
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

TOBIAS ACHTERBERG1 STEFAN HEINZ THORSTEN KOCH

Counting solutions of integer programs
using unrestricted subtree detection

1 ILOG Deutschland, Ober-Eschbacher Str. 109, 61352 Bad Homburg, Germany

Supported by the DFG Research Center MATHEON Mathematics for key technologies in Berlin.

ZIB-Report 08-09 (February 2008)

Counting solutions of integer programs using
unrestricted subtree detection

Tobias Achterberg1, Stefan Heinz2?, and Thorsten Koch2

1 ILOG Deutschland, Ober-Eschbacher Str. 109, 61352 Bad Homburg, Germany
tachterberg@ilog.de

2 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
{heinz,koch}@zib.de

Abstract. In the recent years there has been tremendous progress in
the development of algorithms to find optimal solutions for integer pro-
grams. In many applications it is, however, desirable (or even necessary)
to generate all feasible solutions. Examples arise in the areas of hardware
and software verification and discrete geometry.
In this paper, we investigate how to extend branch-and-cut integer pro-
gramming frameworks to support the generation of all solutions. We pro-
pose a method to detect so-called unrestricted subtrees, which allows us to
prune the integer program search tree and to collect several solutions si-
multaneously. We present computational results of this branch-and-count
paradigm which show the potential of the unrestricted subtree detection.

1 Introduction

In the last decades much progress has been made in finding optimal solutions to
integer linear programs (IP) [6]. Recently, more attention has been given to the
task of finding all feasible solutions to a given IP, since it arises in applications,
for instance, in the context of hardware and software verification and the analysis
of polyhedra (see De Loera et al. [9] and references therein). Furthermore, for IP
problems that evolve from industry applications, it is desirable to find multiple
or even all optimal solutions as discussed in [8].

A common way to solve IP counting or enumeration problems is to transform
them into an equivalent binary representation and use specialized solvers. For
Boolean satisfiability instances an algorithm for counting solutions is introduced
in [13]. A method based on binary decision diagrams is stated in [4]. This al-
gorithm is capable of counting or enumerating all feasible solutions of binary
linear programs (BP), which are IPs containing only binary variables. Alterna-
tive methods for these type of problems are given in [7] and [10]. Both approaches
make use of a search tree. The first one additionally uses linear programming
(LP) relaxations to detect infeasible subproblems.

? Supported by the DFG Research Center Matheon Mathematics for key technologies
in Berlin.

2 Tobias Achterberg, Stefan Heinz, and Thorsten Koch

There are only few algorithms that count or enumerate all feasible solutions
of a general IP and work on the integer variable space. In [8] a branch-and-
cut based algorithm is introduced which is able to generate multiple or even all
(near) optimal solutions of a given IP (available in cplex). Setting the objective
function to zero forces this algorithm to enumerate all feasible solutions. Another
method which operates on the integer variable space is Barvinok’s algorithm [3].
This algorithm counts all lattice points inside a convex polytope in polynomial
time when the dimension is fixed.

In this paper, we introduce a branch-and-count method based on a branch-
and-cut framework to generate all solutions of a given IP. This method works on
the integer domain. Furthermore, we state a technique called unrestricted subtree
detection which collects several solutions simultaneously.

2 Problem definition

We consider integer programs (IP) of the form

min{cT x | A x ≤ b, l ≤ x ≤ u, x ∈ Zn}

with A ∈ Rm×n, b ∈ Rm, and c, l, u ∈ Rn. Note that all variables are bounded
and of integer type. We are addressing the task of computing the finite set
XIP = {x | A x ≤ b, l ≤ x ≤ u, x ∈ Zn} of all feasible solutions of a given IP.
We denote by X∗IP ⊆ XIP the set of all optimal solutions of the integer program,
that is, X∗IP = argmin{cT x | x ∈ XIP}. If c = 0, both sets are equal.

It is known that the above formulation is quite general. Maximization prob-
lems can be transformed to minimization problems by multiplying the objective
function coefficients by −1. Similarly, “≥” constraints can be multiplied by −1 to
obtain “≤” constraints. Equations can be replaced by two opposite inequalities.

In the next section, we discuss an approach to compute XIP. With this
method it is also possible to generate X∗IP. There are two natural ways to do
this: one is to first compute XIP and subsequently X∗IP by only keeping those
elements of XIP that minimize the objective function. The other possibility is
to solve the underlying IP to optimality, add an additional constraint of the
form cT x ≤ c∗ to the IP, with c∗ being the optimal value of the IP, and finally,
compute the set XIP′ for the resulting IP′. Obviously, XIP′ is equal to X∗IP.

3 Branch-and-count approach

Currently, the most successful general technique to solve IPs (to optimality) is
branch-and-cut using LP-relaxations. For a detailed description of the work-flow
of branch-and-cut algorithms in general, we refer to Nemhauser and Wolsey [11].

Branch-and-cut algorithms can be adapted to enumerate all feasible solutions
of a given integer program, by traversing the whole search tree and collecting all
feasible solutions step-by-step. In this section we introduce a technique to speed
up the enumeration process of a brach-and-cut based algorithm.

Counting solutions of integer programs using unrestricted subtree detection 3

3.1 Pruning by detecting unrestricted subtrees

The basic idea of our approach is to find a way to deduce and construct all
solution vectors contained in a subtree. If this is possible, the whole subtree
can be pruned without explicitly enumerating all leaves. The two most simple
structures are subtrees which have no solutions and subtrees where any vari-
able assignment constitutes a feasible solution. We call these subtrees infeasible
subtrees and unrestricted subtrees, respectively.

The infeasible subtree detection is also an issue for a standard branch-and-cut
based algorithm focusing on optimal solutions. One way to improve infeasible
subtree detection is conflict analysis, see [1, 12]. Unrestricted subtrees can be
detected in the following way: at every node S in the search tree, it is checked
whether each constraint is locally redundant, i.e., whether it is always satisfied
in the local domains.

Definition. A constraint is called locally redundant at subproblem S if it is
satisfied by all possible variable assignments of values in the local domains at
subproblem S.

Lemma 1. The subtree at a node S of the search tree is unrestricted if and only
if all constraints are locally redundant at node S.

Proof. Let x be an arbitrary vector in the local domains of subproblem S. If all
constraints are locally redundant, each constraint is satisfied by x and thus, x
is a feasible solution. Hence, the subtree below node S is unrestricted. On the
other hand, if the subtree below S is unrestricted, x must be feasible. Therefore,
it satisfies each individual constraint. It follows that each constraint is locally
redundant at node S. ut

A similar observation was made by Morgado et al. [10] with respect to BPs.
Their search algorithm detects feasible solutions if all constraints are locally
redundant (through previous variable fixings). Additionally, they have to add
so-called blocking clauses to prevent the algorithm to count the same solutions
several times. Branch-and-cut based algorithms find feasible solutions without
checking each constraint for locally redundancy. Therefore, the redundancy check
has to be performed explicitly in every search node to find unrestricted subtrees.

Example 1. Consider the following IP:

min{0T x | x0 + x1 + x2 ≤ 2,
x0 − x1 + x2 ≤ 1,
x0 + x1 − x2 ≤ 1,
x0 − x1 − x2 ≤ 0,

x ∈ {0, 1}3}.

In Figure 1 we depict different branching possibilities for the root node. Only
in the first case, where we branch on variable x0, the resulting subproblems
constitute an unrestricted and an infeasible subtree. More precisely, if variable x0

is fixed to zero, all constraints are locally redundant; setting variable x0 to one,
leads to an infeasible subproblem.

4 Tobias Achterberg, Stefan Heinz, and Thorsten Koch

assign-
ments

x0
x1
x2

x0

0
0
0

0
1
0

0
0
1

0
1
1

0

1
0
0

1
1
0

1
0
1

1
1
1

1

unrestricted
subtree

infeasible
subtree

x1

0
0
0

1
0
0

0
0
1

1
0
1

0

0
1
0

1
1
0

0
1
1

1
1
1

1

x2

0
0
0

1
0
0

0
1
0

1
1
0

0

0
0
1

1
0
1

0
1
1

1
1
1

1

infeasible solution
feasible solution

Fig. 1. Possible branching decisions in the root node for Example 1.
Table 1. Results for chip verification instances.

Instance basic approach unrestricted subtree detection

Name Cons Vars |XIP| time nodes depth time nodes depth unrest.

veri1 1589 1251 809 424 12.9 1 618 847 26 0.3 17 639 19 8 448
veri2 854 691 655 360 16.8 1 310 762 30 9.6 491 567 29 245 766
veri3 219 138 573 440 18.2 1 146 948 29 15.0 860 227 29 143 360
veri4 748 623 2 097 152 33.0 4 194 319 23 4.9 327 687 20 163 840
veri5 1631 1294 260 096 4.5 520 207 22 0.7 41 011 19 20 487
veri6 1140 901 100 980 1.6 201 959 22 0.1 2 087 13 1 044
veri7 2123 1683 >68 749M >1800 >272M 50 >1800 >111M 42 >55 684 k
veri8 43 53 264 241 407 >1800 >237M 34 77.1 4 316 909 31 2 122 366

3.2 Computational results

We integrated the unrestricted subtree detection into the branch-and-cut frame-
work scip (Version 1.00.5) [2]. As an LP-solver we used soplex 1.3.3 [14]. All
computations presented in this section were run on computers with an Intel
Core 2 Quad CPU with 2.66GHz, 4MB cache, and 4GB of RAM. A time limit
of 30 minutes was employed.

Due to the lack of space we first restrict our self to 8 real-world instances
which contain several ten-thousand solutions each. These instances arise from
chip verification problems and have been provided by OneSpin Solutions1. The
results are given in Table 1. The first four columns contain the problem instance
information, namely the name (“Name”), the number of constraints and variables
(“Cons”, “Vars”), and the number of feasible solutions (“|XIP|”). Columns labeled
with “basic approach” and “unrestricted subtree detection” report the individ-
ual results for the branch-and-count framework without and with unrestricted
subtree detection, respectively; the first subcolumns report the running time in
seconds, the total number of search nodes, and the maximum search tree depth.
For the unrestricted subtree detection we further state the number of detected
(non-trivial) unrestricted subtrees (“unrest.”).

The unrestricted subtree detection leads to a substantial decrease in the
number of needed search nodes. This comes along with a reduction in the total
running time and the maximum depth level of the search tree.
1 www.onespin-solutions.com

Counting solutions of integer programs using unrestricted subtree detection 5

We also applied our method to the MIPLIB [5] instances that do not have
continuous variables to compute the sets X∗IP of all optimal solutions. The gen-
eration of all optimal solutions can be performed in less than 5 minutes for
each instance, except for cracpb1 and p2756. For p0548 the unrestricted subtree
detection was necessary to solve the instance within the time limit.

We compared our approach (scip) to existing methods, in particular azove [4],
cplex [8], LattE [9], and zerOne [7]. Our approach clearly dominates the
other solvers on the chip verification instances. For the MIPLIB instances the
branch-and-cut based algorithms, i.e., cplex, zerOne, and scip, are similar in
efficiency, while the other solvers are inferior.

References

1. T. Achterberg, Conflict analysis in mixed integer programming, Discrete Optim.,
4 (2007), pp. 4–20.

2. , Constraint Integer Programming, PhD thesis, TU Berlin, 2007.
3. A. I. Barvinok, A polynomial time algorithm for counting integral points in poly-

hedra when the dimension is fixed, Math. Oper. Res., 19 (1994), pp. 769–779.
4. M. Behle and F. Eisenbrand, 0/1 vertex and facet enumeration with BDDs, in

Workshop on Algorithm Engineering and Experiments (ALENEX), 2007.
5. R. E. Bixby, E. A. Boyd, and R. R. Indovina, MIPLIB: A test set of mixed

integer programming problems, SIAM News, 25 (1992), p. 16.
6. R. E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling, MIP:

Theory and practice – closing the gap, in Systems Modelling and Optimization:
Methods, Theory, and Applications, M. Powell and S. Scholtes, eds., Kluwer, 2000,
pp. 19–49.

7. M. R. Bussieck and M. E. Lübbecke, The vertex set of a 0/1-polytope is
strongly P-enumerable, Comput. Geom, 11 (1998), pp. 103–109.

8. E. Danna, M. Fenelon, Z. Gu, and R. Wunderling, Generating multiple
solutions for mixed integer programming problems, in Integer Programming and
Combinatorial Optimization, M. Fischetti and D. P. Williamson, eds., vol. 4513 of
LNCS, 2007, pp. 280–294.

9. J. A. De Loera, R. Hemmecke, J. Tauzer, and R. Yoshida, Effective lattice
point counting in rational convex polytopes, J. Symb. Comput., 38 (2004), pp. 1273–
1302.

10. A. Morgado, P. J. Matos, V. M. Manquinho, and J. P. M. Silva, Counting
models in integer domains, in Theory and Applications of Satisfiability Testing –
SAT 2006, vol. 4121 of LNCS, 2006, pp. 410–423.

11. G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization,
John Wiley & Sons, New York, 1988.

12. T. Sandholm and R. Shields, Nogood learning for mixed integer programming,
Tech. Rep. CMU-CS-06-155, Carnegie Mellon University, Computer Science De-
partment, 2006.

13. M. Thurley, sharpSAT - counting models with advanced component caching and
implicit BCP, in Theory and Applications of Satisfiability Testing – SAT 2006,
vol. 4121 of LNCS, 2006, pp. 424–429.

14. R. Wunderling, Paralleler und objektorientierter Simplex-Algorithmus, PhD the-
sis, TU Berlin, 1996.

