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Abstract

One of the major problems in frequent pattern mining is the explosion of
the number of results, making it difficult to identify the interesting frequent
patterns. In a recent paper [14] we have shown that an MDL-based approach
gives a dramatic reduction of the number of frequent item sets to consider.
Here we show that MDL gives similarly good reductions for frequent pat-
terns on other types of data, viz., on sequences and trees. Reductions of two
to three orders of magnitude are easily attained on data sets from the web-
mining field.

Keywords: MDL, frequent sequences, frequent trees.

1 Introduction

Since the first paper on association rules [2], the discovery of frequent item sets
and, more general, frequent patterns has been a popular topic in data mining re-
search. One of the main reasons for this popularity is the insight that frequent
patterns potentially offer.

However, a major obstacle in the usage of frequent patterns in practice is the
explosion of the number of results at low thresholds for minimal support. High
thresholds result mainly in well-known results, hence low thresholds are necessary
to achieve new insight.
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2 STRUCTURED DATA AND FREQUENT PATTERNS 2

Over the years, many solutions have been proposed for this setting, such as
closed [18] and maximal [13] frequent patterns. Note that these solutions were of-
ten introduced for frequent item sets but can be generalised to frequent patterns.
Most, if not all, of these solutions can be seen as reducing the volume of the result-
ing set of frequent patterns; either lossless (closed) or lossy (maximal).

In a recent paper [14] we have taken a radically different approach based on
the Minimal Description Length (MDL) principle [7]:

A set of frequent patterns is interesting iff it gives a good compression
of the database.

In [14] we have shown that this approach results in sets of frequent item sets that
are many orders of magnitude smaller than the set of all frequent item sets. That is,
the result set is far smaller than, e.g., the set of closed frequent item sets.

The aim of this paper is to extend this approach to frequent patterns on struc-
tured data. That is, we show that in the general case MDL-based compression picks
a, relatively, small set of frequent patterns that describe the structured data well. As
examples of structured data we use sequences [12] and trees [4].

Although more MDL applications with structured data appear in literature, it is
normally put to use to find occurring patterns within a structure via compression,
not for the reduction of a large set of patterns. For example, SUBDUE [5] uses
MDL to compress a given graph to find larger hierarchical structures in data. Sim-
ilarly, the ED algorithm [8] uses MDL on sequence data, and captures periodical
patterns in one long sequence as opposed to a collection of sequences.

2 Structured Data and Frequent Patterns

Before we describe our compression based approach to filter for a small set of
frequent patterns that describe our database well, we first give a brief introduction
to the specific structured data types and patterns we use in this paper.

As mentioned already in the introduction, we focus on sequences and trees.
Even then, there is a variety of ways in which one can define the (frequent) patterns.
Our specific choice is based on two criteria:

1. Since we want to have a lossless compression of the database, we have to
cover each structured element in the database completely. Patterns with gaps
make this process unduly complex, hence we restrict our attention to gap-
less patterns.

2. The other criterion is that we require our description to match easily to our
test-data, which is web-mining data.
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Figure 1: Ambiguity in the decoding caused by allowing overlap or gaps in the
cover.

To ensure a lossless compression of the database we do not allow overlap in
the database cover which results from the selected structured data elements. With-
out this restriction it would no longer be possible to perform a unique de-coding
of the database. To illustrate this, we assume that overlap is allowed and observe
the situation for two sequence codes ABC and CDE that occur both in our se-
lected set of patterns. In this case the original sequence transaction could have been
ABCDE (with overlap) or ABCCDE (without overlap); both are indistinguishable
when looking at the coded string when overlap is allowed. This is illustrated in
Figure 1. To solve this ambiguity we chose to not allow any overlap. Although one
could argue to solve it by making the overlap mandatory with a fixed number of
elements, we chose the former method.

Another consideration to take into account when preserving the lossless com-
pression of a database is the use of gaps in patterns. Because gaps in general can
have an arbitrary size, it is impossible to ensure an unique decoding. To illustrate
this, the example shows the patterns AB*D,C and E that have been selected as our
set of patterns. Now the original string could have been ABCDE if the gap had size
1 or ABCED if the gap size was 2. To prevent this ambiguity we disallowed gaps
in our patterns. Naturally, these examples extend to other types of structured data.

2.1 Structured Data: Sequences and Trees

The basis of both the sequences and the trees we consider are events. A sequence
is simply an ordered set of such events. We define a tree as an ordered rooted tree
in which each node in the tree is labeled by one of the events [6]. For example, if
the events are the web pages of a given website, a sequence would, e.g., represent
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the path of pages a user has visited on that web site. The tree would represent the
subtree of the website the user has visited. In our representation, we assume an
order on the children of a node in the tree.

The formal definitions are as follows:

Definition Given a finite set of events Σ,

1. A sequence s over Σ is an ordered set

s = {(si, i)}i∈{1,...,n},

in which the si ∈ Σ. If 1 ≤ i ≤ j ≤ n,
then (si, i) � (sj , j).

2. An ordered rooted tree t over Σ is given by a tuple:

t = {V,E, v0, L,�}

for which

• V is the set of nodes and E the set of edges of the tree with root v0.

• L : V → Σ labels each node with its event.

• � is a partial order on V , which puts an order on the children of a node.
For all x, y ∈ V , if L(x) ≤ L(y), then x � y.

2.2 Patterns and Occurrences

As usual in structured data mining, the patterns we consider are themselves again
sequences and trees over Σ. The crucial matter is the definition of an occurrence.
As stated above, we do not allow gaps. That is, for a pattern x to occur in structured
data y, we need an an injective mapping Φ : x → y such that Φ(x) is a connected
component of y. More precise, we have the following definition.

Definition Let x and y be both sequences or both trees over Σ, and Φ : x → y a
label preserving, injective mapping. x occurs in y, denoted by x ⊆ y, iff.

1. When both are sequences, if for xi, xj ∈ x:

(a) Φ(xi) � Φ(xj) ⇔ xi � xj

(b) ∃yk ∈ y : Φ(xi) � yk � Φ(xj) ⇔
∃xk ∈ x : Φ(xk) = yk ∧ xi � xk � xj .

2. When both are trees, x occurs in y if for xi, xj ∈ x:
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(a) (xi, xj) ∈ Ex ⇔ (Φ(xi),Φ(xj)) ∈ Ey

(b) Φ(xi) � Φ(xj) ⇔ xi � xj

The mapping Φ is called the occurrence.

Note, that we do allow multiple overlapping occurrences of x in y. For db is a set
of sequences or trees, the support of a pattern x is the sum of the occurrences x has
in the elements y ∈ db. A pattern is called frequent if it occurs more often than a
given minimal support threshold.

3 Compression using Frequent Patterns

3.1 MDL

MDL (minimum description length) [7], like its close cousin MML (minimum
message length) [15], is a practical version of Kolmogorov Complexity [11]. All
three embrace the slogan Induction by Compression. For MDL, this principle can
be roughly described as follows.

Given a set of models H, the best model H ∈ H is the one that minimises
L(H) + L(D|H) in which:

• L(H) is the length, in bits, of the description of H , and

• L(D|H) is the length, in bits, of the description of the data when encoded
with H .

In our case, H will consist of (ordered) sets of patterns for sequences or trees.

3.2 Code Tables and database covers

The key idea of our compression based approach [14] is that of a code table. The
code table is a table with two columns, the first right-hand column contains (fre-
quent) patterns, the second left-hand column contains the code for that pattern. We
assume that each code table contains at least the singleton patterns (sequences with
only one event, or subtrees with only one node). These singleton patterns are also
known as the alphabet of our encoding. The second assumption on code tables is
that we assume that its entries are ordered, i.e., there is a first entry, a second, et
cetera.

With these two assumptions, we can encode each database with a code table
as follows. Let e ∈ db be a structured database element, i.e., a sequence or a tree.
We search the code table for the first pattern pi in the code table CT such that
pi ⊆ e. All occurrences of pi in e are then replaced by the code ci for pi as given
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Figure 2: Sequence and tree covering.

by CT . As long as e is not completely covered by patterns in the code table, the
algorithm continues. An example of a covered database is given in Figure 2. The
total amount of occurrences for this pattern is given by freq(pi), and the length of
replaced pattern is defined as l(CT,db)(pi).

There are three things one should note about this algorithm. Firstly, each ele-
ment of the database is covered by non-overlapping patterns. This is necessary to
allow a decoding of the coded database; replace each code element by its pattern.
Secondly there is an important distinction between entries in the code table and
the database cover. As discussed earlier, we do not allow overlap in the database
cover. In contrast, code table entries are allowed to contain overlap between each
other. For example, both code table elements ABC and CDE can co-occur in the
selected set of patterns. In addition, if both patterns occur together in sequential
order frequently in the database, the larger pattern ABCDE will also appear in the
code table. In fact, this pattern will be listed higher in the code table, and may make
the smaller patterns redundant and may be removed by pruning.
Thirdly, since the code table contains the singleton patterns, this covering algorithm
will terminate.

3.3 Formalizing the Problem

The actual code we use for a pattern is not important. What is important for MDL-
based reduction is its size. Since we want optimal compression, the pattern that is
used most often in covering the database should receive the shortest code.

Definition Given a database db and a code table CT , the frequency of a pattern
p ∈ CT , denoted by freq(p), is the number of times it is used to cover the elements
of db.
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The relative frequency of a pattern p ∈ CT is the probability that it is used to cover
a random element e ∈ db. From information theory [7] we know that an optimal
code for CT will have length:

l(CT,db)(ci) = − log(P (ci)) = −log

(
freq(pi)∑

pj∈CT freq(pj)

)

Knowing the size of the codes, we also know the size of the encoded database.
This is the size of the codes times the number of times they are used to cover the
database:

LCT (db) = −
∑

pi∈CT

freq(pi)× log

(
freq(pi)∑

pj∈CT freq(pj)

)

So, to apply the MDL principle, we only have to determine the size of the code
table. We already know the size of the right-hand side column, it is the sum of all
code sizes. In other words, we only have to determine the size of the left-hand side
column.

To do this, note that the initial code table contains only the singleton patterns.
If these patterns are ordered descending on their support in the database, this code
table is called the standard code table. The encoding of patterns with the standard
code table is called their standard encoding (ST). This is the encoding we use for
the left-hand side column.

Finally, note that it does not make sense to have elements in a code table that
are never used in covering the database. Hence, to compute the size of the code
table, we do not count entries with frequency zero. With this we have:

Ldb(CT ) =
∑

pi∈CT,freq(pi) 6=0

l(ST,db)(pi) + l(CT,db)(ci)

Now we can formally state our problem:

Given a database db and a set of patterns P , find code table CT whose
patterns are all in P that minimizes:

LCT (db) + Ldb(CT )

Note, that a code table is assumed to contain all alphabet elements. If P does not
contain these elements, we augment P so that it does.
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3.4 Exact Solutions?

Ideally, we would like to have an exact algorithm that solves our problem in a
feasible amount of time. However, such algorithms are unlikely to exist.

Firstly, we have to consider all subsets of P that contain all alphabet elements.
Moreover, we have to consider all possible orders on these subsets. This means
there are far too many possible code tables to make exhaustive search feasible.

Secondly, there is structure in the search space, but it does not help. For we
know that if P1 ⊆ P2 ⊆ P , then the best possible code table we can derive from
P2 is at least as good as the best possible code table we can derive from P1.

In other words, we will have to use heuristics to find a good code table. We will
use the heuristic proven to work well in [14]

3.5 Ordering the sets

The heuristic is based on orders, one on the entries in the code table, the other on
the set of frequent patterns that are used as input.

Clearly, we already assume that code tables are ordered. However, now we
define a standard order on a code table. Given two patterns p1, p2 ∈ CT , the p1

entry is before the p2 entry iff:

1. p1 is a bigger pattern than p2, i.e., it is a longer sequence or it is a tree with
more nodes.

2. Or, if they have equal size, because p1 has larger support in the database than
p2.

3. If both measures are equal, the order is arbitrary.

Together with the covering algorithm we already described, this order means that
preference is given to large patterns over small embedded ones.

Next to the order on the code table, we also enforce an order on the set of
patterns that form the input of our algorithm. The patterns will be considered in
this order for insertion in the (growing) code table. For two patterns p1 and p2 in
the input ordered input set, p1 occurs before p2 iff:

1. p1 has a larger support than p2,

2. if they have the same support, p1 is a larger pattern than p2.

3. If both measures are equal, the order is arbitrary.
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COMPRESS(Patternset)
1 codetable = allsingletonpatterns;
2 minDBsize = computeSize(codetable);
3 foreach pattern in frequentPatterns (in order)
4 codetable.add(pattern); (in place)
5 newDBsize = computeSize(codetable);
6 if (newDBsize < minDBsize)
7 minDBsize = newDBsize;
8 else
9 codetable.remove(pattern);

10 return codetable;

Figure 3: Compress algorithm. Algorithm to find the minimal describing coding
set.

3.6 Algorithm description

A standard frequent tree or sequence mining algorithm mines for frequent patterns
and are feeded into our compression algorithm in an ordered fashion (as described
above). These frequent patterns are used to build a code table to compress the
database. Initially filled with only the singleton patterns, the code table gradually
grows with added patterns that are sequentially picked from the ordered candidate
set.

For each new code table CT , the algorithm uses the algorithm computeSize
to compute the MDL size, LCT (db) + Ldb(CT ), for this code table (see Figure
3). It first computes the cover as discussed in paragraph 3.2. Then it computes the
sizes of the code table and the compressed database. If the total size is smaller than
the current minimal size the pattern is kept in the code table and the minimal size
is updated, otherwise the sequence is dropped from the code table since it does not
contribute to the compression of the database.

As patterns may be preserved that have lost their use for compressing the
database, we apply a code table pruning method to further improve the frequent
pattern reduction (see Figure 4). In this final processing step we apply a greedy
pruning algorithm that starts at the bottom of the code table to remove the non-
contributing smallest patterns. The effect of this lesion is derived by recomputing
the cover. If this results in a better compression the pattern is left out, otherwise it is
reinserted in the code table. In this fashion all items in the code table are evaluated
to see if they can be removed. To ensure the complete database cover singleton
patterns are never pruned.
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PRUNE(codetable)
1 foreach code in codetable CT \ singletons α (in reverse order)
2 codetable.remove(code);
3 newDBsize = computeSize(codetable);
4 if (newDBsize ≤ minDBsize)
5 minDBsize = newDBsize;
6 else
7 codetable.add(code);
8 return codetable;

Figure 4: Prune algorithm. Removes obsolete patterns as post-processing from the
code table.

3.7 Related work

In literature a similar MDL-based method to extract structured patterns from a
database is known, called SUBDUE. However, there are some differences on which
we like to focus. Firstly, SUBDUE’s goal is different as it aims at finding hierar-
chical compression patterns within the single graph structured data, in contrast to
the use of MDL to select the interesting patterns from an existing set of frequent
pre-mined set of patterns. The prime focus on single graphs makes finding patterns
over transactions not feasible without preprocessing the input data for SUBDUE.
SUBDUE sequentially replaces smaller structures by a single node, and repeats the
MDL concept compression, which leads to a structure hierarchy.
Secondly, a more important difference with SUBDUE is the fact that SUBDUE per-
forms candidate generation based on MDL heuristics opposed to our exploration
of the generated frequent pattern set. This can lead to some different results due to
the fact that sub patterns with a larger MDL-size will not be expanded to a larger
pattern still having a high frequency, while still being a potential interesting pat-
tern. This could be partly compensated by the inexact graph matching, but would
make lossless compression infeasible.
As the beam size, which is the selected set of patterns that is to be expanded it-
eratively with a single node, is fixed, and the amount of patterns that are avail-
able per size is variable, this is possible to happen. If for example the database
is very skewed, as in our experiments later on, a lot of small patterns can occur
and together with only a few larger ones. SUBDUE will not select the small frag-
ments from the larger strings as they will not likely contribute much in the database
compression in terms of MDL compression, instead it will expand the plethora of
smaller subitems, which may not occur at all in the larger patterns.
The original authors noted the effect of possible lack of finding patterns in their
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Table 1: Database characteristics. The databases vary widely in their record length
and have a short average. The number of singletons (α) is high.

data type data set # records avg.size # α

sequences KDDcup 234,954 3 835
trees logml 8074 8 9060

US 2430 7409 8 9284
US 304 7628 7 8928

earlier work as an effect of their heuristic beam wise search. For our specific pur-
pose however, this would be unsuitable to use, and the point of making this remark
is solely to emphasize our different approach angle.

In the field of sequence data mining, there also is an MDL-based method for the
extraction of patterns called Episode Discovery (ED). ED tries to discover specifi-
cally periodic features in a sequence using MDL. This is not posed as a restriction
to our code table elements, as they only need to aid in the compression of the
database. Furthermore, an important difference is that ED starts with a smaller col-
lection of maximal frequent episodes from which it generates candidates. For each
of these candidates a compression ratio is determined based on MDL that is used
to tag potentially interesting single patterns. In contrast we search for a minimal set
of frequent patterns that together give the best MDL-description of the database.
This leads to the inclusion of less frequent patterns that are potentially interesting.

4 Experiments

We have applied the described MDL-based reduction to some publicly available
data sets from the web-mining field. As we are interested in the volume reduction
and not so much the actual compression factors, we focus on reduction first and
subsequently present the quality of the selected patterns in terms of the size distri-
bution and induced database cover per pattern. Throughout the following sections
we have presented results for both the sequence and the tree data-type cases. The
depicted 2 data sets are representative for all other conducted experiments. Our
databases are skewed, making them harder for MDL compression as some trans-
actions are around 100 times larger than the smaller records. Moreover, the larger
alphabets indicate a wide variety of possible patterns which is also potentially dif-
ficult for MDL. In short, the chosen data sets pose an interesting challenge.
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4.1 Sequences

For the sequence data experiments we selected the KDD Cup 2000 data set which
consists of clickstream and customer data of an e-commerce retail web site (see
table 1) [9]. It contains 777,480 clicks divided over 234,954 sequences. From the
clickstream data we derived a collection of frequent sequences without gaps. In the
2 experiment sets we limited the windows size to 60 and 120 seconds, resulting in
2 collections of frequent sequences that fit within these window sizes. From this
set we compose the code table that is used to compress the database. The results
for these two experiments can be seen in Table 2.

The compression method was applied on the frequent sequences using 3 differ-
ent minimal support levels to show the effect of this variation. Reduction increases
for decreasing minimal support levels and attains ratios down to 37%. After com-
pression we applied pruning to remove the items that lost their frequency to the
longer encapsulating sequences that were added later during the compression. This
resulted in another reduction in the number of interesting patterns; now levels of
10% are achieved. If we allow longer patterns through the use of a larger window
size the reduction becomes a little bit less, although still comparable, for the same
minimal support level. This is caused by the fact that longer patterns can already
result in compression at a lower frequency as longer patterns have a higher change
of being smaller than their code in the code table.

Figure 5 shows the pruning effect on the size distribution of the used sequences
in the code table. We see a shift towards the use of longer sequences when compar-
ing all frequent sequences to the sequences in the code table; long sequences have
a large effect on the database compression. When we compare the content of the
code tables before and after pruning, we see that the largest and smallest sequences
are often pruned from the code table. As for the singleton elements, due to our

Table 2: Sequence reduction results. The amount of elements left in the code ta-
ble after reduction (#CT ) is heavily reduced compared to the original amount of
candidate frequent sequences. (#sequences)

window size 60 sec 120 sec
minsup 0.06% 0.04% 0.02% 0.06% 0.04% 0.02%
#sequences 1477 1955 3,076 1719 2365 3,876
#CT 1,422 1,569 1,845 1,513 1,757 2,184
#CT p 1,079 1,095 1,129 1,200 1,274 1,377
#CT \α 587 734 1,010 675 922 1,349
#CT p\α 244 260 294 365 439 542
%CT p\α 16.5% 13.3% 9.6% 21.2% 18.6% 14.0%
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Figure 5: Distribution analysis of the frequent pattern size histograms for the KD-
Dcup data with window size 60sec and minsup 150. In (a) we see that the input
frequent pattern set has an expected monotone decay. However, in (b) the distribu-
tion of the resulting code table is more balanced, and most of the smaller patterns
have been removed. After pruning (c), a further shift to the more averaged sized
patterns is shown.

complete cover restriction only a small fraction is used frequently (see Figure 8).
The singleton patterns contained in the code table can be attributed partly to

the data distribution which includes many single element transactions that require
to be covered by these singletons.

4.2 Trees

In the experiments to reduce the set of frequent subtrees, we have chosen three
different data sets; logml, US 304 and US 2430, which all contain weblog data
(see table 1 for details) [16]. To generate all frequent induced subtrees, we used
the FREQT algorithm implemented by Taku Kudo [1, 17, 10], and we applied a
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Figure 6: The dashed line indicates the frequent pattern set growth as a function of
the minimal support for the US 2430 data set. The corresponding code table grows
less steep.
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Figure 7: Distribution analysis of the pattern size histograms for the US2430 data
set. The input frequent pattern set (a) has an expected monotone decay. However,
the code table before (b) and after (c) pruning shows more balanced distributions.

subtree matching algorithm similar as described in [3]
While generating the frequent subtrees for all data sets, we counted the fre-

quency per row for the minimal support level as described in section 2.2. Here
again we applied compression on all data sets, followed by a prune on their respec-
tive code tables, removing in reverse support order the code table elements that do
not contribute to the database compression anymore.

We obtain similar good reduction results that occur up to three orders of mag-
nitude: 0.17% of the frequent pattern set that was originally generated from the
logml data base. The specific obtained reduction ratios are a function of the mini-
mal support levels and the data characteristics, which both potentially lead to large
available patterns in the resulting set. In general we see that the pattern set growth
for the lower minimal support levels is steeper than the code table growth, which
stays tamed at a reasonable level (see Figure 6).

From our databases we derived the frequent subtrees up to a predefined mini-
mal support level. As one would expect from the a-priori principle, frequent subtree
mining results in a collection of subtrees diminishing monotone over pattern size
(see Figure 7a). This is even accentuated due to the skewness of the database used

Table 3: Reduction results. The amount of elements left in the code table after re-
duction (#CT ) and pruning (#CT p) is heavily reduced compared to the original
amount of candidate frequent subtrees (#trees).

dataset US 2430 US 304 logml
minsup 0.13% 0.20% 0.15%
#trees 46,232 196,392 275,377
#CT 10,001 9,409 9,650
#CT p 9,855 9,312 9,540
#CT \α 717 481 590
#CT p\α 571 384 480
%CT p\α 1.24% 0.20% 0.17%
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in our experiments which contains a large number of short transactions. When we
look at the resulting code tables, we see a more stable result, in the sense that
larger patterns occur relatively more often. Small patterns still dominate, as they
most likely complete the cover of the database. Most importantly, a large amount
of small non-informative patterns is removed, as the MDL principle selects those
patterns that contribute to the database description. In the distribution of the code
table elements, the number of outliers are reduced before and after pruning via
MDL.

When we look at the usage of the alphabet elements (see Figure 9), we see
that again only a minority of the alphabet is used often and the majority is used
infrequently. In contrast to the sequence data set, the trees lack singleton tree trans-
actions, which can be seen in the lower number of cover attained by the most
frequent singleton code table element.

4.3 Coverage Analysis

In order to further assess the information capacity of the code table elements, we
have run an analysis on the contribution of each code table element on the cover of
the database. Here we view the cover contribution per pattern as an interestingness
measure. In order to compute this, we first define the partial cover as:

partial cover(1, x) =
x∑

i=1

freq(ci)× l(CT,db)(ci)

Note that for x = |CT | the partial cover is equal to the original database size.
Using this definition, we now define the derivative of this partial cover as the in-
crease of database area cover caused by the current pattern:

∆partial cover(1, x)
∆i

= freq(ci)× l(CT,db)(ci)
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Figure 8: The plots shown here depict the pattern contribution of the database cover
for the frequent patterns of the KDD cup data set (minsup 0.02%). The derivative
of the code table before (a) and after (b) pruning show that the most contributing
patterns lie in the top.
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In both scenarios we see that the main contribution of the database cover lies
in the non-singleton part of found code table, shown in the left of the graphs see
Figs. 8 and 9). In the inlay of the graph the derivative of this part of the code table
is enlarged. Here we also see that the median of the cover is reached before half of
the contents of this code table portion (47.5% and 32.4% for sequences and trees
respectively). This indicates that our presented order places the most covering pat-
terns close to the top of our code table, indicating that when experts evaluate the
contents of the code table, they will find these patterns early on in their evaluation.
The consecutive peaks in the code table patterns cover contribution is due to the
code table ordering. Patterns of specific window lengths are contained in the database,
and upon reaching a specific size barrier in the code table, a large portion of the
database is covered.

The final high peak is derived from the first alphabet items in our code table
which are used in the cover: only a small fraction is used often. The remainder is
mainly used to ’fill up’ the database cover, and makes our earlier consideration to
ensure that all alphabet items are contained in the code table apparently just.
Furthermore, the pruning of the code table does not affect the encoding capabilities.
The smaller set of non-singleton code table elements show a similar, and even
slightly better, behaviour in terms of the partial derivative of the database cover.
Meaning this smaller set of patterns also encodes the complete database, and have
a higher value in terms of coverage. Here again the ’point of gravity’ lies equally
early in the derivative cover distribution (47.5% and 32.6% for sequences and trees
respectively).
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Figure 9: The partial cover derivatives before (b) and after (c) of the US 2430 data
set for a minimal support level of 0.13% show the contribution per pattern of the
database cover.
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5 Discussion

We obtain good results for a wide variety of sparse web-mining databases with var-
ious minimal supports and frequent pattern set sizes. Compression clearly reduces
the frequent pattern set significantly, and makes it applicable for domain expert
evaluation. Around 10% of the original set is considered relevant for sequence data
and remains preserved. We see an even higher reduction to about 1% for tree struc-
tured data. In general, we see the trend that the code table growth as a function
of the minimal support follows the frequent pattern set explosion only moderately.
We also confirm that low min-sup thresholds do reveal more of the structure in
the database than higher thresholds. Note that the larger the average number of
nodes the structured elements in the database have, the larger the reduction we at-
tain is. This makes sense, as larger structured elements give more opportunity for
compression.

Improvement continues when pruning removes obsolete patterns from the re-
duced pattern set that is located in the code table. The reduction is even more im-
pressive if we disregard the alphabet elements. Since the novelty for the user is in
general found in the longer patterns, this is the number of frequent patterns the user
will have to pursue. In the logml database, this means that the user will only have
to look at 480 out of the 275.000 frequent subtrees; a three orders of magnitude
reduction.

In parallel to reduction in number, further improvement is gained as small and
trivial patterns are removed, leading to a more balanced set of patterns in terms of
length that are potentially more interesting see Figs. 5b and 7b. Pruning leads to
additional data enhancement by stripping of the non-contributing outlier patterns,
which could indicate that the selected patterns are used more generally for the
database cover.

In terms of coverage, we also see that our code table plays a major role in de-
scribing the patterns. Even when focussing on the code table itself, we see that the
major contribution lies in the top of the selected patterns (see Figs. 8 and 9). Post
pruning, we still see correct results in terms of coverage: less patterns describe an
equal part of the database, thus making the pruned code table even more informa-
tive.

6 Conclusion

Our MDL approach picks small informative sets of patterns from the potentially
vast sets of frequent patterns from structured data. Reductions up to three orders
of magnitude have been seen in the experiments. We have also shown that the
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exponential explosion of the frequent pattern set for lower minimal support levels is
followed much more moderately. This volume reduction, especially at low minimal
support levels, allows the inspection of our selection of patterns: the code table.
Moreover, this reduction does not simply favour small or large patterns. Rather the
informative patterns are a balanced choice of frequent patterns of all possible sizes.
Finally, we have seen that the code table is friendly in terms of user evaluation. In
terms of coverage the most interesting patterns are listed at the top of our code
table. This in practice will mean that the user will even have to evaluate a sub set
of this already reduced set of patterns.

As noted in the discussion, the rate of reduction we attain depends on the aver-
age size of the structured elements in the database.Therefore we plan to extend our
algorithms and the experiments to XML data. In such data, the structured elements
tend to be far larger, thus possibly allowing for even higher reduction ratios.
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