
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

TOBIAS ACHTERBERG

THORSTEN KOCH

ANDREAS TUCHSCHERER

On the Effects of Minor Changes in Model
Formulations

supported by the DGF Research Center Matheon

ZIB-Report 08-29 (August 2008)



On the Effects of Minor Changes in Model Formulations∗

Tobias Achterberg† Thorsten Koch‡ Andreas Tuchscherer§

Abstract

Starting with the description of the Traveling Salesmen Problem formulation as given by

van Vyve and Wolsey in the article “Approximate extended formulations”, we investigate the

effects of small variations onto the performance of contemporary mixed integer programming

solvers. We will show that even minor changes in the formulation of the model can result in

performance difference of more than a factor of 1000. As the results show it is not obvious

which changes will result in performance improvements and which not.

1 Introduction

In their article [vVW06] “Approximate extended formulations” van Vyve and Wolsey describe
a mixed integer programming (MIP) model for solving the Traveling Salesmen Problem (TSP).
When we tried to reproduce the results we noticed an erratic behavior of the MIP solvers depending
on minor variations of the model. In the following we will show that even very small changes in the
formulation can have a large impact on the solvability. Trick shows in [Tri05] that with modern
MIP solvers the effects of changes are hard to predict as today’s solvers employ many methods to
apply the usual tricks used to improve a formulation. In this article we will show that probably due
to these automatic “improvements” the performance can get nearly unpredictable. In particular,
omitting seemingly useful redundant information can sometimes speed up the solution process.

In the next section we will present the model as described in the original article and list possible
variations. In Section 3 computational results for all combinations of the variations will be given
and explained.

2 The model and its variations

The TSP instance is defined by a set of nodes V = {1, . . . , n}, n ∈ N, a set of arcs A = {(i, j)|i, j ∈
V, i 6= j}, and a distance (weight, cost) function cij , interpreted as the length of arc (i, j) ∈ A.
The goal is to find a shortest round trip through all nodes i ∈ V .

2.1 The formulation by van Vyve and Wolsey

The formulation depends on an approximation parameter k which controls the extend of the
subtour elimination constraints implied by the model. For each node l ∈ V , define a neighborhood
Vl ⊆ V as the set of the k nodes nearest to node l, including l itself. The model is given in terms

∗Supported by the DFG Research Center Matheon Mathematics for key technologies in Berlin.
†ILOG Deutschland GmbH, tachterberg@ilog.de
‡Zuse Institute Berlin (ZIB), Takustr. 7, 14195 Berlin, Germany, koch@zib.de
§Zuse Instritute Berlin, tuchscherer@zib.de

1



of the following variables:

yij :=

{

1, if arc (i, j) ∈ A is in the tour,

0, otherwise.

ui := number of nodes visited before i ∈ V (node 1 is visited first)

wl
ij := flow on arc (i, j) ∈ A for neighborhood l ∈ V

Now the MIP formulation for the Traveling Salesman Problem reads as follows:

min
∑

(i,j)∈A

cijyij s. t. (1)

∑

(j,i)∈δ−(i)

yji = 1 for all i ∈ V (2)

∑

(i,j)∈δ+(i)

yij = 1 for all i ∈ V (3)

yij ∈ {0, 1} for all (i, j) ∈ A (4)

u1 = 0 (5)

ui − uj + (n − 1)yij ≤ n − 2 for all (i, j) ∈ A : j 6= 1 (6)

ui ≥ 1 for all i ∈ {2, . . . , n} (7)

ui ≤ n − 1 for all i ∈ {2, . . . , n} (8)

∑

(i,j)∈δ−(j)

wl
ij −

∑

(j,i)∈δ+(j)

wl
ji = 0 for all l ∈ V for all j ∈ Vl : j 6= l (9)

∑

(i,l)∈δ−(l)

wl
il −

∑

(l,i)∈δ+(l)

wl
li = 1 for all l ∈ V (10)

wl
ij ≥ 0 for all l ∈ V, (i, j) ∈ A(Vl) ∪ δ−(Vl) ∪ δ+(Vl) (11)

wl
ij ≤ yij for all l ∈ V, (i, j) ∈ A(Vl) ∪ δ−(Vl) (12)

Note that already the model (1)–(8) is a correct TSP formulation (Miller-Tucker-Zemlin formu-
lation [PS91]). Constraints (9)–(12) are useful as they imply subtour elimination constraints as
specified by

Theorem 1 (van Vyve, Wolsey). The subtour elimination constraint

∑

(i,j)∈δ−(U)

yij ≥ 1

is valid for (9)–(12) if there exists l ∈ V such that l ∈ U ⊆ Vl.

Proof. Let l and U satisfying l ∈ U ⊆ Vl be given. Equations (9)–(12) guarantee that there is
enough capacity in y for one unit to flow from outside Vl to l. Thus the capacity of the cut δ−(U)
is at least 1.

So far we have ignored one important issue: In case k = n, the model is infeasible since
constraints (9)–(12) cannot be satisfied. In order to maintain feasibility, in the original formulation
the neighborhood sets do not contain node 1, i. e., Vl is defined as the set of the k nodes nearest
to node l, including l itself, but excluding node 1. However, removing node 1 from the sets Vl, for
l ∈ V , degrades the solvability of the model for k < n as it significantly reduces the initial lower
bound. Since the whole point in using approximate extended formulations is to use k < n, we
include node 1 in all computations.

2



2.2 Possible variations of the formulation

In the following we list some minor changes of the formulation. Regarding the model the restric-
tions are redundant and the relaxations only remove redundant constraints. In all cases neither the
integer optimal solution is altered, nor the objective value of the linear programming relaxation is
changed.

2.2.1 Restricting the formulation

1. The variables ui have to be integer in any feasible solution.

ui ∈ {1, . . . , n − 1} for all i ∈ V (13)

can be added to the model.

2. There are no explicit upper bounds on the variables wl
ij , even though all are implicitly

bounded by inequality (12):

0 ≤ wl
ij ≤ 1 for all l ∈ Vl, (i, j) ∈ A(Vl) ∪ δ−(Vl) ∪ δ+(Vl) (14)

3. The variables wl
ij are also implicitly integer.

wl
ij ∈ Z for all l ∈ Vl, (i, j) ∈ A(Vl) ∪ δ−(Vl) ∪ δ+(Vl) (15)

can be added to the model.

4. All wl
ij in (i, j) ∈ δ+(Vl) can be fixed to zero:

wl
ij = 0 for all l ∈ Vl, (i, j) ∈ δ+(Vl) (16)

5. For the same reason upper bounds on wl
ij in (i, j) ∈ δ+(Vl) can be added in inequality (12),

using instead:

wl
ij ≤ yij for all l ∈ V, (i, j) ∈ A(Vl) ∪ δ−(Vl) ∪ δ+(Vl) (17)

2.2.2 Relaxing the formulation

6. The upper bounds on the ui variables are not needed, constraint (8) can be omitted.

7. For equations (9) and (10) equality is not required. Relaxing them to

∑

(i,j)∈δ−(j)

wl
ij −

∑

(j,i)∈δ+(j)

wl
ji ≥ 0 for all l ∈ V for all j ∈ Vl : j 6= l (18)

∑

(i,l)∈δ−(l)

wl
il −

∑

(l,i)∈δ+(l)

wl
li ≥ 1 for all l ∈ V (19)

is still valid.

3



3 Computational results

In this section we will report on the computational results obtained by solving all combinations
of the above variations of one TSP instance with two contemporary MIP solvers.

All computing times are given as CPU seconds on a PC running Linux with a 3.6 GHz Pentium-
D and 4 GB RAM. If not otherwise noted, all runs are limited to at most one hour. The instance
used is att48 from TSPLIB [Rei91]. k = 13 is used in all cases. The model was generated using
Zimpl

1 [Koc04] version 2.07. The source files can be found at http://www.zib.de/koch/reformulation.
We used cplex

2 version 10.0.1 and scip
3 [Ach04] version 0.90e to solve the MIP instances. cplex

and scip were run with default settings, with the exception that probing was disabled for scip (in
cplex, only a very limited version of probing is applied by default). scip used cplex 10.0.1 as
LP solver subroutine.

The formulation variants are denoted as u-w-e-b-f. Table 1 describes possible values and their
meanings. The original formulation is denoted as 2-1-1-1-0. Note that u = 3 and w = 3 mean
the variable is an implicit integer, i. e., the variable will have an integral value for any solution of
the LP relaxation where all normal integer variables have integral values. With Zimpl and scip

it is possible to notify the solver of this property. The solver has then the possibility to treat the
variable alternatively as continuous or integer variable.

u Description

1 1 ≤ ui ≤ ∞ Relaxation 6 used (Constraint (8) omitted)
2 1 ≤ ui ≤ n − 1 as in the original formulation
3 1 ≤ ui ≤ n − 1 but declared as implied integer (scip only)
4 ui ∈ {1, . . . , n − 1} Restriction 1 (declared integer)
5 ui ∈ N Restriction 1 and Relaxation 6

w

1 0 ≤ wl
ij ≤ ∞ as in the original formulation

2 0 ≤ wl
ij ≤ 1 Restriction 2 (explicit upper bounds)

3 0 ≤ wl
ij ≤ 1 Restriction 2 and declared as implicit integer (scip only)

4 wl
ij ∈ {0, 1} Restriction 2 and 3 (declared binary)

5 wl
ij ∈ N Restriction 3 (declared integer)

e

0 Relaxation 7 (not requiring equality for (9) and (10))
1 as in the original formulation

b

0 Restriction 5 (bind outgoing wl
ij to yij)

1 as in the original formulation

f

0 as in the original formulation
1 Restriction 4 (fix outgoing wl

ij to zero)

Table 1: Possible values of formulation variants denoted as u-w-e-b-f.

1http://zimpl.zib.de
2http://www.ilog.com/cplex
3http://scip.zib.de

4



3.1 Comments and Equivalent Settings

In case f = 1, the setting for b is irrelevant. Therefore, both parameters are better combined into
a single. A more suitable parameter scheme is maybe the following:

i Description

0 as in the original formulation
1 Relaxation 7 (not requiring equality for (9) and (10))

b

0 as in the original formulation
1 Restriction 4 (fix outgoing wl

ij to zero)

2 Restriction 5 (bind outgoing wl
ij to yij)

w

1 0 ≤ wl
ij ≤ ∞ as in the original formulation

2 0 ≤ wl
ij ≤ 1 Restriction 2 (explicit upper bounds)

3 0 ≤ wl
ij ≤ 1 Restriction 2 and declared as implicit integer (scip only)

4 wl
ij ∈ {0, 1} Restriction 2 and 3 (declared binary)

5 wl
ij ∈ N Restriction 3 (declared integer)

u

1 1 ≤ ui ≤ ∞ Relaxation 6 used (Constraint (8) omitted)
2 1 ≤ ui ≤ n − 1 as in the original formulation
3 1 ≤ ui ≤ n − 1 but declared as implied integer (scip only)
4 ui ∈ {1, . . . , n − 1} Restriction 1 (declared integer)
5 ui ∈ N Restriction 1 and Relaxation 6

Table 2: Possible values of formulation variants denoted as i-b-w-u.

The following situations may yield identical models after preprocessing up to the ordering of
some constraints (f -values indicate arbitrarily fixed parameters):

• i = 1, b = z ∈ {0, 1, 2}, w = f1, u = f2: Here the choice of z is irrelevant since outgoing wl
ij

can be fixed to zero in preprocessing in all cases.

• i = 1, b ∈ {0, 1, 2}, w = f1 ∈ {1, 5}, u = f2 ⇐⇒ i = 0, b = 0, w = f1, u = f2: In all these
situation the effective presprocessing is possible.

• (i = 1) or (i = 0, b ∈ {1, 2}), i. e., ¬(i = 0, b = 0): Independent of the choice of u (and b in
the first case), we have w = 1 ⇐⇒ w = 2 and w = 4 ⇐⇒ w = 5.

3.2 Preprocessing

As can be expected with such minor formulation differences after preprocessing basically only three
mixed integer programs remain, regarding number of columns (variables), rows (constraints), and
number of non-zero entries in the constraint matrix. Details are shown in Table 3.

Most reductions are made in preprocessing if the constraints (9) and (10) are formulated
using inequalities. This can also be achieved in the setting u-1-1-1-0, where the variables wl

ij for
(i, j) ∈ δ+(Vl) have no upper bounds and thus correspond to slack in (9) and (10). Removing
these variables yields also inequalities in these constraints. Having inequalities preprocessing
works as follows: Variables wl

ij for l ∈ V and (i, j) ∈ δ+(Vl) can be fixed to zero since each such
variable appears only in one constraint and has objective zero (column singleton). Moreover, the
tightest upper bound on each variable wl

ij for (i, j) ∈ δ−(Vl) is given implicitly by yij . Therefore,

5



Size Cols Rows Non-zeros

S Small 9,791 10,370 62,790 cplex & scip

M1 Medium 1 31,631 32,210 106,470 cplex & scip

M2 Medium 2 32,255 32,210 107,094 cplex

L1 Large 1 52,847 32,210 127,686 scip

L2 Large 2 53,461 54,050 171,990 cplex & scip

Table 3: Instance sizes after preprocessing

variable wl
ij can be substituted by yij . Altogether, only the variables wl

ij for (i, j) ∈ A(Vl) remain

after preprocessing, reducing the number of variables wl
ij from n(k(k−1)+2k(n−k)) to nk(k−1).

The worst case concerning preprocessing is u-w-1-0-0, where particularly the variables wl
ij for

(i, j) ∈ δ+(Vl) are bounded by yij . In this situation no reductions on the model are possible at all
since there are no more any column singletons with zero objective. Moreover, no variable can be
fixed at one of its bounds.

3.3 CPLEX

We investigated all 128 formulation variants. It turned out that if e = 0, i. e., equality is not
required in constraints (9) and (10), it makes no difference whether the outgoing wl

ij variables are
fixed to zero (f = 1) or not (f = 0). Given the above described preprocessing results, this is not
remarkable. On the other hand, if we require equality in (9) and (10) any combination of settings
for b and f gives different results, i. e., solving needs a different number of branch-and-cut nodes
or at least a different number of total simplex iterations. For the remaining 96 instances for any
setting which is different from u-w-1-1-0 w = 1 is equal to w = 2, and w = 4 is equal to w = 5.
The reason for this is that the preprocessor is able to deduce the implicitly given bounds on the
wl

ij variables. For those of the remaining 56 instances of type u-1-e-1-0 the setting of e does not
matter. This leaves 52 different instances altogether.

The results for these instances are shown in Table 5. The first column list the variation used,
column Size gives the resulting size of the instance after preprocessing according to Table 3. Iters

is the total number of Simplex iterations, Nodes is the number of branch-and-cut nodes processed
and time list the solution time in seconds. The optimal objective value is 10628, the objective
value of the root relaxation before any cuts is always 10604.

The fastest formulation is 1-4-0-0-0 which is solved by cplex in 27 seconds. On the other
hand, 5-1-0-1-0, even though of the same small size can not be solved to optimality in 24 hours.
The only difference between these formulations is that in case of 1-4-0-0-0 the ui variables are
continuous and the wl

ij variables are binary, while in case of 5-1-0-1-0 the ui are integer and the

wl
ij are continuous variables with upper bounds. This small difference is enough to result in a

factor of more than 3200 for the required solution time.
Table 4 shows the geometric mean over all results with a particular parameter setting. The

column labeled Nodes contains the mean number of branch-and-bound nodes required over all
instance where the parameter given in the Setting column had the listed value. Column Time list
the mean required solution time in seconds. The large difference in the number of nodes between
cplex and scip is due to different default branching strategies. A detailed explanation can be
found in [AKM05].

As can be seen, using u = 1 and e = 0 are particular winners. Setting the variables to
continuous instead of integer performs better in general. The setting of b and f seems only to
matter in relation to the resulting size of the instance after preprocessing.

From the average results we might guess that 1-2-0-1-0 is the fastest setting (given as 1-1-0-1-0

by similarity in Table 5). With 60 seconds the actual performance is more than twice as slow as
the actual winner, but still considerably faster than the overall geometric mean of 244 seconds.

6



Nodes Time [s]
Setting cplex scip cplex scip

Total 666 62 243.8 244.9

u = 1 146 48 85.5 238.4
u = 2 427 48 142.0 220.4
u = 3 43 224.5
u = 4 1,396 88 440.9 266.2
u = 5 2,259 106 661.1 280.5

w = 1 1,211 69 222.7 221.0
w = 2 790 63 203.2 236.3
w = 3 43 242.3
w = 4 513 69 299.5 281.0
w = 5 400 73 260.9 247.6

e = 0 972 46 118.7 137.1
e = 1 456 84 500.7 437.3

b = 0 571 78 260.7 314.7
b = 1 776 50 228.1 190.5

f = 0 584 74 205.5 260.3
f = 1 759 52 289.3 230.4

Table 4: Geometric mean of number of branch-and-bound nodes and solution time for all instances
with a particular setting

3.4 SCIP

Again for scip w = 1 is equal to w = 2, and w = 4 is equal to w = 5 for any setting which
is different from u-w-1-1-0. All remaining 130 settings lead to a different solver run, as can be
seen in Table 6. The column labeled rs depicts the number of restarts. This feature of scip is
triggered by fixings found in the root node. It reinvokes the presolving procedure to clean up the
model and deduce further reductions. It is noteworthy that scip was able to solve all instances
within an hour and that the ratio between the slowest and the fastest run is only 36 compared to
over 3000 for cplex. The reason is most probably the more expensive branching strategy of scip

which involves more strong branching and thus takes much longer per node. As a result cplex

is nearly three times faster for the best run. If we look at average results for scip in Table 4, we
see that e = 0 is again a clear winner. The setting of b has much more influence in scip than in
cplex. Contrary to cplex fixing outgoing variables (f = 1) is advantageous for scip. The u and
w settings, i. e., the type of variables does not matter that much in scip, even though declaring the
variables integer is again slightly inferior. From the average results, one would expect 2-1-0-1-1

to be the winning combination, so both solvers work best on continuous variables.
We expected the implicit integer declaration (u = 3, w = 3) to perform at least as good as the

bounded continuous settings (u = 2, w = 2). Unfortunately, this is not the case. This suggests
that the current implementation of implied integers in scip is not able to exploit all advantages
of this information.

4 Conclusion

The obvious conclusion from the results in this article is that it is very important to precisely
state the model formulation when reporting computational results. Otherwise reproducibility will
be difficult to achieve.

Furthermore, it becomes evident that the intractability of a specific formulation of a model

7



u-w-e-b-f Size Iters Nodes Time

1-4-0-0-0 S 7410 37 27
1-4-0-1-0 S 10481 59 35
2-4-0-1-0 S 14692 130 40
2-2-1-1-0 M2 35414 48 44
1-1-1-1-1 M1 41234 86 57
1-1-0-1-0 S 28467 418 60
2-1-1-1-1 M1 41130 56 60
1-2-1-1-0 M2 43684 89 66
2-1-0-0-0 S 41912 961 68
1-1-0-0-0 S 50642 775 71
2-1-1-0-1 M1 42028 95 77
4-1-0-0-0 S 54047 781 77
5-1-0-0-0 S 59458 1013 81
1-1-1-0-1 M1 37753 70 86
1-1-1-0-0 L2 41883 57 89
2-1-1-0-0 L2 45956 96 89
2-1-0-1-0 S 87268 1851 90
5-5-1-1-0 M2 13278 40 114
4-2-1-1-0 M2 79603 126 129
1-4-1-1-1 M1 45113 41 137
5-4-1-1-1 M1 42272 39 138
2-4-0-0-0 S 68172 1090 142
4-5-1-1-0 M2 17662 42 143
4-1-0-1-0 S 109418 3015 165
4-4-0-1-0 S 89950 1238 175
1-4-1-0-0 L2 44654 33 196
5-4-0-0-0 S 106546 1429 198
2-4-1-0-0 L2 53772 41 238
4-4-0-0-0 S 147740 1667 240
1-5-1-1-0 M2 53416 349 288
1-4-1-1-0 M2 103406 805 325
5-4-0-1-0 S 253199 3559 358
5-2-1-1-0 M2 209979 710 462
2-4-1-1-0 M2 152528 723 511
2-5-1-1-0 M2 116394 860 580
5-4-1-0-0 L2 154083 246 695
4-1-1-1-1 M1 784910 1864 1004
5-4-1-1-0 M2 341919 1314 1046
4-4-1-1-0 M2 412584 2015 1279
4-4-1-0-1 M1 747781 1277 1676
1-4-1-0-1 M1 724116 1720 2218
4-4-1-0-0 L2 585662 1474 2265
2-4-1-1-1 M1 822014 1908 2400
4-1-1-0-0 L2 666077 1189 2450
5-1-1-0-0 L2 972289 1629 2546
5-4-1-0-1 M1 1033004 2055 2637
2-4-1-0-1 M1 1007944 2073 2802
5-1-1-0-1 M1 1694751 3133 2993
4-4-1-1-1 M1 1340441 2385 3391
4-1-1-0-1 M1 > 2316820 > 4912 > 3600
5-1-0-1-0 S > 4791738 > 138736 > 3600
5-1-1-1-1 M1 > 2234432 > 3653 > 3600

Table 5: Results for cplex

8



u-w-e-b-f Size RS Nodes Time

4-1-0-1-1 S 1 14 79

1-3-0-1-0 S 1 15 90

1-3-0-0-0 S 1 10 93

1-1-1-1-0 S 1 14 96

3-1-0-1-1 S 3 14 97

2-3-0-1-1 S 1 12 98

5-3-0-1-0 S 1 21 98

5-4-0-0-1 S 1 19 99

1-1-0-0-1 S 4 11 101

1-3-0-1-1 S 1 15 104

4-5-1-1-0 S 1 15 104

5-1-1-1-0 S 1 13 104

1-1-0-1-0 S 3 12 106

4-3-0-1-0 S 1 14 106

3-3-0-1-0 S 3 17 107

5-1-0-1-1 S 1 25 107

2-1-0-1-1 S 5 29 110

2-1-1-1-0 S 3 107 110

2-3-0-0-1 S 1 10 110

1-3-0-0-1 S 1 75 113

1-5-1-1-0 S 1 24 113

2-1-0-1-0 S 5 61 113

3-3-0-1-1 S 1 21 114

4-4-0-0-1 S 1 40 114

1-4-0-0-1 S 1 14 115

5-4-0-1-1 S 1 17 115

3-1-0-0-0 S 7 12 118

4-3-0-0-0 S 1 17 120

3-4-0-1-0 S 1 15 123

3-4-0-1-1 S 1 58 123

4-3-0-0-1 S 1 28 124

4-4-0-0-0 S 1 80 125

2-3-0-0-0 S 7 22 127

2-1-0-0-1 S 6 15 128

3-3-0-0-1 S 1 38 128

5-1-0-0-1 S 1 67 130

5-3-0-1-1 S 1 124 131

4-3-0-1-1 S 1 22 132

3-4-0-0-1 S 1 13 133

1-4-0-1-0 S 1 82 136

3-4-0-0-0 S 1 66 137

4-4-0-1-1 S 1 19 139

5-4-0-1-0 S 1 127 140

2-3-0-1-0 S 1 22 142

2-5-1-1-0 S 1 25 142

1-4-0-0-0 S 1 76 143

4-1-1-1-0 S 1 80 150

2-4-0-1-0 S 1 134 155

1-4-0-1-1 S 1 59 156

2-1-0-0-0 S 1 55 156

2-4-0-1-1 S 1 57 156

3-1-0-0-1 S 5 25 158

2-4-0-0-1 S 1 86 160

5-1-0-1-0 S 1 229 161

3-1-1-1-1 M1 2 20 167

4-4-1-1-0 L1 1 9 167

4-1-0-1-0 S 1 199 168

1-1-0-1-1 S 3 37 169

4-1-0-0-1 S 1 62 169

3-1-1-1-0 S 1 64 171

1-1-0-0-0 S 1 66 177

1-2-1-1-0 L1 2 13 179

3-3-1-1-0 L1 3 22 182

2-1-1-0-1 M1 2 17 184

3-3-0-0-0 S 1 49 184

u-w-e-b-f Size RS Nodes Time

4-4-0-1-0 S 1 120 185

2-1-1-1-1 M1 2 12 188

2-2-1-1-0 L1 3 17 188

1-1-1-0-1 M1 3 118 191

3-1-1-0-1 M1 2 28 191

3-2-1-1-0 L1 2 25 191

5-5-1-1-0 S 1 116 199

2-4-0-0-0 S 1 121 200

5-3-0-0-1 S 1 100 200

3-5-1-1-0 S 1 96 201

3-1-0-1-0 S 1 224 207

5-3-0-0-0 S 1 225 207

5-4-0-0-0 S 1 102 210

4-1-0-0-0 S 1 338 223

4-2-1-1-0 L1 1 12 228

1-3-1-1-0 L1 1 13 232

2-3-1-1-0 L1 3 51 248

5-2-1-1-0 L1 1 47 270

3-4-1-1-0 L1 1 47 280

5-1-0-0-0 S 1 875 301

4-3-1-1-0 L1 1 13 306

2-4-1-1-0 L1 1 127 319

5-3-1-1-0 L1 1 222 350

5-4-1-1-0 L1 1 154 376

5-1-1-0-1 M1 1 125 388

5-1-1-1-1 M1 1 196 395

4-3-1-1-1 M1 1 58 397

2-3-1-1-1 M1 1 68 412

1-4-1-1-0 L1 1 69 420

3-3-1-1-1 M1 1 75 426

4-1-1-1-1 M1 1 344 433

5-4-1-1-1 M1 1 129 437

3-3-1-0-1 M1 1 29 441

4-1-1-0-1 M1 1 301 441

1-4-1-1-1 M1 1 79 455

3-4-1-0-1 M1 1 66 461

2-4-1-1-1 M1 1 72 477

4-4-1-1-1 M1 1 88 489

1-1-1-1-1 M1 1 112 492

2-3-1-0-1 M1 1 107 507

5-3-1-1-1 M1 1 123 519

1-3-1-0-1 M1 1 106 522

1-3-1-0-0 L2 1 25 529

4-3-1-0-1 M1 1 95 602

5-3-1-0-1 M1 1 96 623

1-3-1-1-1 M1 1 217 664

3-4-1-1-1 M1 1 136 680

2-4-1-0-1 M1 1 76 687

2-4-1-0-0 L2 1 49 705

5-3-1-0-0 L2 1 148 737

4-4-1-0-0 L2 1 176 782

5-4-1-0-1 M1 1 184 810

3-4-1-0-0 L2 1 145 813

5-4-1-0-0 L2 1 116 837

2-3-1-0-0 L2 1 47 863

2-1-1-0-0 L2 1 198 875

1-4-1-0-1 M1 1 127 895

3-3-1-0-0 L2 1 78 916

3-1-1-0-0 L2 1 178 937

1-4-1-0-0 L2 1 91 984

4-3-1-0-0 L2 1 191 1075

1-1-1-0-0 L2 1 367 1420

4-4-1-0-1 M1 1 406 1548

4-1-1-0-0 L2 1 968 2088

5-1-1-0-0 L2 1 710 2879

Table 6: Results for scip

9



using a specific solver does not necessary imply that the model in general is intractable. Slight
modifications to the formulation may have a big impact on solvability. Therefore, it might be
useful to identify solving strategies that are likely to be independent of the specific formulation.
One candidate in this regard clearly is the branching strategy. The strategy used in scip, while
considerably slower in the best case, has a much smaller dependency on the formulation.

The basic problem is our inability to convey additional information to the solver which is
redundant to the model but may give the solver more options to improve the solving process.
As a first step, we have proposed the notion of implicit integer variables. This concept could be
extended to the bounds of the variables and to the right hand sides and senses of the constraints.
However, additional development is needed to reliably exploit this additional information in MIP
solvers.

5 Acknowledgements

We would like to thank Laurence Wolsey for making the original Mosel model available to us.

References

[Ach04] Tobias Achterberg, SCIP - a framework to integrate constraint and mixed

integer programming, Tech. Report 04-19, Zuse Institute Berlin, 2004,
http://www.zib.de/Publications/abstracts/ZR-04-19/.

[AKM05] Tobias Achterberg, Thorsten Koch, and Alexander Martin, Branching rules revisited,
Operations Research Letters 33 (2005), 42–54.

[Koc04] Thorsten Koch, Rapid mathematical programming, Ph.D. thesis, Technische Universität
Berlin, 2004.

[PS91] Manfred Padberg and Ting-Yi Sung, An analytical comparison of different formulations

of the travelling salesman problem, Mathematical Programming 52 (1991), 315–357.

[Rei91] Gerhard Reinelt, TSPLIB – A Traveling Salesman problem library, ORSA Journal on
Computing 3 (1991), 376–384.

[Tri05] Michael Trick, Formulations and reformulations in integer programming, Lecture Notes
in Computer Science 3524 (2005), 366–379.

[vVW06] Mathieu van Vyve and Laurence A. Wolsey, Approximate extended formulations, Math-
ematical Programming 105 (2006), 501–511.

10


