
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

ISABEL BECKENBACH, RALF BORNDÖRFER

An Approximation Result for Matchings in
Partitioned Hypergraphs

ZIB Report 14-30 (July 2014)



Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de


An Approximation Result for Matchings in
Partitioned Hypergraphs

Isabel Beckenbach∗ † Ralf Borndörfer∗

July 23, 2014

We investigate the matching and perfect matching polytopes of hypergraphs hav-
ing a special structure, which we call partitioned hypergraphs. We show that the
integrality gap of the standard LP-relaxation is at most 2

√
d for partitioned hyper-

graphs with parts of size ≤ d. Furthermore, we show that this bound cannot be
improved to O(d0.5−ε).

1 Introduction

The matching problem in hypergraphs is equivalent to the set packing problem,
which is well known to be N P-hard, and which does not admit a constant factor
approximation algorithm. There exists a lot of work characterizing classes of hy-
pergraphs for which the matching problem can be solved in polynomial time. The
simplest example are bipartite graphs for which the canonical LP-Relaxation of the
matching problem is integral. A further class are balanced hypergraphs.

We consider in this article a special class of so-called partitioned hypergraphs,
in which the hyperedges have a special structure, see also [2]. The canonical LP-
Relaxation of the matching problem need not to be integral for this class of hyper-
graphs. Nevertheless, we can bound the integrality gap by the square root of the
maximum part size.

2 Definitions

In this section we introduce some basic definitions and notations that we use in the
remainder. First, we give two definitions that show the close connection between
matchings in hypergraphs and the set packing problem, and perfect matching and
the set partitioning problem, respectively.

Every hypergraph can be represented by a 0,1 matrix in the following way:
∗Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany; Email: beckenbach@zib.de, borndoerfer@zib.de
†The work of this author is supported by a Konrad-Zuse Scholarship.
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Definition. Let H = (V,E) be a hypergraph, The incidence matrix of H is the ma-
trix A = (av,e)v∈V,e∈E ∈ {0,1}V×E defined by

av,e =

{
1, if v ∈ e
0, else.

Now, we define the four polytopes that we investigate in the next section.

Definition. Let H = (V,E) be a hypergraph the matching polytope, the fractional
matching polytope, the perfect matching polytope, and the fractional perfect match-
ing polytope associated with H are defined by:

PM(H) = conv({x ∈ {0,1}E |Ax≤ 1})
PLP

M (H) = conv({x ∈ RE |Ax≤ 1, x≥ 0})
PPM(H) = conv({x ∈ {0,1}E |Ax = 1})
PLP

PM(H) = conv({x ∈ RE |Ax = 1, x≥ 0}).

The extreme points of PM(H) are exactly the incidence vectors of matchings in H.
So, finding a maximum weight matching is equivalent to optimizing over PM(H)
which is hard. However, we can optimize over PLP

M (H) to obtain an upper bound.
Therefore, if we can bound the integrality gap of PLP

M (H) we obtain an approxima-
tion result for the maximum weight of a matching in H.

In [2] Borndörfer and Heismann introduced the hypergraph assignment problem
which is a generalization of the assignment problem. The hypergraph assignment
problem can also be seen as a perfect matching problem in a hypergraph having the
following special structure:

Definition. Let H = (V ∪W,E) be a hypergraph with |V | = |W |, V ∩W = /0, and
|e∩V |= |e∩W | for all e ∈ E. A nonempty set P⊆V or P⊆W is called a part of
H if for all e ∈ E either e∩V ⊆ P or (e∩V )∩P = /0 holds or in the case P ⊆W
either e∩W ⊆ P or (e∩W )∩P = /0 holds.

H is a partitioned hypergraph with maximum part size d if there are disjoint parts
P1, . . . ,Pr ⊆ V and Q1, . . . ,Qs ⊆W that form a partition of V and W , respectively,
and |Pi| ≤ d, |Q j| ≤ d for 1≤ i≤ r,1≤ j ≤ s.

It is easy to see that the intersection of two parts is empty or again a part. So, there
exists a unique finest partition P1, . . . ,Pr of V and a unique finest partition Q1, . . . ,Qs

of W into parts. We always assume that we have a partitioned hypergraph with
its finest partition into parts. Under this assumption the part size of a partitioned
hypergraphs is the maximum size of one of its parts.

For example, Figure 2 shows a partitioned hypergraph with maximum part size
three. The finest partition is {A,B,C}, {D,E},{F} and {G,H, I},{J,K,L}.

We also define the following “complete” partitioned hypergraph with parts of size
two:
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Figure 1: A partitioned hypergraph with maximum part size three

Definition. Let n ∈ N be an even number. The partitioned hypergraph Dn consists
of two disjoint vertex sets Vn = {v1, . . . ,vn} and Wn = {w1, . . . ,wn}. Each of the
two vertex sets is partitioned into n

2 parts of size two, say V i
n = {v2i−1,v2i}, W i

n =
{w2i−1,w2i} for all 1≤ i≤ n

2 . The set of hyperedges En of Dn consists of n2 edges
{vi,w j} for all 1≤ i, j≤ n and n2

4 hyperedges of the form V i
n∪W j

n for all 1≤ i, j≤ n
2 .

3 Integrality Gap

Füredi, Kahn, and Seymour show in [4] that the integrality gap of

max wtx (1)

subject to x ∈ PLP
M (H)

is at most k−1+ 1
k for k-uniform hypergraphs. For k-partite hypergraphs the result

can be strengthened to k− 1. The proofs of [4] are non-algorithmic, however, in
[3] an iterative rounding algorithm with approximation factor k−1 is given for the
maximum weight matching problem in k-partite hypergraphs. For the analysis of
their algorithm Chan and Lau consider the following linear program for fixed degree
bounds 0≤ Bv ≤ 1:

max wtx (2)

subject to x(δ (v))≤ Bv ∀v ∈V (H)

xe ≥ 0 ∀e ∈ E(H)

Let N[e] := {e′ : e∩ e′ 6= /0} be the set of all hyperedges intersecting e. The crucial
point of their proof is that for every extreme point x of (2) with x > 0 there exists a
hyperedge e ∈ E(H) with x(N[e])≤ k−1. The further analysis of the algorithm in
[3] does not use the k-partiteness of the hypergraph. If we can show that for every
extreme point x with x > 0 there exists a hyperedge e ∈ E(H) with x(N[e])≤ α for
H in some class C of hypergraphs, then the result of [3] gives an α-approximation
algorithm for the weighted matching problem in C .

We can proof the following bound for partitioned hypergraph:
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Lemma 1. Let H be a partitioned hypergraph with maximum part size d and x
be an extreme point of (2) with xe > 0 for all e ∈ E(H). There exists a hyperedge
e∗ ∈ E(H) with x(N[e∗])≤ 2

√
d.

Proof. 1. Case: There exists a hyperedge e∗ of size less than 2
√

d. Then

∑
e∈N[e∗]

x(e)≤ ∑
v∈e∗

∑
e:v∈e

x(e)≤ |e∗|< 2
√

d. (3)

2. Case: |e| ≥ 2
√

d for all e∈E(H). We choose e∗ ∈E arbitrarily. Let P and P′ be
the two parts of H such that e∗ ⊆ P∪P′. Summing over all inequalities x(δ (v))≤ 1
for v ∈ P gives

d ≥ |P| ≥ ∑
v∈P

∑
e:e∈v

x(e) = ∑
e∈δ (P)

|e∩P|x(e) = ∑
e∈δ (P)

|e|
2

x(e)≥
√

dx(e), (4)

and the same inequality holds for e ∈ δ (P′). Thus we get

∑
e∈N[e∗]

x(e)≤ ∑
e∈δ (P)

x(e)+ ∑
e∈δ (P′)

x(e)≤ 2
√

d. (5)

Now, we can proof that (1) has an integrality gap ≤ 2
√

d for partitioned hyper-
graphs with maximum part size d. The proof is based on the ideas used in [3] for
the analysis of the k-dimensional matching algorithm.

Theorem 2. The multiplicative integrality gap of (1) is at most 2
√

d for a parti-
tioned hypergraph H with maximum part size d.

Proof. Let x be an extreme point of (1). We have to show that there exists a match-
ing M of H such that wtx≤ 2

√
d×w(M).

We use induction on the number of hyperedges e ∈ E(H) with positive weight. If
w(e)≤ 0 for all hyperedges e ∈ E the claim trivially holds. Otherwise, there exists
a hyperedge e∗ of positive weight with x(N[e∗])≤ 2

√
d.

Define a weight function w1 by w1(e) :=w(e∗) for all e∈N[e∗] and w1(e) := 0 for
all other e ∈ E(H). Furthermore, set w2(e) := w(e)−w1(e) for all e ∈ E(H). The
weight function w2 has fewer hyperedges with positive weight then w. By induction
there exists a matching M′ of H with (w2)tx ≤ 2

√
d×w2(M′). If M′ ∪{e∗} is a

matching we set M := M′∪{e∗}, otherwise we set M := M′. In both cases, we have
w2(M) = w2(M′) and w1(M) = w(e∗), because w2(e∗) = 0 and N[e∗]∩M 6= /0. It
follows that:

2
√

dw(M) = 2
√

dw2(M)+2
√

dw1(M) = 2
√

dw2(M′)+2
√

dw(e∗)

≥ (w2)tx+w(e∗)x(N[e∗]) = (w2)tx+(w1)tx = wtx.
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For general hypergraphs with hyperedges of size k Hazan, Safra and Schwartz
proved in [7] that there is no O( k

lnk ) approximation algorithm for the maximum
matching problem unless P = N P . If the maximum part size of a partitioned
hypergraph is bounded by ck for some constant c∈Q+ Theorem 2. yields a O(

√
k)-

approximation algorithm which is better than O( k
lnk ).

Furthermore, there exists a 2
√
|V (H)|-approximation algorithm for the maxi-

mum weight matching problem in hypergraphs with hyperedges of unbounded size
(see [5]). This approximation factor cannot be improved to O(|V (H)| 12−ε) in the
unweighted case (see [6]).

Every hypergraph H can be transformed into a partitioned hypergraph HP with
maximum part size ≤ |V (H)| by setting V (HP) := V (H)×{0,1} and E(HP) :=
{{(v,0),(v,1) : v ∈ e} : e ∈ E(H)}. This shows that (1) cannot have an integrality
gap of O(d

1
2−ε). Therefore, the result of Theorem 2. is almost best possible.

Note that a similar result cannot be proved for the perfect matching problem.
Even for partitioned hypergraphs with parts of size two the integrality gap is un-
bounded, see [1].

4 Polyhedral Investigations

We conclude this paper with some general polyhedral results on the matching poly-
tope, the perfect matching polytope, and their fractional variants. We begin with the
dimension of these polytopes.

Theorem 3. PM(H) and PLP
M (H) have full dimension, i.e. they have dimension

|En|= 5
4 n2.

Proof. {χ /0}∪ {χ{e}|e ∈ E(H)} is a set of |E|+ 1 affinely independent vectors in
PM(H) and PLP

M (H), so PM(H),PLP
M (H) have full dimension.

The dimension of the perfect matching polytope is more difficult to calculate, as it
is N P-hard to decide whether a hypergraph has a perfect matching (i.e. PPM(H) is
non-empty). However, for Dn it is possible to calculate the dimension of the perfect
matching polytope and the fractional perfect matching polytope.

Theorem 4. The dimension of PPM(Dn) and PLP
PM(Dn) is 5

4 n2−2n+1.

Proof. As every valid equation for PLP
PM(Dn) is a linear combination of the rows

of Ax = 1, the dimension of PLP
PM(Dn) is |En| − rank(A). Let ae be a column of A

corresponding to a hyperedge of the form V i
n ∪W j

n . Then e is the disjoint union
of the two edges e1 = {v2i−1,w2i−1} and e2 = {v2i,w2i} and ae is the sum of the
two column vectors corresponding to e1 and e2. So we can delete column ae from
A without changing the rank of A. Doing this for all columns corresponding to
hyperedges of size four, shows that the rank of A is the same as the rank of the
incidence matrix of Kn,n which is 2n−1. It follows that dim(PLP

PM(Dn)
) = |En|−2n+

1 = 5
4 n2−2n+1.
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To see that dim(PPM(Dn) = dim(PLP
PM(Dn)), we construct 5

4 n2−2n+2 affinely in-
dependent vectors in PPM(Dn). First, observe that every fixed hyperedge of size four
can be completed to a perfect matching of Dn by adding edges. Clearly, the inci-
dence vectors of these n2

4 perfect matchings are affinely independent. The matching
polytope of Kn,n has dimension n2− 2n+ 1. Thus, there are n2− 2n+ 2 perfect
matchings in Kn,n such that their incidence vectors are affinely independent. These
vectors can be lifted to vectors in PPM(Dn) by setting all entries corresponding to
hyperedges of size four to 0. The n2

4 first vectors and these n2−2n+2 new vectors
are affinely independent.

Now, we state some results on valid inequalities and facets of the matching poly-
tope and the perfect matching polytope (see [1] for proofs).

Theorem 5. Every trivial inequality xe ≥ 0 defines a facet of PM(H).

In the case of the perfect matching polytope it is even difficult to decide when a
trivial inequality is facet defining. So we restrict ourselves to the hypergraphs Dn.

Theorem 6. The trivial inequality xe ≥ 0 defines a facet of PPM(Dn)

A clique in a hypergraph is a set Q ⊆ E of hyperedges such that every two el-
ements of Q intersect. Clearly, every matching contains at most one edge from a
clique. So x(Q)≤ 1 is a valid inequality for IPM(H).

Theorem 7. A clique inequality x(Q)≤ 1 defines a facet of PM(H) if and only if Q
is a maximal clique.

Heismann also generalized the odd set inequalities that are valid for the matching
polytope of a graph to valid inequalities for the (perfect) matching polytope of a
hypergraph. See [8] and [1] for more details.
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