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Abstract

A promising approach to learn to play board games is to use reinforcement learning
algorithms that can learn a game position evaluation function. In this paper we examine
and compare three different methods for generating training games: (1) Learning by
self-play, (2) Learning by playing against an expert program, and (3) Learning from
viewing experts play against themselves. Although the third possibility generates high-
quality games from the start compared to initial random games generated by self-play,
the drawback is that the learning program is never allowed to test moves which it prefers.
We compared these three methods using temporal difference methods to learn the game
of backgammon. For particular games such as draughts and chess, learning from a large
database containing games played by human experts has as a large advantage that during
the generation of (useful) training games, no expensive lookahead planning is necessary
for move selection. Experimental results in this paper show how useful this method is for
learning to play chess and draughts.

Keywords: Board Games, Reinforcement Learning, TD(λ), Self-play, Learning
from Demonstration

1 Introduction

The success of the backgammon learning program TD-Gammon of Tesauro (1992, 1995)
was probably the greatest demonstration of the impressive ability of machine learning
techniques to learn to play games. TD-Gammon used reinforcement learning [18, 41]
techniques, in particularly temporal difference learning [39, 41] for learning a backgammon
evaluation function from training games generated by letting the program play against
itself. This had led to a large increase of interest in such machine learning methods
for evolving game playing computer programs from a randomly initialized program (i.e.
initially there is no a-priori knowledge of the game evaluation function, except for a
human extraction of relevant input features). Samuel (1959, 1967) pioneered research in
the use of machine learning approaches in his work on learning a checkers program. In
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his work he already proposed an early version of temporal difference learning for learning
an evaluation function.

For learning to play games value function based reinforcement learning (or simply re-
inforcement learning) or evolutionary algorithms are often used. Evolutionary algorithms
(EAs) have been used for learning to play backgammon [25], checkers [14], and othello
[22] and were quite successful. Reinforcement learning has been applied to learn a variety
of games, including backgammon [43, 44], chess [46, 2], checkers [28, 29, 31], and Go [34].
Other machine learning approaches learn an opening book, rules for classifying or playing
the endgame, or use comparison training to mimic the moves selected by human experts.
We will not focus on these latter approaches and refer to [16] for an excellent survey of
machine learning techniques applied to the field of game-playing.

EAs and reinforcement learning (RL) methods concentrate on evolving or learning an
evaluation function for a game position and after learning choose positions that have the
largest utility or value. By mapping inputs describing a position to an evaluation of that
position or input, the game program can choose a move using some kind of lookahead
planning. For the evaluation function many function approximators can be used, but
commonly weighted symbolic rules (a kind of linear network), or a multi-layer perceptron
that can automatically learn non-linear higher level representations of the input is used.

A simple strategy for evolving an evaluation function for a game using EAs is by
learning a neural network using coevolution [14, 25]. Here initially two neural networks
are initialized which play some number of games against themselves. After this the winner
is selected and is allowed to mutate its neural network weights to create a new opponent.
Then the previous winner and its mutated clone play a number of test games and this
is repeated many times. More complex forms of coevolution in which multiple tests are
evolved and used for evaluating players also exist. In this approach the aim is to evolve the
ideal set of tests for perfectly evaluating and comparing a number of different learners.
It has been shown that co-evolutionary approaches that evolve the tests can learn to
approximate this ideal set of tests [13].

A difference between EAs and reinforcement learning algorithms is that the latter
usually have the goal to learn the exact value function based on the long term reward
(e.g. a win gives 1 point, a loss -1, and a draw 0), whereas EAs directly search for a policy
which plays well without learning or evolving a good approximation of the result of a game.
Learning an evaluation function with reinforcement learning has some advantages such as
better fine-tuning of the evaluation function once it is quite good and the possibility to
learn from single moves without playing an entire game. Finally, the evaluation function
allows feedback to a player and can in combination with multiple outputs for different
outcomes also be used for making the game-playing program play more or less aggressive.

In this paper we study the class of reinforcement learning methods named temporal
difference (TD) methods. Temporal difference learning [39, 43] uses the difference between
two successive positions for backpropagating the evaluations of the successive positions to
the current position. Since this is done for all positions occurring in a game, the outcome
of a game is incorporated in the evaluation function of all positions, and hopefully the
evaluation functions improves after each game. Unfortunately there is no convergence
proof that current RL methods combined with non-linear function approximators such as
feedforward neural networks will find or converge to an optimal value function.

Although temporal difference learning is quite well understood [39, 41], for its use for
control problems instead of only prediction, we have to deal with the exploration/exploitation
dilemma [45] — the learning agent should trade-off the goals of obtaining as much reward
as possible and exploring the state space at the same time. In games this is an issue on
its own, since in deterministic games such as draughts or Go we need to have exploration,
but since TD-learning is used this will have consequences for the learning updates.

For learning a game evaluation function for mapping positions to moves (which is
done by the agent), there are the following three possibilities for obtaining experiences or
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training examples; (1) Learning from games played by the agent against itself (learning by
self-play), (2) Learning by playing against a (good) opponent, (3) Learning from observing
other (strong) players play games against each other. The third possibility might be done
by letting a strong program play against itself and let a learner program learn the game
evaluation function from observing these games or from database games played by human
experts.

One advantage of learning from games provided by another expert or a database is
that games are immediately played at a high level instead of completely random when
the agent would play its own games. Another advantage is that for particular games
such as draughts, chess, and Go, usually expensive lookahead searches are necessary to
choose a good move. These games have in common that there are many tactical lines of
play which can force the opponent’s move so that the player can reach an advantageous
position. Since lookahead is expensive, learning from a database of played games would
save a huge amount of computation time. E.g., if 1000 positions are evaluated to select
a move, training from recorded games provided by some database would save 99.9% of
the computational cost of generating the training games and learning from them. Since
generating a new game is much more expensive than learning from a game, using recorded
games can be very useful. A disadvantage of learning from database games or from
observing an expert program play is that the learning agent is never allowed to try the
action which it would prefer. Basically, the exploration is governed by human decisions
and there is no exploitation. Therefore, the agent might remain biased to particular moves
which the experts would never select and are therefore never punished. This is different
from the case where the agent selects its own moves so that it can observe that moves
currently preferred are not as good as expected. Another possible problem when learning
from database games without search is that it is questionable whether TD learning must
be integrated with search such as in Knightcap [2] and TDLeaf-learning [5]. For example,
a problem when learning from successive moves is when there is a queen trade. In that
case the TD method will experience a large difference in material and thereby introduce
variance in the update. When learning from the leaves of the principal variations, which
are usually at the end of quiescence search, the evaluations of the positions will be much
smoother. However, it still may be well possible to learn an evaluation function without
search as long as the evaluation function is used with search during tournament games.
We will examine in this article whether learning from game demonstrations for the games
backgammon, draughts, and chess is fruitful.

Outline. This paper first describes game playing programs in section 2. Section 3
describes reinforcement learning algorithms. Then section 4 presents experimental results
with learning the game of backgammon for which the above mentioned three possible
methods for generating training games are compared. Section 5 presents experiments
with the games of draughts and chess for which we used databases containing many
human expert games. Finally, section 6 concludes this paper.

2 Game Playing Programs

Game playing is an interesting control problem often consisting of a huge number of states,
and therefore has inspired research in artificial intelligence for a long time. In this paper
we deal with two person, zero-sum, alternative move games such as backgammon, othello,
draughts, Go, and chess. Furthermore, we assume that there is no hidden state such as
in most card games. Therefore our considered board games consist of:

• A set of possible board positions

• A set of legal moves in a position

• Rules for carrying out moves
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• Rules for deciding upon termination and the result of a game

A game playing program consists of a move generator, a lookahead algorithm, and an
evaluation function. The move generator just generates all legal moves, possibly in some
specific order (taking into account some priority). The lookahead algorithm deals with
inaccurate evaluation functions. If the evaluation function would be completely accurate,
lookahead would only need to examine board positions resulting from each legal move. For
most games an accurate evaluation function is very hard to make, however. Therefore, by
looking ahead many moves, positions much closer to the end of a game can be examined
and the difference in evaluations of the resulting positions is larger and therefore the moves
can be more easily compared. A well known method for looking ahead in games is the
Minimax algorithm, however faster algorithms such as alpha-beta pruning, Negascout, or
principal variation search [24, 30] are usually used for good game playing programs.

If we examine the success of current game playing programs, such as Deep Blue which
won against Kasparov in 1997 [33], then it relies heavily on the use of very fast com-
puters and lookahead algorithms. Deep Blue can compute the evaluation of about 1
million positions in a second, much more than a human being who examines less than
100 positions in a second. Also draughts playing programs currently place emphasis on
lookahead algorithms for comparing a large number of positions. Expert backgammon
playing programs only use 3-ply lookahead, however, and focus therefore much more on
the evaluation function.

Board games can have a stochastic element such as backgammon. In backgammon dice
are rolled to determine the possible moves. Although the dice are rolled before the move
is made, and therefore for a one-step lookahead the dice are no computational problem,
this makes the branching factor for computing possible positions after two or more moves
much larger (since then lookahead needs to take into account the 21 outcomes of the two
dice). This is the reason why looking ahead many moves in stochastic games is infeasible
for human experts or computers. For this Monte Carlo simulations can still be helpful for
evaluating a position, but due to the stochasticity of these games, many games have to
be simulated.

On the other hand, we argue that looking ahead is not very necessary due to the
stochastic element. Since the evaluation function is determined by dice, the evaluation
function will become more smooth since a position’s value is the average evaluation of
positions resulting from all dice rolls. In fact, in backgammon it often does not matter
too much whether some single stone or field occupied by 2 or more stones are shifted
one place or not. This can be again explained by the dice rolls, since different dice in
similar positions can results in a large number of equal subsequent positions. Looking
ahead multiple moves for backgammon may be helpful since it combines approximate
evaluations of many positions, but the variance may be larger. A search of 3-ply is
commonly used by the best backgammon playing programs.

This is different with e.g. chess or draughts, since for these games (long) tactical
sequences of moves can be computed which let a player win immediately. Therefore,
the evaluations of many positions later vary significantly and are more easily compared.
Furthermore, for chess or draughts moving a piece one position can make the difference
between a winning and loosing position. Therefore the evaluation function is much less
smooth (evaluations of close positions can be very different) and harder to learn. We
think that the success of learning to play backgammon [44] relies on this smoothness
of the evaluation function. It is well known that learning smooth functions requires less
parameters for a machine learning algorithm and therefore faster search for a good solution
and better generalization.

In order not to bias our results too much towards one game, we analysed using temporal
difference (TD) learning for three difficult games; backgammon, chess, and draughts. In
the next section we will explain how we can use TD methods for learning to play games.
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3 Reinforcement Learning

Reinforcement learning algorithms are able to let an agent learn from its experiences
generated by its interaction with an environment. We assume an underlying Markov
decision process (MDP) which does not have to be known to the agent. A finite MDP
is defined as; (1) The state-space S = {s1, s2, . . . , sn}, where st ∈ S denotes the state of
the system at time t; (2) A set of actions available to the agent in each state A(s), where
at ∈ A(st) denotes the action executed by the agent at time t; (3) A transition function
P (s, a, s′) mapping state action pairs s, a to a probability distribution of successor states
s′; (4) A reward function R(s, a, s′) which denotes the average reward obtained when the
agent makes a transition from state s to state s′ using action a, where rt denotes the
(possibly stochastic) reward obtained at time t; (5) A discount factor 0 ≤ γ ≤ 1 which
discounts later rewards compared to immediate rewards.

3.1 Value Functions and Dynamic Programming

In optimal control or reinforcement learning, we are interested in computing or learning the
optimal policy for mapping states to actions. We denote the optimal deterministic policy
as π∗(s) → a∗|s. It is well known that for each MDP, one or more optimal deterministic
policies exist. The optimal policy is defined as the policy which receives the highest
possible cumulative discounted rewards in its future from all states.

In order to learn the optimal policy, value-function based reinforcement learning [39,
18, 41] uses value functions to summarize the results of experiences generated by the agent
in the past. We denote the value of a state V π(s) as the expected cumulative discounted
future reward when the agent starts in state s and follows a particular policy π:

V π(s) = E(
∞∑

i=0

γiri|s0 = s, π)

The optimal policy is the one which has the largest state-value in all states. In many cases
reinforcement learning algorithms used for learning to control an agent also make use of
a Q-function for evaluating state-action pairs. Here Qπ(s, a) is defined as the expected
cumulative discounted future reward if the agent is in state s, executes action a, and
follows policy π afterwards:

Qπ(s, a) = E(

∞∑

i=0

γiri|s0 = s, a0 = a, π)

It is easy to see that if the optimal Q-function, Q∗(.) is known, that the agent can select
optimal actions by selecting the action with the largest value in a state:

π∗(s) = arg max
a

Q∗(s, a)

and furthermore the optimal value of a state should correspond to the highest action value
in that state according to the optimal Q-function:

V ∗(s) = max
a

Q∗(s, a)

It is also well-known that there exists a recursive equation known as the Bellman optimal-
ity equation [6] which relates a state value of the optimal value function to other optimal
state values which can be reached from that state using a single local transition:

V ∗(s) =
∑

s′

P (s, π∗(s), s′)(R(s, π∗(s), s′) + γV ∗(s′))
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And the same holds for the optimal Q-function:

Q∗(s, a) =
∑

s′

P (s, a, s′)(R(s, a, s′) + γV ∗(s′))

The Bellman equation has led to very efficient dynamic programming (DP) techniques
for solving known MDPs [6, 41]. One of the most used DP algorithms is value iteration
which uses the Bellman equation as an update:

Qk+1(s, a) :=
∑

s′

P (s, a, s′)(R(s, a, s′) + γV k(s′))

Where V k(s) = maxa Qk(s, a). In each step the Q-function looks ahead one step, using
this recursive update rule. It can be easily shown that limk→∞ Qk = Q∗, when starting
from an arbitrary Q-value function Q0 containing only finite values.

In a similar way we can use value iteration to compute the optimal V-function without
storing the Q-function. For this we repeat the following update many times for all states:

V k+1(s) = max
a

∑

s′

P (s, a, s′)(R(s, a, s′) + γV k(s′))

The agent can then select optimal actions using:

π∗(s) = arg max
a

∑

s′

P (s, a, s′)(R(s, a, s′) + γV ∗(s′))

3.2 Reinforcement Learning

Although dynamic programming algorithms can be efficiently used for computing optimal
solutions for particular MDPs they have some problems for more practical applicability;
(1) The MDP should be known a-priori; (2) For large state-spaces the computational time
would become very large; (3) They cannot be directly used in continuous state-action
spaces.

Reinforcement learning algorithms can cope with these problems; first of all the MDP
does not need to be known a-priori, all that is required is that the agent is allowed to
interact with an environment which can be modelled as an MDP; secondly, for large or
continuous state-spaces, a RL algorithm can be combined with a function approximator
for learning the value function. When combined with a function approximator, the agent
does not have to compute state-action values for all possible states, but can concentrate
itself on parts of the state-space where the best policies lead into.

There are a number of reinforcement learning algorithms, the first one known as
temporal-difference learning or TD(0) [39] computes an update of the state value function
after making a transition from state st to state st+1 and receiving a reward of rt on this
transition by using the temporal difference learning rule:

V (st) := V (st) + α(rt + γV (st+1)− V (st))

Where 0 < α ≤ 1 is the learning rate (which is treated here as a constant, but should
decay over time for convergence proofs). Although it does not compute Q-functions, it
can be used to learn the value function of a fixed policy (policy-evaluation). Furthermore,
if combined with a model of the environment, the agent can use a learned state value
function to select actions:

π(s) = arg max
a

∑

s′

P (s, a, s′)(R(s, a, s′) + γV (s′))
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It is possible to learn the V-function of a changing policy that selects greedy actions
according to the value function. This still requires the use of a transition function, but
can be used effectively for e.g. learning to play games [43, 44].

There exists a whole family of temporal difference learning algorithms known as TD(λ)-
algorithms [39] which are parametrized by the value λ which makes the agent look further
in the future for updating its value function. It has been proved [47] that this complete
family of algorithms converges under certain conditions to the same optimal state value
function with probability 1 if tabular representations are used. The TD(λ)-algorithm
works as follows. First we define the TD(0)-error of V (st) as

δt = (rt + γV (st+1)− V (st))

TD(λ) uses a factor λ ∈ [0, 1] to discount TD-errors of future time steps:

V (st)← V (st, at) + αδλ
t

where the TD(λ)-error δλ
t is defined as

δλ
t =

∞∑

i=0

(γλ)iδt+i

Eligibility traces. The updates above cannot be made as long as TD errors of
future time steps are not known. We can compute them incrementally, however, by using
eligibility traces (Barto et al., 1983; Sutton 1988). For this we use the update rule:

V (s) = V (s) + αδtet(s)

for all states, where et(s) is initially zero for all states and updated after every step by:

et(s) = γλet−1(s) + ηt(s)

where ηt(s) is the indicator function which returns 1 if state s occurred at time t, and
0 otherwise. A faster algorithm to compute exact updates is described in [50]. The
value of λ determines how much the updates are influenced by events that occurred much
later in time. The extremes are TD(0) and TD(1) where (offline) TD(1) makes the same
updates as Monte Carlo sampling. Although Monte Carlo sampling techniques that only
learn from the final result of a game do not suffer from biased estimates, the variance in
updates is large and that leads to slow convergence. A good value for λ depends on the
length of an epoch and varies between applications, although often a value between 0.6
and 0.9 works best.

Although temporal difference learning algorithms are very useful for evaluating a policy
or for control if a model is available, we often also want to use reinforcement learning for
learning optimal control in case no model of the environment is available. To do this, we
need to learn Q-functions. One particular algorithm for learning a Q-function is Q-learning
[48, 49]. Q-learning makes an update after an experience (st, at, rt, st+1) as follows:

Q(st, at) := Q(st, at) + α(rt + γ max
a

Q(st+1, a)−Q(st, at))

Q-learning is an off-policy reinforcement learning algorithm [41], which means that the
agent learns about the optimal value function while following another behavioural policy
which usually includes exploration steps. This has as advantage that it does not matter
how much exploration is used, as long as the agent visits all state-action pairs an infinite
number of times, Q-learning (with appropriate learning rate adaptation) will converge to
the optimal Q-function [49, 17, 47, 42]. On the other hand, Q-learning does not learn
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about its behavioural policy, so if the behavioural policy always receives low cumulative
discounted rewards, then the agent does not try to improve it.

Instead of Q-learning, the on-policy algorithm SARSA for learning Q-values has been
proposed in [27, 40]. SARSA makes the following update after an experience (st, at, rt, st+1, at+1):

Q(st, at) := Q(st, at) + α(rt + γQ(st+1, at+1)−Q(st, at))

Tabular SARSA converges to the optimal policy under some conditions on the learning
rate after an infinite number of steps if the exploration policy is GLIE (greedy in the
limit of infinite exploration), which means that the agent should always explore, but
stop exploring after an infinite number of steps [35]. Q-learning and SARSA can also be
combined with eligibility traces [48, 41, 50].

3.3 Reinforcement Learning with Neural Networks

To learn value functions for problems with many state variables, there is the curse of
dimensionality; the number of states increases exponentially with the number of state
variables, so that a tabular representation would quickly become infeasible in terms of
storage space and computational time. Also when we have continuous states, a tabular
representation requires a good discretization which has to be done a-priori using knowledge
of the problem, and a fine-grained discretization will also quickly lead to a large number
of states. Therefore, instead of using tabular representations it is more appropriate to use
function approximators to deal with large or continuous state spaces.

There are many function approximators available such as neural networks, self-organizing
maps, locally weighted learning, and support vector machines. When we want to com-
bine a function approximator with reinforcement learning, we want it to learn fast and
online after each experience, and be able to represent continuous functions. Appropriate
function approximators combined with reinforcement learning are therefore feedforward
neural networks [9].

In this paper we only consider fully-connected feedforward neural networks with a
single hidden layer. The architecture consist of one input layer with input units (when
we refer to a unit, we also mean its activation): I1, . . . , I|I|, where |I | is the number of
input units, one hidden layer H with hidden units: H1, . . . , H|H|, and one output layer
with output units: O1, . . . , O|O|. The network has weights: wih for all input units Ii to
hidden units Hh, and weights: who for all hidden Hh to output units Oo. Each hidden
unit and output unit has a bias bh or bo with a constant activation of 1. The hidden
units most often use sigmoid activation functions, whereas the output units use linear
activation functions.

Forward propagation. Given the values of all input units, we can compute the
values for all output units with forward propagation. The forward propagation algorithm
looks as follows:

1) Clamp the input vector I by perceiving the environment
2) Compute the values for all hidden units Hh ∈ H as follows:

Hh = σ(

|I|∑

i=1

wihIi + bh)

Where σ(x) is the Sigmoid function: σ(x) = 1
1+e−x

3) Compute the values for all output units Oo:

Oo =

|H|∑

h=1

whoHh + bo
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Backpropagation. For training the system we can use the backpropagation algo-
rithm [26]. The learning goal is to learn a mapping from the inputs to the desired outputs
Do for which we update the weights after each example. For this we use backpropagation
to minimize the squared error measure:

E =
1

2

∑

o

(Do −Oo)
2

To minimize this error function, we update the weights and biases in the network
using gradient descent steps with learning rate α. We first compute the delta values of
the output units (for a linear activation function):

δO(o) = (Do −Oo)

Then we compute the delta values of all hidden units (for a sigmoid activation function):

δH(h) =
∑

o

δO(o)whoHh(1−Hh)

Then we change all hidden-output weights:

who = who + αδO(o)Hh

And finally we change all input-hidden weights:

wih = wih + αδH(h)Ii

So all we need is a desired output and then backpropagation can be used to compute
weight updates to minimize the errorfunction on every different example. To get the
desired output, we can simply use offline temporal difference learning [19] which waits
until an epoch has ended and then computes desired values for the different time-steps.
For learning to play games this is useful, since learning from the first moves will not
immediately help to play the rest of the game better. In this paper we used the offline
TD(λ) method which provides the desired values for each board position, taking into
account the result of a game and the prediction of the result by the next state. The final
position at time-step T is scored with the result rT of the game, i.e. a win for white (=1),
a win for black (=-1) or a draw (=0).

V ′(sT ) = rT (1)

The desired values of the other positions are given by the following function:

V ′(st) = γV (st+1) + rt + λγ(V ′(st+1)− V (st+1))

After this, we use V ′(st) as the desired value of state st and use backpropagation to
update all weights. In Backgammon, we used a minimax TD-rule for learning the game
evaluation function. Instead of using an input that indicates which player is allowed to
move, we always reverted the position so that white was to move. In this case, evaluations
of successive positions are related by V (st) = −V (st+1. Without immediate reward and
a discount factor of 1, the minimax TD-update rule becomes:

V ′(st) = −V (st+1)λ(V (st+1)− V ′(st+1))

In our experiments, we only used the minimax TD-update rule for backgammon, for
draughts and chess we used the normal TD-update rule. An online version of TD(λ)
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with neural networks would also be possible. Say that the neural networks consists of
parameters w, we get the following update rule after each state transition:

w = w + α(rt + γV (st+1)− V (st))et

where the eligibility traces of the parameters are updated by:

et = γλet−1 +
∂V (st)

∂w

Note that it does not matter how games are generated for the TD(λ) algorithm, the
algorithm just learns from a played game starting at the initial position and ends in a
final results. Therefore, for learning from demonstrations no adaptions have to be made
to the learning algorithm.

3.4 Discussion

For learning to play board games, we usually do not want to use state-action or Q-
functions, but prefer to use state or V-functions. The reason is that a model is available
which can compute the resulting position for each move. Since it does not matter for a
position which move was selected to arrive there, using the state function saves a lot of
information about actions which needs to be learned and stored otherwise.

Dynamic programming could in theory be used to compute a perfect evaluation func-
tion using a tabular representation, but in practice this is infeasible due to the huge
number of positions which need to be stored and evaluated. Therefore we apply rein-
forcement learning with function approximators that can generalize. The advantage is
that RL only learns good evaluations for board positions which occur often and since
it can generalize, not every possible position needs to be encountered. A problem with
using function approximators such as neural networks, is that convergence to an optimal
value function cannot be guaranteed. In practice we observed that longer learning did
not always improve the quality of the evaluation function.

4 Experiments with Backgammon

Tesauro’s TD-Gammon program learned after about 1,000,000 games to play at human
world class level, but already after 300,000 games TD-Gammon turned out to be a good
match against the human grand-master Robertie. After this TD-Gammon was enhanced
by a 3-ply lookahead strategy making it even stronger. Currently, TD-Gammon is still
probably the best backgammon playing program in the world, but other programs such as
BGBlitz from Frank Berger or Fredrik Dahl’s Jellyfish also rely on neural networks as eval-
uation functions and obtained a very good playing level. All of these programs are much
better than Berliner’s backgammon playing program BKG [7] which was implemented
using human designed weighted symbolic rules to get an evaluation function.

4.1 Learning an Expert Backgammon Playing Program

We use an expert backgammon program against which we can train other learning pro-
grams and which can be used for generating games that can be observed by a learning
program. Furthermore, in later experiments we can evaluate the learning programs by
playing test-games against this expert. To make the expert player we used TD-learning
combined with learning from self-play using a hierarchical neural network architecture.
This program was trained by playing more than 1 million games against itself. Since the
program was not always improving by letting it play more training games, we tested the
program after each 10,000 games for 5,000 test games against the best previous saved
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version. Then we recorded the score for each test and the weights of the network ar-
chitecture with the highest score was saved. Then after each 100,000 games we made a
new opponent which was the previous network with the highest score over all tests and
this program was also used as learning program and further trained by self-play while
testing it against the previous best program. This was repeated until there was no more
progress, i.e. the learning program was not able to significantly beat the previous best
learned program anymore. This was after more than 1,000,000 training games.

Architecture. We used a modular neural network architecture, since different strate-
gical positions require different knowledge for evaluating the positions [10]. Therefore we
used a neural network architecture consisting of the following 9 neural networks for dif-
ferent strategical position classes, and we also show how many learning examples these
networks received during training this architecture by self-play:

• One network for the endgame; all stones are in the inner-board for both players or
taken out (10,7 million examples).

• One network for the racing game or long endgame; the stones cannot be beaten
anymore by another stone (10.7 million examples).

• One network for positions in which there are no stones on the bar or stones in the
first 6 fields for both players (1.9 million examples).

• One network if the player has a prime of 5 fields or more and the opponent has one
piece trapped by it (5.5 million examples).

• One network for back-game positions where one player has a significant pip-count
disadvantage and at least three stones in the first 6 fields (6.7 million examples)

• One network for a kind of holding game; the player has a field with two stones or
more or one of the 18, 19, 20, or 21 points (5.9 million examples).

• One network if the player has all its stones further than the 8 point (3.3 million
examples).

• One network if the opponent has all its stones further than the 8 point (3.2 million
examples).

• One default network for all other positions (34.2 million examples).

For each position which needs to be evaluated, our symbolic categorization module
uses the above rules to choose one of the 9 networks to evaluate (and learn) a position.
The rules are followed from the first category to the last one, and if no rule applies then
the default category and network is used.

Input features. Using this modular design, we also used different features for differ-
ent networks. E.g., the endgame network does not need to have inputs for all fields since
all stones have been taken out or are in the inner-board of the players. For the above men-
tioned neural network modules, we used different inputs for the first (endgame), second
(racing game), and other (general) categories. The number of inputs for them is:

• For the endgame we used 68 inputs, consisting of 56 inputs describing raw input
information and 12 higher level features.

• For the racing game (long endgame) we used 277 inputs, consisting of the same 68
inputs as for the endgame, another 192 inputs describing the raw board information,
and 17 additional higher level features

• For the rest of the networks (general positions) we used 393 inputs consisting of 248
inputs describing raw board information and 145 higher level features including for
example the probabilities that stones can be hit by the opponent in the next move.

For the neural networks we used 7 output units in which one output learned on the average
result and the other six outputs learned a specific outcome (such as winning with 3, 2, 1
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points or loosing with 3, 2, or 1 point). The good thing of using multiple output units is
that there is more learning information going in the networks. Therefore the hidden units
of the neural networks need to be useful for storing predictive information for multiple
related subtasks, possibly resulting in better representations [11]. For choosing moves, we
combined the average output with the combined outputs of the other output neurons to
get a single board position evaluation. For this we took the average of the single output
(with a value between -3 and 3) and the combined value of the other outputs (with values
between 0 and 1) times their predicted results. Each output unit only learned from
the same output unit in the next positions using TD-learning (so the single output only
learned from its own evaluations of the next positions). Finally, the number of hidden
units (which use a sigmoid activation function) was 20 for the endgame and long endgame,
and 40 for all other neural networks. We call the above described network architecture
the large neural network architecture and trained it by self-play using TD(λ) learning
with a learning rate of 0.01, a discount factor γ of 1.0, and a value for λ of 0.6. After
learning we observed that the 2 different evaluation scores were always quite close and
that the 6 output units usually had a combined activity close to 1.0 with only sometimes
small negative values such as -0.002 that only have a small influence on the evaluation of
a position.

In order to evaluate the quality of this trained large architecture we let it play against
Frank Berger’s BGBlitz1, the champion of the world computer Olympics of backgammon
in 2002 and 2003. We let them play two times 30 games where doubling was allowed. We
made a very simple doubling strategy in which our player doubled if the evaluation was
between 0.5 and 1.0, and the program took a double if the evaluation was higher than
-0.5. The scores are given in Table 1.

Table 1: Results from testing our trained expert against BGBlitz and results for BGBlitz with
one move lookahead against BGBlitz with two moves lookahead.

Player 1 Player 2 Tournament 1 Tournament 2

Large Expert BGBlitz (1) 31 - 33 20 - 38

BGBlitz (2) BGBlitz (1) 39 - 18 23 - 39

Unfortunately, the variance of the results in backgammon is very large and therefore
testing two times 30 games is not enough to compare both programs. From the second
tournament result it looks like BGBlitz plays better than the large architecture we trained,
but we would need to play much more testing games to find out whether the difference
is significant. Since we needed to test the games manually, testing much more games was
infeasible since playing one test game costs 5 minutes. If we examine the results between
BGBlitz looking ahead one or two moves, we also see a large variance and cannot easily
compare both programs, even though we would expect BGBlitz to profit from the deeper
game-tree search. What we observed, however, is that our program almost always played
the same moves as BGBlitz in the same positions. Furthermore, if we only look at the
number of games won, then it was (12 - 18) in the second tournament in the advantage
of BGBlitz, but (17 - 13) in the first tournament won by the large architecture. It might
therefore be the case that the doubling strategy based on the evaluations of BGBlitz
worked better than ours, but even that is questionable to conclude with the amount of
test games we played. Looking at the games as a human observer, it can be said that
the games were of a high level containing many logical moves in the opening and middle-
game and only some small mistakes in the endgame. Moves in the endgame of the large
expert did not always take out most stones, which is usually the best move. The large
architecture sometimes preferred to keep a nicer distribution on the board at the cost of

1See http://www.bgblitz.com.
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taking pieces slower out. Although this does not really matter for positions with a clear
advantage or disadvantage, for some endgames this is not the best thing to do. Although
such mistakes did not occur often and most moves in the endgame were also optimal, we
can easily circumvent this behavior by adding some rule which tells that the architecture
should only consider moves which take out the maximal amount of stones.

Now we obtained an expert program, we can use it for our experiments in analysing
the results of new learners that train by self-play, train by playing against this expert, or
learn by viewing games played by the expert against itself.

4.2 Experiments with Learning Backgammon

We first made a number of simulations in which 200,000 training games were used and
after each 5,000 games we played 5,000 test games between the learner and the expert to
evaluate the learning program. Because these simulations took a lot of time (several days
for one simulation), they were only repeated two times for every setup.

The expert program was always the same as described before. For the learning program
we also made use of a smaller architecture consisting of three networks; one for the
endgame of 20 hidden units, one for the long endgame (racing game) of 20 hidden units,
and one for the other board positions with 40 hidden units. We also used a larger network
architecture with the same three networks, but with 80 hidden units for the other board
positions, and finally we used an architecture with 20, 20, 40 hidden units with a kind of

radial basis activation function: Hj = e−(
∑

i
wijIi+bj)

2

. These architectures were trained
by playing training games against the expert. We also experimented with a small network
architecture that learns by self-play or by observing games played by the expert against
itself.

Because the evaluation scores fluctuate a lot during the simulation, we smoothed them
a bit by replacing the evaluation of each point (test after n games) by the average of it
and its two adjacent evaluations. Since we used 2 simulations, each point is therefore an
average of 6 evaluations obtained by testing the program 5,000 games against the expert
(without the possibility of doubling the cube). For all these experiments we used extended
backpropagation [38] and TD(λ)-learning with a learning rate of 0.01 and an eligibility
trace factor λ of 0.6 that gave the best results in preliminary experiments. Figure 1 shows
the obtained results.

First of all, it can be noted that the neural network architecture with RBF like ac-
tivation functions for the hidden units works much worse. Furthermore, it can be seen
that most other approaches work quite well and reach an equity of almost 0.5. Table 2
shows that all architectures, except for the architecture using RBF neurons, obtained an
equity higher than 0.5 in at least one of the 80 tests. Testing these found solutions 10
times for 5000 games against the expert indicated that their playing strengths were equal.
If we take a closer look at Figure 1(Right), we can see that the large architecture with
many modules finally performs a bit better than the other approaches and that learning
by observing the expert reaches a slightly worse performance.

Smaller simulations. We also performed a number of smaller simulations of 15,000
training games where we tested after each 500 games for 500 testing games. We repeated
these simulations 5 times for each neural network architecture and method for generating
training games. Because there is an expert available with the same kind of evaluation
function, it is also possible to learn with TD-learning using the evaluations of the expert
itself. This is very similar to supervised learning, although the agent generates its own
moves (depending on the method for generating games). In this way, we can analyze
what the impact of bootstrapping on an initially bad evaluation function is compared to
learning immediately from outputs for positions generated by a better evaluation function.
Again we used extended backpropagation [38] and TD(λ) with a learning rate of 0.01 and
set λ = 0.6.
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Figure 1: (Left) Results for different architectures from learning against the expert, and the
small architecture that learns by self-play or by observing games of the expert. (Right) More
detailed plot without the architecture with RBF hidden units.

Table 2: Results for the different methods as averages of 6 matches of 5,000 games against
the expert. Note that the result after 5,000 games is the average of the tests after 100, 5000,
and 10000 games.

Architecture 5000 100,000 175,000 Max after Max eval

Small Network 0.327 0.483 0.478 190,000 0.508

Large architecture 0.290 0.473 0.488 80,000 0.506

Network 80 hidden 0.309 0.473 0.485 155,000 0.505

Network 40 RBF 0.162 0.419 0.443 120,000 0.469

Small network Self-play 0.298 0.471 0.477 200,000 0.502

Small network Observing expert 0.283 0.469 0.469 110,000 0.510

In Figure 2(Left), we show the results of the smaller architecture consisting of three
networks with 20, 20, and 40 hidden units. We also show the results in Figure 2(Right)
where we let the learning programs learn from evaluations given by the expert program,
but for which we still use TD-learning on the expert’s evaluations with λ = 0.6 to make
training examples.

The results show that observing the expert play and learning from these generated
games (expert plays against expert) progresses slower and reaches slightly worse results
within 15,000 games if the program learns from its own evaluation function. In Figure
2(Right) we can see faster learning and better final results if the programs learn from the
expert’s evaluations (which is like supervised learning), but the differences are not very
large compared to learning from the own evaluation function. It is remarkable that good
performance has already been obtained after only 5,000 training games.

In Table 3 we can see that if we let the learning program learn from games played
against the expert, in the beginning it almost always loses (its average test-result or equity
after 100 training games is 0.007), but already after 500 training games the equity has
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Figure 2: (Left) Results for the small architecture when using a particular method for gener-
ating games. The evaluation on which the agent learns is its own. (Right) Results when the
expert gives the evaluations of positions.

Table 3: Results for the three different methods for generating training games with learning
from the own or the expert’s evaluation function. The results are averages of 5 simulations.

Method Eval function 100 500 1000 5000 10,000

Self-play Own 0.006 0.20 0.36 0.41 0.46

Self-play Expert 0.15 0.33 0.38 0.46 0.46

Against expert Own 0.007 0.26 0.36 0.45 0.46

Against expert Expert 0.20 0.35 0.39 0.47 0.47

Observing expert Own 0.003 0.01 0.16 0.41 0.43

Observing expert Expert 0.05 0.22 0.32 0.45 0.46

increased to an average value of 0.26. We can conclude that the learning program can
learn its evaluation function by learning from the good positions of its opponent. This
good learning performance can be attributed to the minimax TD-learning rule, since
otherwise always loosing with quickly result in a simple evaluation function that always
returns a negative result. However, using the minimax TD-learning rule, the program
does not need to win many games in order to learn the evaluation function. Learning by
self-play performs almost as good as learning from playing against the expert. If we use
the expert’s evaluation function then learning progresses much faster in the beginning,
although after 10,000 training games almost the same results are obtained. Learning by
observing the expert playing against itself progresses slower and reaches worse results if
the learning program learns from its own evaluation function. If we look at the learning
curve, we can still see that it is improving however.

We repeated the same simulations for the large architecture consisting of 9 modules.
The results are shown in Figure 3. The results show that learning with the large network
architecture progresses much slower, which can be explained by the much larger number of
parameters which need to be trained and the fewer examples for each individual network.
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Figure 3: (Left) Results for the large architecture when using a particular method for gener-
ating games. The evaluation on which the agent learns is its own. (Right) Results when the
expert gives the evaluations.

The results also show that learning from observing the expert play against itself performs
worse than the other methods, although after 15,000 games this method also reaches quite
high equities comparable with the other methods. The best method for training the large
architecture is when games are generated by playing against the expert. Figure 3(Right)
shows faster progress if the expert’s evaluations are used.

Effect of λ. Finally, we examine what the effect of different values for λ is when the
small architecture learns by playing against the expert. We tried values for λ of 0.0, 0.2,
0.4, 0.6, 0.8, and 1.0. When using λ = 1 we needed to use a smaller learning-rate, since
otherwise initially the weights became much too large. Therefore we used a learning rate
of 0.001 for λ = 1.0 and a learning rate of 0.01 for the other values for λ. Figure 4 shows
the results averaged over 5 simulations. It can be seen that a λ-value of 1.0 works much
worse and that values of 0.6 or 0.8 perform the best. Table 4 shows the results after 100,
500, 1000, 5000, and 10,000 games. We can see that higher values of λ initially result in
faster learning which can be explained by the fact that bootstrapping from the initially
random evaluation function does not work too well and therefore larger eligibility traces
are profitable. After a while λ values between 0.2 and 0.8 perform all similarly.

Table 4: Results for different values of λ when the small architecture learns from playing
against the expert.

λ 100 500 1000 5000 10,000

0.0 0.004 0.13 0.31 0.42 0.43

0.2 0.002 0.24 0.34 0.43 0.45

0.4 0.002 0.26 0.35 0.44 0.44

0.6 0.007 0.26 0.36 0.45 0.46

0.8 0.06 0.34 0.39 0.44 0.45

1.0 0.12 0.23 0.31 0.39 0.40
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Figure 4: Results for the small architecture when using different values for λ. The games are
generated by self-play.

4.3 Discussion

Learning a good evaluation function for backgammon with temporal difference learning
appears to succeed very well. Already within few thousands of games which can be
played in less than one hour a good playing level is learned with an equity of around 0.45
against the expert program. We expect this equity to be similar to a human player who
regularly plays backgammon. The results show that learning by self-play and by playing
against the expert obtain the same performance. Learning by observing an expert play
progresses approximately two or three times slower than the other methods. In our current
experiments the learning program observed another program that still needed to select
moves. Therefore there was no computational gain in generating training games. However,
if we would have used a database, then in each position also one-step lookahead would not
be needed. Since the branching factor for a one-step lookahead search is around 16 for
backgammon, we would gain 94% of the computational time for generating and learning
from a single game. Therefore learning from database games could still be advantageous
compared to learning by self-play or playing against an expert. In the large experiment,
the learning behavior of the method that learns by observing the expert is a bit more
fluctuating, but it still obtained an equity a bit larger than 0.5 during one of the test-
games in the large experiment and additional tests indicated that its playing strength at
that point was equal to the expert player.

We also noted that training large architectures initially takes longer which can be
simply explained by the larger number of parameters which need to be learned and fewer
examples for individual modules. A large value for λ (larger than 0.8) initially helps to
improve the learning speed, but after some time smaller values for λ (smaller than 0.8)
perform better. An annealing schedule for λ may therefore be useful. Finally we observed
in all experiments that the learning programs are not always improving by playing more
games. This can be explained by the fact that there is no convergence guarantee for RL
and neural networks. Therefore testing the learning program against other fixed programs
on a regular basis is necessary to be able to save the best learning program. It is interesting
to note the similarity to evolutionary algorithms evolving game playing programs which

17



also use tests. However, we expect that temporal difference learning and gradient descent
is better for fine-tuning the evaluation function than a more randomized evolutionary
search process.

5 Learning to Play Chess and Draughts

In the previous section we noted that learning from observing games played by others is
an alternative to learning by self-play or playing against an expert, especially if a database
of games is available. For games such as draughts or chess, learning from database games
has as a huge advantage that the time to generate training games is significantly reduced,
since looking ahead many moves resulting in evaluations of thousands of positions is not
necessary. We will examine in this section whether learning from database games using
temporal difference learning leads to good learning programs for the games of chess and
draughts. Furthermore, we will compare different neural network architectures consisting
of a single or multiple networks and using different kinds of board features.

5.1 Learning to Play Chess

In recent years much progress has been made in the field of chess computing [15, 16].
Today’s strongest chess programs are already playing at grand-master level. The evalu-
ation function of these programs are programmed by translating available human chess
knowledge into the function that is sometimes further optimized by adapting the func-
tion to prefer moves played in recorded human expert games. Notions such as material
balance, mobility, board control and connectivity can be used to give an evaluation value
for a board position.

Gary Kasparov was beaten in 1997 by the computer program Deep Blue in a match
over six games by 3,5-2,5 [33]. Despite this breakthrough, world class human players are
still considered playing better chess than computer programs. Chess programs still suffer
problems with positions where the evaluation depends mainly on long-term positional
features (e.g. pawn structure). This is rather difficult to solve because the positional
character often leads to a clear advantage in a much later stadium than within the search
depth of the chess program.

The programs can look very deep ahead nowadays, so they are quite good at calculating
tactical lines. Winning material in chess usually occurs within a few moves and most chess
programs have a search depth of at least 8 ply. Deeper search can occur for instance, when
a tactical line is examined or a king is in check after normal search or if there are only
a few pieces on the board. Humans are able to recognize patterns in positions and have
therefore important information on what a position is about. Expert players are quite
good at grouping pieces together into chunks of information, as was pointed out in the
psychological studies by de Groot [12]. Computers analyze a position with the help of their
chess knowledge. The more chess knowledge it has, the longer it takes for a single position
to be evaluated. So the playing strength not only depends on the amount of knowledge,
it also depends on the time it takes to evaluate a position, because less evaluation-time
leads to deeper searches. It is a question of finding a balance between chess knowledge
and search depth which is also called the search/knowledge trade-off [8]. Deep Blue for
instance, relied mainly on a high search depth. Other programs focus more on chess
knowledge and therefore have a relatively lower search depth.

A reinforcement learning chess program is Sebastian Thrun’s NeuroChess [46]. Neu-
roChess has two separate neural networks. The explanation-based neural network [21]
that predicts the value of an input vector or board position two ply (half moves) later and
was trained on 120,000 expert games. Another network is the evaluation function that
gives an output value for the input vector of 175 hand-coded chess features and which was
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trained by TD-learning using the explanation-based neural network. NeuroChess uses the
framework of the chess program GNU-Chess. The evaluation function of GNU-Chess was
replaced by the trained evaluation function. NeuroChess defeated GNU-Chess in about
13% of the games, but was able to score 25% in the last 400 games.

Another RL chess program is KnightCap, which was developed by Baxter et al. [2,
3, 4]. It uses TDLeaf-learning [5], which is an enhancement of Sutton’s TD(λ)-learning
[39] for game learning programs. KnightCap uses a linear evaluation function and also
uses a book learning algorithm that enables it to learn opening lines and end-games. This
learning program learned from a 1650 player to a 2150 player in just 308 games against
opponents on a chess server on internet. Many other machine learning approaches for
chess are discussed in [15, 16].

Input features. To characterize a chess position we convert it into some important
features. An example of such a feature is connectivity. The connectivity of a piece is the
amount of pieces it defends. In figure 5 the total connectivity of the white pieces is 7.

Figure 5: Connectivity is one feature for evaluating chess positions. In the given board-
position, the connectivity of white’s pieces is 7 and of black’s pieces it is 0.

The pawn on b2 defends the pawn on c3. The pawn on g2 defends the pawn on f3. The
knight on e3 defends the pawn on g2 and the bishop on c2. The king on f2 defends the
pawn on g2, the pawn on f3 and the knight on e3. There is no connectedness between the
black pieces.

We use the following general features: number of queens, rooks, bishops, knights,
pawns for both players, material balance, Queen’s mobility, Rook’s horizontal mobility,
Rook’s vertical mobility, Bishop’s mobility, Knight’s mobility, Center control, Isolated
pawns, Doubled pawns, Passed pawns, Pawn forks, Knight forks, Light pieces on first
rank, Horizontally connected rooks, Vertically connected rooks, Rooks on seventh rank,
Board control, Connectivity, King’s distance to center. A more extensive description of
the features we used in our experiments can be found in [20].

Parameters. In our experiments we made use of the open source chess program tscp
1.81 2 which was written by Tom Kerrigan in C. The parameters of the networks are:
learning rate = 0.001, λ = 0.9, γ = 1.0, the number of hidden units is 80 and they use
the sigmoid activation function. The networks have a single output unit with a linear
activation function and are trained with normal backpropagation.

Architectures. For our chess-experiment we experimented with seven different neural
network architectures:

A = a network with general features (71 inputs)

B = 3 separated networks with general features (71 inputs)

C = a network with general features and partial raw board features (kings and pawns,
311 inputs)

2Tscp 1.81 can be downloaded from: http://home.comcast.net/∼tckerrigan
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D = 3 separated networks with general features and partial raw board features (kings
and pawns, 311 inputs)

E = a network with general features and full raw board features (831 inputs)

F = 3 separated networks with general features and full raw board features (831 inputs)

G = a linear network with general features and partial raw board features (311 inputs)

H = a hand-coded evaluation function which is the a-priori given evaluation function
of tscp 1.81

All networks were trained a single time on 50,000 different database games. The linear
network was a network without a hidden layer. The full raw board features contained
information about the position of all pieces. The partial raw board features only in-
formed about the position of kings and pawns. The separated networks consisted of three
networks. They had a different network for positions in the opening, middle-game and
endgame. Discriminating among these three stages of a game was done by looking at the
amount of material present. Positions with a material value greater than 65 points are
classified as opening positions. Middle-game positions have a value between 35 and 65
points. All other positions are labelled as endgame positions.

The hand-coded evaluation function sums up the scores for similar features as the
general features of the trained evaluation functions. A tournament was held in which
every trained network architecture played 5 games with the white pieces and 5 games
with the black pieces against the other architectures. The search depth of all programs
was set to 2 ply. Programs only searched deeper if a side was in check in the final position
or if a piece was captured. This was done to avoid the overseeing of short tactical tricks.

Table 5: Performance of the different trained architectures
Rank Program Separated networks Inputs won-lost Score

1 D Yes General, kings and pawns 51,5-18,5 +33

2 C No General, kings and pawns 42-28 +14

3 B Yes General 39,5-30,5 +9

4 A No General 39-31 +8

5 G No General, kings and pawns 37,5-32,5 +5

6 H No General tcsp 1.81 34,5-35,5 -1

7 F Yes General and full board 20,5-49,5 -29

8 E No General and full board 15,5-54,5 -39

Experimental results. The results are reported in Table 5. The three possible
results of a game are: 1-0(win), 0-1(loss) and 0,5-0,5(draw). The best results were obtained
by the separated networks with general features and partial raw board information. The
single network with general features and partial raw board also performed well, but its
’big brother’ yielded a much higher score. This is because it is hard to generalize over the
position of kings and pawns during the different stages of the game (opening, middle-game
and endgame). During the opening and middle-game the king often seeks protection in
a corner behind its pawns. While in the endgame the king can become a strong piece,
often marching on to the center of the board. Pawns also are moved further in endgame
positions than they are in the opening and middle-game. Because the separated networks
are trained on the different stages of the game, they are more capable of making this
positional distinction.

The networks with general features (A and B) also yielded a positive result. They
lacked knowledge of the exact position of the kings and pawns on the board. Therefore
awkward looking pawn and king moves were sometimes made in their games.
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Table 6: Results against hand-coded evaluation function
A B C D E F G

H 5,5-4,5 4-6 4-6 3-7 7-3 7,5-2,5 3,5-6,5

The linear network made a nice result, but because it is just a linear function it is not able
to learn some important non-linear characteristics of board positions. Its result was better
than the result obtained by the hand-coded evaluation function, which scored slightly less
than 50%.

The networks with the greatest amount of input features (E and F) scored not very
well. This is because they have to be trained on much more games before they can
generalize well on the input they get from the positions of all pieces.

The separated networks yielded a better result than their single network counterparts.
This can be explained by the fact that the separated networks version was better in the
positioning of its pieces during the different stages of the game. For instance, the single
network often put its queen in play too soon. During the opening it is normally not very
wise to move a queen to the center of the board. The queen may have a high mobility
score in the center, but it often gives the opponent the possibility for rapid development
of its pieces by attacking the queen.

In Table 6 we can see that four of the seven learned evaluation functions played better
chess than the hand-coded evaluation function after just 50,000 training games. The linear
evaluation function defeated the hand-coded evaluation function so we may conclude that
the hand-coded function used inferior features or weighted them in a worse manner. Four
non-linear functions booked better results than this linear function (see table 5). It took
7 hours to train evaluation function D on a PentiumII 450mhz. This illustrates the
attractiveness of database training in order to create a quite good evaluation function
in a short time interval. If we realize that a usual human game costs 4 hours to play,
a game of that quality may also consume so much time by a computer, and therefore
learning from databases is much faster. Note that learning from a single game costs 420
minutes divided by 50,000 which is about 0,01 minute. If we would have used lookahead
for learning by self-play, one game would have cost at least 5 minutes, so that only about
80 games could have been played in the same 7 hours.

5.2 Learning to Play Draughts

In international draughts several grand-masters were defeated by the programs Buggy[2003]
and Flits[2002]. The success of most of the strongest programs in draughts is due to the
use of the possibility to look upon many thousands of positions per second by using com-
puter power and efficient search algorithms. In most of the board games the evaluation
function is tuned by the system designer and this may cost a lot of time. Machine learning
can result in better evaluation functions in less time.

It should be noted that with draughts we mean international draughts played on a
10x10 squared board, which is more complicated than the game of checkers for which
very good programs exist. In fact, the checkers program Chinook was the first to win
a human world championship in any game [32]. The early work of Samuel (1959, 1967)
showed the first approach for learning a game evaluation function. For this Samuel used a
kind of temporal difference learning approach to evolve a checkers playing program. The
resulting program was the first computer game playing program which was able to beat
its programmer.

Learning a game evaluation function for checkers was also done by Lynch and Griffith
(1997). Their program Neurodraughts used a cloning strategy to test, select and train
networks with different input features. It is not known how strong the best resulting
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Figure 6: The structural feature ’Hekstelling’. The given pieces should be on the indicated
fields and on the field with a cross there should not be any piece.

program plays against other checkers playing programs or humans.
Experimental setup. The games used in training are extracted from Turbo Dambase3,

the only draughts game-database. This database contains more than 260.000 games be-
tween players of all different levels. For testing purposes the neural network was incorpo-
rated in the draughts program Buggy4 which is probably the best draughts program of
the world and uses state-of-the-art search algorithms. Because it is almost impossible to
learn from the raw board position alone, we represented the board position by additional
features.

Input features. We used 3 different kinds of features namely global-features, struc-
tural features and raw board information. In the raw board representation every field of
the game position is decoded to represent the presence of the kind of piece. Every square is
represented by two bits. One bit to represent the occupancy of a white single checker and
one for a single black checker. We did not use raw-board presentation for kings. Struc-
tural features are boolean combinations of occupied or empty squares. An example of a
structural feature is ’Hekstelling’ (translated ‘Fence position’) shown in Figure 6. Unlike
structural features and the raw-board representation, global features model knowledge
which is not directly available from a board position. An example of a global-feature is
material balance which is the difference in checkers plus 3 times the difference in kings.

The total amount of inputs, which are 23 global plus 97 structural features plus 100
raw board features, is 220 (for an extensive description of the used input features, see
[23]). Five neural networks were trained. The difference between the first four neural
networks lies only in the representation of a board position. We define the four neural
network players in respect to the input, namely:

• NN1: Global features (23 inputs)

• NN2: Global features plus all possible ’three-on-a-diagonal’ (87 inputs)

• NN3: All features except the raw board representation (120 inputs)

• NN4: All features (220 inputs)

The fifth neural network consists of three separated neural networks. The neural networks
were used in training or playing on the basis how many pieces were on the board. One
for the position with more than 25 pieces, one for more than 15 till 25 pieces and one
for the remaining positions, for which all three were equipped with all features. All the
neural networks were trained a single time over the first 200.000 games of Turbo Dambase.
Positions in which a player was obliged to hit were eliminated from the game. Also all
positions were eliminated which are a part of a tactical combination or a local discontinuity
in material balance. This is for example when a player successively sacrifices two checkers
in two moves and regains material balance on the third move by hitting two checkers.

3For information on Turbo Dambase, see http://www.turbodambase.com/
4For information on Buggy, see http://www.buggy-online.com/
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Table 7: The result of the matches against the program GWD. A win is awarded with 2 points,
a draw with 1 point.

program: GWD

NN-... Inputs WIN LOSS DRAW RESULT

NN1 Global features 3 4 3 9-11

NN2 Global and 3-on-a-diagonal 4 1 5 13-7

NN3 All features except raw board info 7 3 0 14-6

NN4 All features 8 1 1 17-3

The reason why we did this is because learning on these positions distorted the learning
process. The neural network has great difficulty in learning specific board settings in
order to compensate for the temporal difference in material.

Learning parameters. The number of hidden units is 80, the learning rate for NN1
and NN2 is 0.001, the learning rate for NN3, NN4, and NN5 is 0.0005. We set λ = 0.9. In
our experiments we used the activation function βx/(1+abs(βx)) with neuron sensitivity
β. The neuron sensitivity is adjusted according to the partial derivative of the error to
the neuron sensitivity using extended back-propagation [37, 38] which is used to speed up
learning. The initial hidden neuron sensitivity β is 3.0. The learning rate of the sensitivity
for hidden neurons for NN1 and NN2 is 0.01, and the learning rate of the sensitivity for
hidden neurons for NN3, NN4, and NN5 is 0.005.

Testing. The four neural networks, created by learning from 200.000 database games,
were tested against two draughts programs available on the internet. DAM 2.25 is a very
strong player and GWD6 a strong player on the scale of very weak, weak, medium, strong
and very strong.7 Each network played one match of 10 games, 5 with white and 5 with
black against both computer programs. In all the games both players got 4 minutes time.
In the programs GWD and DAM 2.2. it was only possible to give the computer the
amount of time per move. So GWD and DAM 2.2 got 4 seconds per move. Furthermore
a round tournament was held with only the neural network players. So each player played
10 games against another player using 4 minutes per game per player. No program made
use of an opening book.

Experimental results. The results of matches against the strong program GWD are
shown in Table 7. All neural networks, except NN1 were able to beat GWD after training
from 200,000 database games. We can see that NN4 which uses the largest amount of
features performs best against GWD and is able to beat this program 8 times out of 10
test-games. Therefore it can be concluded that the learned programs play quite strong.

The results of the trained architectures against the very strong computer program
DAM 2.2 are shown in Table 8. The results show that DAM 2.2 is still much stronger
than the learned evaluation functions, although it is not able to always win against them.
Since the programs obtained the same amount of time (only about 4 seconds per move),
we expect that DAM 2.2 could make deeper lookahead searches due to its faster evaluation
function. The learning programs use a large neural network which takes much longer to
evaluate. Therefore it was not possible to lookahead the same number of moves. This is
a drawback when the search is not very deep, e.g. a lookahead search of 3 or 5 ply can
make a huge difference. If the computers would be much faster, a lookahead search of
12 compared to 14 ply would be much less important, and thus more knowledge in the

5For information and download, see http://www.xs4all.nl/ hjetten/dameng.html
6For information and download, see http://www.wxs.nl/ gijsbert.wiesenekker/gwd4distrib.zip
7According to http://perso.wanadoo.fr/alemanni/apage76 e.html
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Table 8: The result of the matches against the program DAM 2.2. A win is awarded with 2
points, a draw with 1 point.

program: DAM 2.2

NN-... WIN LOSS DRAW RESULT

NN1 0 9 1 1-19

NN2 0 9 1 1-19

NN3 0 7 3 3-17

NN4 0 9 1 1-19

Table 9: The results of the round tournament between the neural networks. The outcome
3-3-4 means the row player won 3 games, lost 3 games and drew 4 games.

x NN1 NN2 NN3 NN4

NN1 x 3-3-4 2-6-2 4-6-0

NN2 3-3-4 x 1-6-3 3-5-2

NN3 6-2-2 6-1-3 x 4-5-1

NN4 6-4-0 5-3-2 5-4-1 x

evaluation function could become more profitable. Unfortunately it still takes a lot of time
until computers can lookahead many moves using large and knowledge-rich evaluation
functions, and thus it is currently difficult to measure the utility of learned evaluation
functions for obtaining world class level play.

In Table 9, the results of the round tournament of the network architectures is shown.
It is clear that NN3 and NN4 are stronger than NN1 and NN2, and that more input
features is therefore useful for learning good evaluation functions. The networks were
trained over a whole game. However because an endgame has nothing to do with the
middle-game inference can be a problem. We also tried an experiment with 3 neural
networks for the opening, the middle-game and endgame. However the network was not
able to learn the material function in the opening. The reason is that there are too few
examples of positions in the opening with piece (dis)advantage in the database games.

Discussion. The networks NN2, NN3 and NN4 were able to defeat GWD on a regular
basis. Most of the time NN1 had a superb position against GWD. In many of the games
the advantage in development for NN1 was huge and NN1 was controlling all the center
fields. However sometimes NN1 made it possible for GWD to get a clear way to promotion
and sometimes built uncomfortable formations. The reason why it did this is because it
does not have enough input features for accurately describing the position. All networks
were not able to compete against Dam 2.2. Some of the networks were able to draw
sometimes. NN3 and NN4 are much better playing networks than NN1 and NN2. A
problem of NN3 and NN4 is the evaluation of positions with structures where break off
and rebuilding of the structure plays an important role. Probably this is because of the
input features and the lack of an opening book. The networks NN3 and NN4 only have
one structural feature for these kind of positions. That is why it is very difficult to learn
using these features whether the positions are good or bad. It is to be noted that this is
of course when lookahead does not reach further than the disappearance of the structure.

Probably the biggest problem in the play is the opening. In some openings the networks
want to go for a quick attacking strategy, but in the opening this is most of the time
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not a good idea. One simple counter strategy is to attack this piece a couple of times
and exchange it. This results immediately in disadvantage in development and in an
unconnected (split) position. The problem of the opening is that the positions are the
most far positions from the end position. Because of this, the variance in the value of
the positions is very small, but later some small differences on the board can lead to a
considerable advantage. The opening has been a problem too for other draughts playing
computers which therefore often use an opening book.

5.3 Discussion

The experiments with learning to play chess and draughts using database games indicated
that quite good evaluation functions can be obtained within a short time. To enhance the
evaluation functions, we can let the architectures train multiple times from the database
games. Although it may be useful to switch to learning by self-play at some moment in
time so that the learning program can generate experiences with moves never played in the
database games, generating games by self-play would cost much more time. Especially
if we want to have a large neural network architecture that could learn a lot of game
knowledge, many games need to be played and therefore initially learning from given
games may be a very good method. It should be mentioned that Baxter et al.’s Knightcap
[2] was able to learn to play chess at human expert level from only about 300 games played
on internet, but it used a linear network and its initial playing strength was already much
better than random.

The experiments indicated that using more features and therefore larger architectures
can work better, but a problem of having a large neural network architecture as evaluation
function is that it takes much more time to evaluate a position than with a set of symbolic
rules or a linear network. E.g., we used 80 hidden units and therefore the evaluation time
is roughly 80 times higher. This means that search depth in the same time interval is at
least 3 ply less which is a significant drawback if we cannot use very fast computers which
obtain a search depth of more than 10 ply anyway. Therefore, we expect that learning
game evaluation functions for difficult games requiring a lot of lookahead is most fruitful
if faster computers become available.

The experiments also showed that raw board information is useful for learning bet-
ter game evaluation functions. Although the architectures become larger and therefore
more training games need to be observed, the raw board inputs give useful information
which cannot be obtained solely from higher level features. For chess separate networks
for the opening, middle-game and endgame resulted in better evaluation functions, but
for draughts this was not the case. The problem with draughts was that there were
too few examples of differences in material in the opening game. This could be easily
overcome by adding more games played by worse players or by sometimes allowing the
learning programs to learn from self-play. We could improve the results by adding more
higher-level features, modules, and increasing the number of training games. Furthermore,
tournaments can be held to store the best learned evaluation function.

6 Conclusion

In this paper we looked at the advantages of using database games for learning to play
games using temporal difference methods. The results indicated that this approach has
as large advantage that the learning program can train on much more games than using
self-play without a large penalty for doing so. The other possible advantage, namely that
games are initially played at a high level was not clearly shown in the experimental results.
In fact, learning form observations seems to require more training games than learning
by self-play or playing against an expert. We only studied a single machine learning ap-
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proach, however, namely temporal difference methods. If we looked at the games played
by the trained programs, we observed that opening and endgame play was not always
optimal. In the opening and endgame the evaluations of positions often do not differ very
much (e.g., in the endgame there can be many winning positions, but this does not lead to
an optimal strategy for winning the game). Since the evaluations are so close, a function
approximator has large difficulties in preferring the best moves. We believe therefore that
the opening or endgame should be learned by other machine learning approaches such as
case-based reasoning or root learning. During the middle-game, the number of positions
is usually largest and therefore it is infeasible to store all positions. We therefore think
that learning evaluation functions for middle-game positions using temporal difference
learning methods is very helpful. Other possibilities to improve the level of games consist
of learning search control, learning to add higher-level features automatically, or learning
different strategical position classes. Using a symbolic categorization module has as ad-
vantage than we can use more parameters for learning the evaluation function, whereas
we still have fast propagation. We believe that combining a variety of machine learning
methods and using a large number of database games will make it possible to learn world
class playing programs for a large number of games.

Learning from databases can also be used for other applications, such as learning in
action or strategical computer games for which human games played with a joystick can
be easily recorded. Furthermore, for therapy planning in medicine, databases of therapies
may be available and could therefore be used for learning policies. For robotics, behavior
may be steered by humans using a joystick and these experiences can be recorded and
then learned by the robot [36]. Thus, we think that learning from observing an expert
has many advantages and possibilities for learning control knowledge, and can be more
fruitfully used for many applications than learning from trial and error, whereas the same
reinforcement learning algorithms can still be applied.
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