in let class Binary a where
showBin :: a→ List Bit

instance dBI f Binary Int where
showBin = ...

instance dBLf Binary a⇒ Binary (List a) where
showBin = ...

instance dBGf (Binary a, (∀ b.Binary b⇒ Binary (f b)))
⇒ Binary (GRose f a) where

showBin = λ(GBranch x ts)
→ showBin x ++ showBin ts

in let v1 = showBin (GBranch 3 Nil)
in v1

The explicit variant of the computation for v1 using the explicit parameter passing
mechanism reads:

v1 = showBin (!dBG dBI dBLf Binary (GRose List Int)!)
(GBranch 3 Nil)

The value for dBG is defined by the following translation to an explicit variant using
records; the identifier showBin has been replaced by sb, List by L and Bit by B in order
to keep the programfragment compact:

sb = λd → d.sb
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dBG :: (sb :: a→ L B)
→ (∀ b.(sb :: b→ L B)→ (sb :: f b→ L B))
→ (sb :: GRose f a→ L B)

dBG = λdBa dBf → d
where d = (sb = λ(GBranch x ts)

→ sb dBa x ++ sb (dBf d) ts
)

Hinze’s solution essentially relies on the use of the higher order predicate Binary b ⇒
Binary (f b) in the context of Binary (GRose f a). The rationale for this particular code
fragment falls outside the scope of this paper, but the essence of its necessity lies in the
definition of the GRose data type which uses a type constructor f to construct the type
(f (GRose f a)) of the second member of GBranch. When constructing an instance
for Binary (GRose f a) an instance for this type is required. Type (variable) f is not
fixed, so we cannot provide an instance for Binary (f (GRose f a)) in the context of
the instance. However, given dictionary transformer dBf f Binary b ⇒ Binary (f b)
and the instance d f Binary (GRose f a) under construction, we can construct the
required instance: dBf d. The type of v1 in the example instantiates to GRose List Int;
the required dictionary for the instance Binary (GRose List Int) can be computed from
dBI and dBL.

The finer details For our discussion we take the following fragment as our starting
point:

let f = λp q r s→ (eq p q, eq r s)
in f 3 4 5 6

Haskell infers the following type for f :

f :: ∀ a b.(Eq b,Eq a)⇒ a→ a→ b→ b→ (Bool,Bool)

On the other hand, EH infers:

f :: ∀ a.Eq a⇒ a→ a→ ∀ b.Eq b⇒ b→ b→ (Bool,Bool)

EH not only inserts quantifiers as close as possible to the place where the quantified
type variables occur, but does this for the placement of predicates in a type as well.
The idea is to instantiate a quantified type variable or pass an implicit parameter cor-
responding to a predicate as lately as possible, where later is defined as the order in
which arguments are passed.
The position of a predicate in a type determines the position in a function application
(of a function with that type) where a value for the corresponding implicit parameter
may be passed explicitly. For example, for f in the following fragment first we may
pass a dictionary for Eq a, then we must pass two normal arguments, then (again) we
may pass a dictionary, and finally (again) we must pass two normal arguments:
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let f :: ∀a.Eq a⇒ a→ a→ ∀b.Eq b⇒ b→ b→ (Bool,Bool)
f = λp q r s→ (eq p q, eq r s)

in f 3 4
(!(eq = eqMod2)f Eq Int!) 5 6

The value for the first implicit parameter (Eq a) is computed automatically, the value
(an explicitly constructed dictionary record) for the second (Eq b) is explicitly passed
by means of (! !). Inside these delimiters we specify both value and the predicate for
which it is a witness. The notation (!e f p!) (f appears in the source text as <:)
suggests a combination of “is of type” and “is evidence for”. Here “is of type” means
that the dictionary e must be of the record type introduced by the class declaration for
the predicate p. The phrase “is evidence for” means that the dictionary e is used as the
proof of the existence of the implicit argument to the function f .
Explicitly passing a value for an implicit parameter is optional. However, if we explic-
itly pass a value, all preceding implicit parameters in a consecutive sequence of implicit
parameters must be passed as well. In a type expression, a consecutive sequence of im-
plicit parameters corresponds to sequence of predicate arguments delimited by other
arguments. For example, if we were to pass a value to f for Eq b with the following
type, we need to pass a value for Eq a as well:

f :: ∀ a b.(Eq a,Eq b)⇒ a→ a→ b→ b→ (Bool,Bool)

We can avoid this by swapping the predicates, as in:

f :: ∀ a b.(Eq b,Eq a)⇒ a→ a→ b→ b→ (Bool,Bool)

For this type we can pass a value explicitly for Eq b. We may omit a parameter for Eq a
because dictionaries for the remaining predicates (if any) are automatically passed, just
like Haskell.
The above types for f have to be specified explicitly. All types signatures for f are
isomorphic, so we always can write wrapper functions for the different varieties.

Overlapping instances By explicitly providing a dictionary the default decision mak-
ing by EH is overruled. This is useful in situations where no unique choice is possible,
for example in the presence of overlapping instances:

let instance dEqInt1f Eq Int where
eq = primEqInt

instance dEqInt2f Eq Int where
eq = eqMod2

f = ...
in f (!dEqInt1f Eq Int!) 3 4

(!dEqInt2f Eq Int!) 5 6

The two instances for Eq Int overlap, but we still can refer to each associated dictionary
individually, because of the names dEqInt1 and dEqInt2 that were given to the dictio-
naries. Thus overlapping instances can be avoided by letting the programmer decide
which dictionaries to pass to the call f 3 4 5 6.
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Overlapping instances can also be avoided by not introducing them in the first place.
However, this conflicts with our goal of allowing the programmer to use different in-
stances at different places in a program. This problem can be overcome by excluding
instances participating in the predicate proving machinery by:

instance dEqInt2 :: Eq Int where
eq = λ → False

The naming of a dictionary by means off actually does two things. It binds the name
to the dictionary and it specifies to use this dictionary as the default instance for Eq Int
for use in its proof process. The notation :: only binds the name but does not introduce
it into proving predicates. If one at a later point wants to introduce the dictionary
nevertheless, possibly overriding an earlier choice, this may done by specifying:

instance dEqInt2f Eq Int

Local instances We allow instances to be declared locally, within the scope of other
program variables. A local instance declaration shadows an instance declaration intro-
duced at an outer level:

• If their names are equal, the innermost shadows the outermost.

• In case of having overlapping instances available during the proof of predicates
arising inside the let expression, the innermost instance takes precedence over
the outermost.

This mechanism allows the programmer to fully specify which instances are active at
any point in the program text:

let instance dEqInt1f Eq Int where ...
instance dEqInt2 :: Eq Int where ...
g = λx y→ eq x y

in let v1 = g 3 4
v2 = let instance dEqInt2f Eq Int

in g 3 4
in ...

The value for v1 is computed with dEqInt1 as evidence for Eq Int, whereas v2 is com-
puted with dEqInt2 as evidence.
In our discussion we will come back to local instances.

Higher order predicates revisited As we mentioned earlier, the declaration of an
instance with a context actually introduces a function taking dictionaries as arguments:

let instance dEqIntf Eq Int where
eq = primEqInt
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instance dEqListf Eq a⇒ Eq (List a) where
eq = ...

f :: ∀ a.Eq a⇒ a→ List a→ Bool
f = λp q→ eq (Cons p Nil) q

in f 3 (Cons 4 Nil)

In terms of predicates the instance declaration states that given a proof for the context
Eq a, the predicate Eq (List a) can be proven. In terms of values this translates to a
function which takes the evidence of the proof of Eq a, a dictionary record (eq :: a →
a→ Bool), to evidence for the proof of Eq (List a) [21]:

dEqInt :: (eq :: Int → Int → Bool)
dEqList :: ∀ a.(eq :: a→ a→ Bool)

→ (eq :: List a→ List a→ Bool)
eq = λdEq x y→ dEq.eq x y

With these values, the body of f is mapped to:

f = λdEq a p q→ eq (dEqList dEq a) (Cons p Nil) q

This translation can now be expressed explicitly as well; a dictionary for Eq (List a) is
explicitly constructed and passed to eq:

f :: ∀ a.Eq a⇒ a→ List a→ Bool
f = λ(!dEq af Eq a!)

→ λp q→ eq (!dEqList dEq af Eq (List a)!)
(Cons p Nil) q

The type variable a is introduced as a lexically scoped type variable [36], available for
further use in the body of f .
The notation Eq a ⇒ Eq (List a) in the instance declaration for Eq (List a) introduces
both a predicate transformation for a predicate (from Eq a to Eq (List a)), to be used for
proving predicates, as well as a corresponding dictionary transformer function. Such
transformers can also be made explicit in the following variant:

f :: (∀a.Eq a⇒ Eq (List a))⇒ Int → List Int → Bool
f = λ(!dEq Laf ∀a.Eq a⇒ Eq (List a)!)

→ λp q→ eq (!dEq La dEqIntf Eq (List Int)!)
(Cons p Nil) q

Instead of using dEqList by default, an explicitly specified implicit predicate trans-
former, bound to dEq La is used in the body of f to supply eq with a dictionary for
Eq (List Int). This dictionary is explicitly constructed and passed to eq; both the con-
struction and binding to dEq La may be omitted. We must either pass a dictionary for
Eq a⇒ Eq (List a) to f ourselves explicitly or let it happen automatically; here in both
cases dEqList is the only choice possible.
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4 Partial type signatures

Explicitly specifying complete type signatures can be a burden to the programmer,
especially when types become large and only a specific part of the type needs to be
specified explicitly. EH therefore allows partial type signatures. We will show its use
based on the function:

f = λp q r s→ (eq p q, eq r s)

for which we infer the following type if no specification of its type is given:

f :: ∀ a.Eq a⇒ a→ a→ ∀ b.Eq b⇒ b→ b→ (Bool,Bool)

Variation 1: Now, if we want to make clear that the dictionary for b should be passed
before any of the a’s we write:

f :: ∀ b.(Eq b, ... )⇒ ...→ ...→ b→ b→ ...
-- INFERRED:

f :: ∀ a b.(Eq b,Eq a)⇒ a → a → b→ b→ (Bool,Bool)

The parts indicated by ‘...’ are inferred.
Variation 2: The dots ‘...’ in the type signature specify parts of the signature to be
filled by the type inferencer. The inferred type may be polymorphic if no restrictions
on its type are found by the type inferencer, or it may be monomorphic as for r :: Int in:

f :: ∀ a.(Eq a, ... )⇒ a→ a→ ...
f = λ p q r s → (eq p q, eq r 3)

-- INFERRED:
f :: ∀ a. Eq a ⇒ a→ a→ Int → ∀ b.b→ (Bool ,Bool )

Variation 3: If instead we still want s to have the same type as r we can use a more
general variant of ‘...’ in which we can refer to the inferred type using a type variable
prefixed with a percent symbol ’%’, called a named wildcard:

f :: ∀ a.(Eq a, ... )⇒ a→ a→ % b→ % b→ ...
f = λ p q r s → (eq p q, eq r 3)

-- INFERRED:
f :: ∀ a. Eq a ⇒ a→ a→ Int → Int → (Bool ,Bool )

For the remainder of this paper we mainly use ‘...’, called a type wildcard, or predicate
wildcard in predicate positions. Although the given example suggests that a wildcard
may be used anywhere in a type, there are some restrictions:

• A named wildcard %a cannot be used as a predicate wildcard, because %a then
would refer to a set of predicates; it does not make much sense to pass this set
twice.
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• A type wildcard can occur at an argument or result position of a function type.
A type wildcard itself may bind to a polymorphic type with predicates. In other
words, impredicativeness is allowed. This is particularly convenient for type
wildcards on a function’s result position. For example, the type wildcard %b in

f :: ∀ a.Eq a⇒ a→ a→ %b

is bound to

∀ b.Eq b⇒ b→ b→ (Bool,Bool)

after further type inferencing.

• For the non wildcard part of a type signature all occurrences of a type variable
in the final type must be given. This is necessary because the type signature will
be quantified over explicitly introduced type variables.

• A sequence of explicit predicates may end with a predicate wildcard, standing for
an optional collection of additional predicates. Multiple occurrences of a pred-
icate wildcard or between explicit predicates would defeat the purpose of being
partially explicit. For example, for the type signature (Eq b, ...,Eq c) ⇒ ... the
argument position of Eq c’s dictionary cannot be predicted by the programmer.

• The absence of a predicate wildcard in front of a type means no predicates are al-
lowed. The only exception to this rule is a single type variable or a type wildcard,
since these may be bound to a type which itself contains predicates.

5 Implementation

Because of space limitations we focus on the distinguishing characteristics of our im-
plementation in the EH compiler [4, 7, 6].
The type system is given in Fig. 3 which describes the relationship between types in
the type language in Fig. 2. Our σ types allow for the specification of the usual base
types (Int,Char) and type variables (v) as well aggregrate types like normal abstrac-
tion (σ → σ), implicit abstraction (π ⇒ σ), (higher ranked) universal quantification
(∀α.σ), predicates (π) and their transformations (π ⇒ π). Translations ϑ represent
code resulting from the transformation from implicit parameter passing to explicit pa-
rameter passing. An environment Γ binds value identifiers to types (ι 7→ σ). Instance
declarations result in bindings of predicates to translations (dictionary evidence) paired
with their type (π ϑ :σ) whereas class declarations bind a predicate to its dictionary
type (π σ):

bind = ι 7→ σ | π ϑ : σ | π σ
Γ = bind

We use vector notation for any ordered collection, denoted with a horizontal bar on top.
Concatenation of vectors and pattern matching on a vector is denoted by a comma ’,’.
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Γ
expr
` e : σ{ ϑ

Γ
expr
` int : Int{ int

-Ev

(ι 7→ σι) ∈ Γ

Γ
expr
` ι:{ ι

-Ev

Γ
expr
` e2 : σa { ϑ2

Γ
expr
` e1 : σa → σ{ ϑ1

Γ
expr
` e1 e2 : σ{ ϑ1 ϑ2

-Ev

i 7→ σi,Γ
expr
` e : σe { ϑe

Γ
expr
` λi→ e : σi → σe { λi→ ϑe

-Ev

i 7→ σi,Γ
expr
` e : σ{ ϑe

i 7→ σi,Γ
expr
` ei:{ ϑi

Γ
expr
` let i :: σi; i = ei in e : σ{ let i = ϑi in ϑe

--Ev

Γ
pred
` π{ ϑπ : σπ

Γ
expr
` e : π⇒ σ{ ϑe

Γ
expr
` e : σ{ ϑeϑπ

-Ev

Figure 3: Type rules for expressions
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Basic typing rules Type rules in Fig. 3 read like this: given contextual information Γ
it can be proven (`) that term e has (:) type σ and some additional ({) results, which in
our case is the code ϑ in which passing of all parameters has been made explicit. Later
type rules will incorporate more properties; all separated by a semicolon ’;’. If some
property does not matter or is not used, an underscore ’ ’ is used to indicate this. Rules
are labeled with names of the form x − variantversion in which x is a single character
indicating the syntactic element, variant its variant and version a particular version
of the type rule which also corresponds to a compiler version in the implementation.
In this paper only versions Ev, EvK and I are used, respectively addressing evidence
translation, use of expected types and the handling of implicit parameters. We have
only included the most relevant type rules and have omitted those dealing with the
introduction of classes and instances; these are all standard [9].
The conciseness of the rules suggests that its implementation should not pose much of
a problem, but the opposite is true. Unfortunately, in their current form the rules do not
fully specify how to combine them in order to build a complete proof tree, and hence
are not algorithmic [38]. This is especially true for the last rule -, since its use is
not associated with a syntactic construct of the source language. Algorithmic variants
of the rules have two pleasant properties:

• The syntax tree determines how to combine the rules.

• By distributing data over a larger set of variables an order in which to compute
them becomes apparent.

The first property is taken care of by the parser, and based on the second property we
can implement rules straightforwardly using an attribute grammar, mapping variables
in rules to attributes. Our situation is complicated due to a combination of several
factors:

• The structure of the source language cannot be used to determine where rule -
 should be applied: the term e in the premise and the conclusion are the same.
Furthermore, the predicate π is not mentioned in the conclusion so discovering
whether this rule should be applied depends completely on the typing rule. Thus
the necessity to pass an implicit parameter may spontaneously pop up in any
expression.

• In the presence of type inferencing nothing may be known yet about e at all,
let alone which implicit parameters it may take. This information usually only
becomes available after the generalization of the inferred types.

• These problems are usually circumvented by limiting the type language for types
that are used during inferencing to predicate-free types. By effectively stripping a
type from both its predicates and quantifiers standard Hindley-Milner (HM) type
inferencing becomes possible. However, we allow predicated as well as quanti-
fied types to participate in type inferencing. As a consequence, predicates as well
as quantifiers can be present in any type encountered during type inferencing.
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Implicitness made explicit So, the bad news is that we do not know where implicit
parameters need to be passed; the good news is that if we represent this lack of knowl-
edge explicitly we can still figure out if and where implicit parameters need to be
passed. This is not a new idea, because type variables are usually used to refer to a
particular type about which nothing is yet known. The general strategy is to represent
an indirection in time by the introduction of a free variable. In a later stage of a type in-
ferencing algorithm such type variables are then replaced by more accurate knowledge,
if any. Throughout the remainder of this section we work towards algorithmic versions
of the type rules in which the solution to equations between types are computed by
means of

• the use of variables representing unkown information

• the use of constraints on type variables representing found information

In our approach we also employ the notion of variables for sets of predicates, called
predicate wildcard variables, representing a yet unknown collection of implicit param-
eters, or, more accurately their corresponding predicates. These predicate wildcard
variables are used in a type inferencing/checking algorithm which explicitly deals with
expected (or known) types σk, as well as extra inferred type information.

Notation Meaning
σ type
σk expected/known type
v type variable
ι identifier
i value identifier
I (type) constructor identifier, type constant
Γ assumptions, environment, context
C constraints, substitution
Ck..l constraint composition of Ck... Cl

6 subsumption, “fits in” relation
ϑ translated code
π predicate
$ predicate wildcard (collection of predicates)

Figure 4: Legenda of type related notation

Fig. 5 provides a summary of the judgement forms we use. The presence of properties
in judgements varies with the version of typing rules. Both the most complex and its
simpler versions are included.
These key aspects are expressed in the adapted rule for predicates shown in Fig. 6. This
rule makes two things explicit:

• The context provides the expected (or known) type σk of e. Jointly operating,
all our rules maintain the invariant that e will get assigned a type σ which is a
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Version Judgement Read as

I Γ;σk expr
` e : σ{ C;ϑ With assumptions Γ, expected type σk,

expression e has type σ and translation
ϑ (with dictionary passing made ex-
plicit), requiring additional constraints
C.

EvK Γ;σk expr
` e : σ{ ϑ version for evidence + expected type

only

Ev Γ
expr
` e : σ{ ϑ version for evidence only

I Γ
fit
` σl 6 σr : σ{ C; δ σl is subsumed by σr, requiring addi-

tional constraints C. C is applied to σr

returned as σ. Proving predicates (us-
ing Γ) may be required resulting in co-
ercion δ.

EvK
fit
` σl 6 σr : σ version for evidence + expected type

only

I Γ
pred
` π{ ϑ : σ Prove π, yielding evidence ϑ and evi-

dence type σ.

I σk pat
` p : σ;Γp { C Pattern has type σ and variable bind-

ings Γp.

Figure 5: Legenda of judgement forms for each version

Γ;σk expr
` e : σ{ ϑ

fit
` σι 6 σ

k : σ
(ι 7→ σι) ∈ Γ

Γ;σk expr
` ι : σ{ ι

-EvK

Γ
pred
` π{ ϑπ : σπ

Γ;$⇒ σk expr
` e : π⇒ σ{ ϑe

Γ;σk expr
` e : σ{ ϑeϑπ

-EvK

Figure 6: Implicit parameter passing with expected type
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subtype of σk, denoted by σ 6 σk (σ is said to be subsumed by σk), enforced by
a fit judgement (see Fig. 5 for the form of the more complex variant used later in
this paper). The fit judgement also yields a type σ, the result of the subsumption.
This type is required because the known type σk may only be partially known,
and additional type information is to be found in σ.

• An implicit parameter can be passed anywhere; this is made explicit by stating
that the known type of e may start with a sequence of implicit parameters. This
is expressed by letting the expected type in the premise be $→ σk. In this way
we require the type of e to have the form $ → σk and also assign an identifier
$ to the implicit part.

A predicate wildcard variable makes explicit that we can expect a (possibly empty)
sequence of implicit parameters and at the same time gives an identity to this sequence.
The type language for predicates thus is extended with a predicate wildcard variable
$, corresponding to the dots ‘...’ in the source language for predicates:

π ::= I σ
| π⇒ π
| $

In algorithmic terms, the expected type σk travels top-to-bottom in the abstract syntax
tree and is used for type checking, whereas σ travels bottom-to-top and holds the in-
ferred type. If a fully specified expected type σk is passed downwards, σ will turn out
to be equal to this type. If a partially specified type is passed downwards the unspeci-
fied parts may be filled in by the type inferencer.
The adapted typing rule - in Fig. 6 still is not much of a help as to deciding
when it should be applied. However, as we only have to deal with a limited number
of language constructs, we can use case analysis on the source language constructs.
In this paper we only deal with function application, for which the relevant rules are
shown in their full glory in Fig. 8 and will be explained soon. The rules in Fig. 8
look complex. The reader should realize that the implementation is described using
an attribute grammar system [7, 2] which allows the independent specification of all
aspects which now appear together in a condensed form in Fig. 8. The tradeoff is
between compact but complex type rules and more lengthy but more understandable
attribute grammar notation.

Notation The typing rules in Fig. 7 and Fig. 8 are directed towards an implementa-
tion; additional information flows through the rules to provide extra contextual infor-
mation. Also, the rule is more explicit in its handling of constraints computed by the
rule labeled fit for the subsumption 6; a standard substitution mechanism constraining
the different variable variants is used for this purpose:

bindv = v 7→ σ | $ 7→ π,$ | $ 7→ ∅
C = bindv
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The mapping from type variables to types v 7→ σ constitutes the usual substitution
for type variables. The remaining alternatives map a predicate wildcard variable to a
possibly empty list of predicates.
Not all judgement forms used in Fig. 7 and Fig. 8 are included in this paper; in the
introduction we indicated we focus here on that part of the implementation in which
explicit parameter passing makes a difference relative to the standard [9, 38, 21]. Fig. 5
provides a summary of the judgement forms we use.
The judgement pred (Fig. 5) for proving predicates is standard with respect to context
reduction and the discharge of predicates [9, 21, 25], except for the scoping mecha-
nism introduced. We only note that the proof machinery must now take the scoped
availability of instances into account and can no longer assume their global existence.

Γ;σk expr
` e : σ{ C;ϑ

Γ;σa
expr
` e2 : { C2;ϑ2

fit
` πd ⇒ σd 6 πa ⇒ v : ⇒ σa { ;

πd  σd ∈ Γ

Γ; π2 ⇒ σ
k expr
` e1 : πa ⇒ σ{ C1;ϑ1

v fresh

Γ;σk expr
` e1 (!e2 f π2!) : C2σ{ C2..1;ϑ1 ϑ2

-I

[πa  p : σa ],Γp,Γ;σr
expr
` e : σe { C3;ϑe

σa
pat
` p : ;Γp { C2

fit
` πd ⇒ σd 6 πa ⇒ v2 : ⇒ σa { ;

πd  σd ∈ Γ

Γ
fit
` π⇒ v1 6 σ

k : πa ⇒ σr { C1;
v1, v2 fresh

Γ;σk expr
` λ(!pf π!)→ e : C3..2πa ⇒ σe { C3..1; λp→ ϑe

-I

Figure 7: Type rules for explicit implicit parameters

Explicit parameter passing The rules in Fig. 7 specify the typing for the explicit
parameter passing where an implicit parameter is expected. The rules are similar to
those for normal parameter passing; the difference lies in the use of the predicate. For
example, when reading through the premises of rule -, the function e1 is typed in a
context where it is expected to have type π2 → σ

k. We then require a class definition for
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the actual predicate πa of the function type to exist, which we allow to be instantiated
using the fit judgement which matches the class predicate πd with πa and returns the
dictionary type in σa. This dictionary type σa is the expected type of the argument.
Because we are explicit in the predicate for which we provide a dictionary value, we
need not use any proving machinery. We only need the predicate to be defined so we
can use its corresponding dictionary type for further type checking.
The rule - for λ-abstractions follows a similar strategy. The type of the λ-expression
is required to have the form of a function taking an implicit parameter. This fit judge-
ment states this, yielding a predicate πa which via the corresponding class definition
gives the dictionary type σa. The pattern is expected to have this type σa. Furthermore,
the body e of the λ-expression may use the dictionary (as an instance) for proving other
predicates so the environment Γ for e is extended with a binding for the predicate and
its dictionary p.

Γ;σk expr
` e : σ{ C;ϑ

πk
i  ϑ

k
i ,Γ

pred
` C3πa { ϑa :

πk
i  ϑ

k
i ,Γ;σa

expr
` e2 : { C3;ϑ2

πk
i  ϑ

k
i ,Γ;$⇒ v→ σk

r
expr
` e1 : πa ⇒ σa → σ{ C2;ϑ1

πk
i  ϑ

k
i ≡ instπ(πk

a)

Γ
fit
` $k ⇒ vk 6 σk : πk

a ⇒ σ
k
r { C1;

$,$k, vk, v fresh

Γ;σk expr
` e1 e2 : C3σ{ C3..1; λϑk

i → ϑ1 ϑa ϑ2

-I

π
p
i  ϑ

p
i ,Γp,Γ;σr

expr
` e : σe { C3;ϑe

π
p
i  ϑ

p
i ≡ instπ(πa)

σp
pat
` p : ;Γp { C2

Γ
fit
` $⇒ v1 → v2 6 σ

k : πa ⇒ σp → σr { C1;
$, vi fresh

Γ;σk expr
` λp→ e : C3..2πa ⇒ C3σp → σe { C3; λϑp

i → λp→ ϑe

-I

Figure 8: Implicit parameter type rules

Implicit parameter passing: application From bottom to top, rule - in Fig. 8
reads as follows (to keep matters simple we do not mention the handling of constraints
C). The result of the application is expected to be of type σk, which in general will
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have the structure $k → vk. This structure is enforced and checked by the subsump-
tion check described by the rule fit; the rule binds $k and vk to the matching parts
of σk similar to pattern matching. We will not look into the fit rules for 6; for this
discussion it is only relevant to know that if a $ cannot be matched to a predicate it
will be constrained to $ 7→ ∅. In other words, we start with assuming that implicit
parameters may occur everywhere and subsequently we try to prove the contrary. The
subsumption check 6 gives a possible empty sequence of predicates πk

a and the result
type σk

r . The result type is used to construct the expected type $ → v → σk
r for e1.

The application e1 e2 is expected to return a function which can be passed evidence
for πk

a. We create fresh identifiers ϑk
i and bind them to these predicates. Function instπ

provides these names bound to the instantiated variants πk
i of πk

a. The names ϑk
i are used

in the translation, which is a lambda expression accepting πk
a. The binding πk

i  ϑ
k
i is

used to extend the type checking environment Γ for e1 and e2 which both are allowed
to use these predicates in any predicate proving taking place in these expressions. The
judgement for e1 will give us a type πa → σa → σ, of which σa is used as the ex-
pected type for e2. The predicates πa need to be proven and evidence to be computed;
the top judgement pred takes care of this. Finally, all the translations together with
the computed evidence forming the actual implicit parameters πa are used to compute
a translation for the application, which accepts the implicit parameters it is supposed
to accept. The body ϑ1ϑaϑ2 of this lambda expression contains the actual application
itself, with the implicit parameters are passed before the argument.
Even though the rule for implicitly passing an implicit parameter already provides a
fair amount of detail, some issues remain hidden. For example, the typing judgement
for e1 gives a set of predicates πa for which the corresponding evidence is passed by
implicit arguments. The rule suggests that this information is readily available in an
actual implementation of the rule. However, assuming e1 is a let bound function for
which the type is currently being inferred, this information will only become available
when the bindings in a let expression are generalized [23], higher in the corresponding
abstract syntax tree. Only then the presence and positioning of predicates in the type of
e1 can be determined. This complicates the implementation because this information
has to be redistributed over the abstract syntax tree.

Implicit parameter passing: λ-abstraction Rule - for lambda expressions from
Fig. 8 follows a similar strategy. At the bottom of the list of premises we start with an
expected type σk which by definition has to accept a normal parameter and a sequence
of implicit parameters. This is enforced by the judgement fit which gives us back pred-
icates πa used in a similar fashion as in rule -.

6 Discussion and related work

Soundness, completeness and principal types EH allows type expressions where
quantifiers and predicates may be positioned anywhere in a type, and all terms can be
explicitly typed with a type annotation. Thus we obtain the same expressiveness as
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system-F, making the issue of soundness and completeness of our type system irrele-
vant. What remains relevant are the following questions:

• For a completely explicitly typed program, is our algorithm and implementation
sound and complete?

• For a partially explicitly typed program, what is the characterisation of the types
that can be inferred for the terms for which no type has been given?

We have not investigated these questions in the sense of proving their truth or falsehood.
However, we have taken the following as our starting point:

• Stick to HM type inferencing, except for the following:

• Combine type checking and inferencing. In order to be able to do this, impred-
icative types are allowed to participate in HM type inferencing. This is a separate
issue we deal with elsewhere [5].

By design we avoid ‘breaking’ HM type inferencing. However, Faxen [10] demon-
strates the lack of principal types for Haskell due to a combination of language features.
EH’s quantified class constraints solve one of the problems mentioned by Faxen.
Our choice to allow quantifiers and predicates at any position in a type expression
provides the programmer with the means to specify the type signature that is needed,
but also breaks principality because the type inferencer will infer only a specific one
(with quantifiers and predicates as much as possible to the right) of a set of isomorphic
types. We have not investigated this further.
In general it also is an open question what can be said about principal types and other
desirable properties when multiple language features are combined into a complete
language. In this light we take a pragmatic approach and design starting point: if the
system guesses wrong, the programmer can repair it by adding extra (type) information.

Local instances Haskell only allows global instances because the presence of local
instances results in the loss of principal types for HM type inference [43]:

let class Eq a where eq :: a→ a→ Bool
instance Eq Int where
instance Eq Char where

in eq

With HM the problem arises because eq is instantiated without being applied to an
argument, hence no choice can be made at which type Eq a (arising from eq) should be
instantiated at. In EH, we circumvent this problem by delaying the instantiation of eq’s
type until it is necessary, for example when the value is used as part of an application
to an argument [6, 5].
Coherence is not a problem either because we do not allow overlapping instances.
Although local instances may overlap with global instances, their use in the proving
machinerey is dictated by their nesting structure, which is static: local instances take
priority over global instances.
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How much explicitness is needed Being explicit by means of the (! ... !) language
construct very soon becomes cumbersome because our current implementation requires
full specification of all predicates involved inside (! ... !). Can we do with less?

• Rule - from Fig. 7 uses the predicate π2 in (!e2 f π2!) directly, that is,
without any predicate proving, to obtain πd and its corresponding dictionary type
σd. Alternatively we could interpret (!e2 f π2!) as an addition of π2 to the set of
predicates used by the predicate proving machinery for finding a predicate whose
dictionary matches the type of e2. However, if insufficient type information is
known about e2 more than one solution may be found. Even if the type of e2
would be fully known, its type could be coerced in dropping record fields so as
to match different dictionary types.

• We could drop the requirement to specify a predicate and write just (!e2!) instead
of (!e2 f π2!). In this case we need a mechanism to find a predicate for the type
of the evidence provided by e2. This is most likely to succeed in the case of a
class system as the functions introduced by a class need to have globally unique
names. For other types of predicates like those for dynamically scoped values
this is less clear. By dropping the predicate in (!e2!) we also loose our advo-
cated advantage of explicitness because we can no longer specify type related
information.

• The syntax rule - requires a predicate π in its implicit argument (!pf π!).
It is sufficient to either specify a predicate for this form of a lambda expression
or to specify a predicate in a corresponding type annotation.

Whichever of these routes leads to the most useful solution for the programmer, if the
need arises our solution always gives the programmer the full power of being explicit
in what is required.

Binding time of instances One other topic deserves attention, especially since it
deviates from the standard semantics of Haskell. We allow the re-use of dictionaries
by means of record extension. Is the other way around allowed as well: can previously
defined functions of a dictionary use newly added values? In a variation of the example
for nub, the following invocation of nub is parameterized with an updated record; a new
definition for eq is provided:

nub (!(dEqInt | eq B eqMod2)f Eq Int!)
(Cons 3 (Cons 3 (Cons 4 Nil)))

In our implementation Eq’s function ne invokes eq, the one provided by means of the
explicit parameterization, thus allowing open recursion. This corresponds to a late
binding, much in the style employed by object oriented languages. This is a choice out
of (at least) three equally expressive alternatives:

• Our current solution, late binding as described. The consequence is that all
class functions now take an additional (implicit) parameter, namely the dictio-
nary where this dictionary function has been retrieved from.
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• Haskell’s solution, where we bind all functions at instance creation time. In our
nub example this means that ne still uses dEqInt’s eq instead of the eq provided
in the updated (dEqInt | eq B ...).

• A combination of these solutions, such as using late binding for default defini-
tions, and Haskell’s binding for instances.

Again, whichever of the solutions is preferred as the default case, especially in the light
of the absence of open recursion in Haskell, we notice that the programmer has all the
means available to express his differing intentions.

Dynamically scoped variables GHC [1] enables the passing of plain values as dy-
namically scoped variables (also known as implicit parameters). It is possible to model
this effect [19, 34, 1] with the concepts described thus far. For example, the following
program uses dynamically scoped variable ?x:

let f :: (?x :: Int)⇒ ...
f = λ ...→ ... ? x + 2 ...
? x = 3

in f ...

The signature of f specifies a predicate ?x :: Int, meaning that f can refer to the dy-
namically scoped variable x with type Int. Its value is introduced as a binding in a let
expression and is used in the body of f by means of ?x. This can be encoded using the
class system:

let class Has x a where
value x :: a

f :: (Has x Int)⇒ ...
f = λ ...→ ...value x + 2 ...
instance Has x Int where

value x = 3
in f ...

We only mention briefly some issues with this approach:

• The type for which an instance without context is defined usually is specified
explicitly. This is no longer the case for ? predicates if an explicit type signature
for e.g. let ? x = 3 is omitted.

• GHC [1] inhibits dynamically scoped variable predicates in the context of in-
stance declarations because it is unclear which scoped variable instance is to be
taken. Scoping for instances as available in EHC may well obviate this restric-
tion.

• Use of records for dictionaries can be optimized away because each class con-
tains a single field only.
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Our approach has the additional benefit that we are not obliged to rely on the proving
machinery by providing a dictionary directly:

let class Has x a ...
f :: (Has x Int)⇒ ...
f = λ ...→ ...value x + 2 ...

in f (!(value x = 3)f Has x Int!) ...

Named instances Scheffczyk has explored named instances as well [28, 41]. Our
work differs in several aspects:

• Scheffczyk partitions predicates in a type signature into ordered and unordered
ones. For ordered predicates one needs to pass an explicit dictionary, unordered
ones are those participating in the normal predicate proving by the system. In-
stances are split likewise into named and unnamed instances. Named instances
are used for explicit passing and do not participate in the predicate proving. For
unnamed instances this is the other way around. Our approach allows a pro-
grammer to make this partitioning explicitly, by stating which instances should
participate in the proof process. In other words, the policy of how to use the
implicit parameter passing mechanism is made by the programmer.

• Named instances and modules populate the same name space, separate from
the name space occupied by normal values. This is used to implement functors
as available in ML [32, 33] and as described by Jones [22] for Haskell. Our
approach is solely based on normal values already available.

• Our syntax is less concise than the syntax used by Scheffczyk. This is probably
difficult to repair because of the additional notation required to lift normal values
to the evidence domain.

Implementation The type inferencing/checking algorithm employed in this paper is
described in greater detail in [7, 6] and its implementation is publicly available [4],
where it is part of a work in progress. Similar strategies for coping with the combina-
tion of inferencing and checking are described by Pierce [39] and Peyton Jones [37].

7 Conclusion

Allowing explicit parameterization for implicit parameters gives the programmer an
additional mechanism for reusing existing functions. It also makes explicit what other-
wise remains hidden inside the bowels of a compiler. We feel that this a ’good thing’:
it should be possible to override automatically made decisions.
We have implemented all features described in this paper in the context of a com-
piler for EH [6, 7, 5]; in this paper we have presented the relevant part concerning
explicit implicit parameters in an as compact form as possible. To our knowledge our
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implementation is the first combining language features like higher ranked types, ex-
istentials, class system, explicit implicit parameters and extensible records into one
package together with a description of the implementation. We feel that this has only
been possible thanks to the use of an attribute grammar system which allows us to
independently describe all the separate aspects.
On a metalevel one can observe that the typing rules incorporate many details, up to a
point where their simplicity may easily get lost. A typing rule serves well as a
specification of the semantics of a language construct, but as soon as a typing rule
evolves towards an algorithmic variant it may well turn out that other ways of
describing, in particular attribute grammars, are a better vehicle for expressing
implementation aspects.
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