
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

TIMO BERTHOLD AND MARC E. PFETSCH

Detecting Orbitopal Symmetries

Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, {berthold,pfetsch}@zib.de

ZIB-Report 08-33 (August 2008)

Detecting Orbitopal Symmetries

Timo Berthold and Marc E. Pfetsch

August 14, 2008

Abstract

Orbitopes can be used to handle symmetries which arise in integer
programming formulations with an inherent assignment structure.
We investigate the detection of symmetries appearing in this ap-
proach. We show that detecting so-called orbitopal symmetries is
graph-isomorphism hard in general, but can be performed in linear
time if the assignment structure is known.

Symmetries are usually not desirable in integer programming (IP)
models, because they derogate the performance of state-of-the-art IP-
solvers like SCIP [1, 2]. The reason for this is twofold: Solutions that are
equivalent to ones already discovered are found again and again, which
makes the search space “unnecessarily large”. Furthermore, the bounds
obtained from the linear programming (LP) relaxations are very poor,
and the LP-solution is almost meaningless for the decision steps of the
IP-solving algorithm. Overall, IP-models mostly suffer much more from
inherent symmetries than they benefit from the additional structure.

Margot [5, 6] and Ostrowski et al. [8, 9] handle symmetries in general
IPs, without knowing the model giving rise to the instance.

Kaibel et al. [3, 4] took a polyhedral approach to deal with special
IP-symmetries. They introduced orbitopes [4], which are the convex hull
of 0/1-matrices of size p× q, lexicographically sorted with respect to the
columns. For the cases with at most or exactly one 1-entry per row,
they give a complete and irredundant linear description of the corre-
sponding orbitopes. These orbitopes can be used to handle symmetries
in IP-formulations in which assignment structures appear, such as graph
coloring problems; see the next section for an example.

All of the above approaches assume that the symmetry has been de-
tected in advance or is known. Therefore, automatic detection of sym-
metries in a given IP-formulation is an important task.

In this paper, we deal with the detection of orbitopal symmetries
that arise in the orbitopal approach. While this problem is polynomially
equivalent to the graph automorphism problem, whose complexity is an
open problem, orbitopal symmetries can be found in linear time, if at
least the assignment structure is given. Otherwise we show that the
problem is as hard as the graph automorphism problem.

1

1 Symmetries in Binary Programs

In this section, we introduce symmetries in binary programs and their
detection by color-preserving graph automorphisms.

For any k ∈ N, let [k] denote the set {1, . . . , k}. Let m,n ∈ N,
A ∈ R

m×n, b ∈ R
m, and c ∈ R

n. We deal with binary programs (BPs) in
the following form:

min cT x

s.t. Ax ≤ b

xj ∈ {0, 1} for all j ∈ [n].

(1)

Without loss of generality, we assume that there is no zero row in A
and that no two rows in A are positive multiples of each other. Let N
denote the number of nonzero entries of A. For k ∈ N, let S(k) denote
the full symmetric group of order k.

For x ∈ R
n, σ ∈ S(n), we write σ(x) for the vector which is obtained

by permuting the components of x according to σ, i.e., σ(x)i = xσ(i).
For σ ∈ S(m) and π ∈ S(n), we write A(σ, π) for the matrix which is
obtained by simultaneously permuting the rows of A according to σ and
the columns of A according to π.

Let F ⊆ {0, 1}n be the set of feasible solutions of BP (1). If there is
a permutation σ ∈ S(n) such that x ∈ F if and only if σ(x) ∈ F , then σ
is called a symmetry of F . Obviously, the set of all symmetries of F is
a subgroup of S(n). Clearly, it is NP-complete to determine whether a
binary program has a non-trivial symmetry group.

To avoid this complexity, one concentrates on finding symmetries of
the BP-formulation. Focusing on the BP, however, implies that the sym-
metry depends on the problem formulation. We give a formal definition
of symmetry groups, which is similar to the one of Margot [5, 6].

Definition 1.1. A subgroup G of the full symmetric group S(n) is a
symmetry group of BP (1), if and only if there is a subgroup H of S(m),
s.t. the following conditions hold for all elements π ∈ G:

(i) π(c) = c,

(ii) there exists σ ∈ H s.t. σ(b) = b and A(σ, π) = A.

We reduce the problem of finding symmetries in an BP to a graph
automorphism problem. Let Vrow := {u1, . . . , um}, Vcol := {v1, . . . , vn},
V := Vcol ∪ Vrow, E := {{ui, vk} ∈ Vrow × Vcol | aik 6= 0}, and G = (V,E).
Note that G is bipartite and that the size of G is in O(N).

The coefficients of the BP are treated as follows. We introduce a color
γ(r) ∈ N for each value in the set {b1, . . . , bm}. We assign the color γ(r)
to all vertices ui ∈ Vrow with bi = r. The same is done for the objective c
and the “variable vertices” Vcol.

2

We proceed analogously for the matrix coefficients. If at least one
(i, j) ∈ [m] × [n] with aij = r exists, color γ̂(r) is assigned to all edges
{ui, vj} with aij = r. We call the edge- and vertex-colored graph G the
coefficient graph of BP (1).

Definition 1.2. Given a graph G = (V,E), a mapping ζ : V 7→ V is
called an automorphism of G, if it preserves adjacency: {u, v} ∈ E ⇔
{ζ(u), ζ(v)} ∈ E. If for a given vertex and edge coloring, the colors of
all vertices and edges stay the same under ζ, we call the automorphism
color-preserving.

For two different graphs G and Ĝ, a color-preserving isomorphism is
defined analogously.

Note that it is neither known whether the decision problem “Is there
a non-trivial automorphism of G?” can be solved in polynomial time
nor whether it is NP-complete. Nevertheless, there are codes, such as
nauty [7], which solve practically relevant graph automorphism and iso-
morphism instances within reasonable time. Note that computing color-
preserving graph automorphisms is polynomially equivalent to comput-
ing graph automorphisms. Symmetry detection can be reduced to finding
color-preserving graph automorphisms:

Proposition 1.3. Every symmetry of a binary program induces a color-
preserving automorphism of its coefficient graph and vice versa.

In the following, we want to concentrate on symmetries, which arise
from permuting blocks of variables as in the orbitope approach. As an
example consider the maximal k-colorable subgraph problem. Given a
graph G and a number k ∈ N, the task is to find a subset of vertices
V̂ ⊆ V such that the subgraph induced by V̂ is k-colorable. The standard
BP-model for the maximal k-colorable subgraph problem uses binary
variables xvc that determine whether color c is assigned to vertex v:

max
∑

v∈V

∑
c∈[k] xvc

s.t.
∑

c∈[k] xvc ≤ 1 for all v ∈ V

xuc + xvc ≤ 1 for all {u, v} ∈ E and c ∈ [k]

xvc ∈ {0, 1} for all v ∈ V and c ∈ [k].

For a given k-colorable subgraph, permuting the colors in [k] yields
an orbit of k! structurally identical solutions. If we consider x as a 0/1-
matrix of size |V | × k, permuting color classes corresponds to permuting
columns—“blocks of variables”—of the matrix x. Each column/block
consists of |V | variables xvc belonging to a particular color c.

We generalize this structure as follows: Let q ∈ N divide n and let
C := {C1, . . . , Cq} be a partition of the column index set of A into q
distinct subsets of the same cardinality. We call Cj a variable block.

Groups acting on variable blocks, like S(k) in the k-colorable sub-
graph example, are called orbitopal symmetries. More precisely, the

3

group S(q) is called an orbitopal symmetry of BP (1), if for all j, ̂ ∈ [q]
there exists a bijection πĵ : Cj → Ĉ such that ck = cπĵ(k) for all k ∈ Cj,

and for every row i ∈ [m]

∑

k∈Cj

aikxk +
∑

k∈Ĉ

aikxk +
∑

ℓ 6=j,̂

∑

k∈Cℓ

aikxk ≤ bi (2)

there exists a row ı̂ ∈ [m] that has the form

∑

k∈Cj

aiπĵ(k)xk +
∑

k∈Ĉ

aiπ−1

ĵ
(k)xk +

∑

ℓ 6=j,̂

∑

k∈Cℓ

aikxk ≤ bi. (3)

Let j, ̂ ∈ [q] and σĵ : [m] → [m], i 7→ ı̂ be the mapping which links

the rows of A. Note that, since there are no identical rows, σĵ = σ−1
̂j ,

in particular σjj = id. For the k-colorable subgraph problem, there is
an orbitopal symmetry acting on the blocks of variables associated to a
common color.

The set of maps π : [n] → [n] defined by πĵ on Cj , π−1
ĵ on Ĉ, and the

identity on the remaining elements forms a symmetry of BP (1). Indeed,
condition (i) of Definition 1.1 is fulfilled and the requirements (2) and (3)
show that condition (ii) holds as well.

2 Complexity of Detecting Orbitopal Symme-

tries

In the following, we want to describe a polynomial time algorithm, which
is able to verify whether a partition C induces an orbitopal symmetry of
an BP without having knowledge of the mappings π, σ.

Definition 2.1. Let S ⊆ [n], ℓ ∈ N, ⊲⊳∈ {≤,=,≥}.

(i) A linear constraint of the form
∑

k∈S xk ⊲⊳ ℓ is called a leading
constraint of C, if it stays invariant under the mappings πĵ and
contains exactly one variable from each variable block Cj .

(ii) We call a set S := {S1, . . . , Sp} of leading constraints a leading
system of C if every variable is contained in exactly one Si.

In the above definition, we identify a leading constraint with its set
of variable indices. Note that for a leading system n = pq holds.

For the maximal k-colorable subgraph problem, the set packing con-
straints

∑
c∈[k] xvc ≤ 1 form a leading system. The leading constraints

determine the orbit of a variable under the symmetry S(q).

Proposition 2.2. Given a set of variable blocks C and a leading system
S of C, verifying that they describe an orbitopal symmetry of the binary
program (1) is possible in O(qmN) time.

4

Proof. Let j, ̂ ∈ [q] and i ∈ [p]. Let {k} = Si ∩ Cj and {k̂} = Si ∩ Ĉ.

Recall that Si is invariant under πĵ, which means that πĵ(k) = k̂. Hence,
constructing the maps πĵ elementwise is possible in O(N) time.

For every constraint (2) of BP (1), row (3) describes its image under
πĵ. If this image constraint does not exist in BP (1), C and S do not
yield a symmetry of the BP.

Searching the image row is possible in O(N) time. This search has
to be performed for all rows. Hence, checking a variable block pair can
be achieved in O(mN) time. It suffices to only check block pairs {1, j},
since πĵ = π1̂ ◦ π−1

1j . We get an overall running time of O(qmN).

The next lemma is tailored towards the typical case, in which remov-
ing the leading constraints decomposes the BP into blocks. Let G(S) be
the coefficient graph of BP (1) without the leading constraints S.

Lemma 2.3. Let be S(q) be an orbitopal symmetry of BP (1). If for all
rows, which are not leading constraints, all non-zeros are within one vari-
able block, then G(S) is partitioned into q components which are pairwise
color-preserving isomorphic.

Note that these components do not have to be connected.

Theorem 2.4. For a given leading system S, detecting the corresponding
orbitopal symmetry is possible in O(N) time.

If there are no leading constraints, detecting orbitopal symmetries is
as hard as the graph isomorphism problem.

Proof. Following Lemma 2.3, we detect the orbitopal symmetry by deter-
mining the connected components of the graph G(S). Using a breadth-
first-search, this takes O(|V | + |E|) = O(N) time. For checking that
all components are pairwise isomorphic, it is sufficient to show that all
components are isomorphic to the first component. Let j ∈ [q] \ {1}.
The mappings π1j can be constructed in O(n) time as in the proof of
Proposition 2.2 by evaluating S.

For testing whether the π1j describe color-preserving isomorphisms,
each edge of the graph has to be regarded. This takes O(N) time.

The reduction to graph isomorphism is achieved as follows. Let two
graphs G and Ĝ with the same number of vertices and edges be given.
For each vertex v in one of the graphs, we introduce a distinct binary
variable xv and for each edge {u, v}, we introduce a set packing constraint
xu + xv ≤ 1. The variables are partitioned into two disjoint blocks CU ,
CV . The BP has an orbitopal symmetry arising from the blocks CU and
CV , if and only if G and Ĝ are isomorphic.

One can show that the detecting leading constraints within a BP is
also polynomially equivalent to a graph isomorphism problem.

Finally, we want to investigate the case in which the leading con-
straints do not yield a complete system. As an example, think of a graph

5

coloring model, which uses variables xvc to assign color c to vertex v, con-
nected by leading constraints

∑
c xvc = 1, which ensure that each vertex

is colored exactly once. It uses one additional variable yc per block, which
indicates whether color c is used or not. This case can be handled by the
following result, which we state without proof:

Corollary 2.5. If there is a constant number of variables per block,
which are not contained in any leading constraint, detecting orbitopal
symmetries is possible in O(N) time.

References

[1] T. Achterberg. Constraint Integer Programming. PhD thesis, Tech-
nische Universität Berlin, 2007.

[2] T. Achterberg, T. Berthold, S. Heinz, M. Pfetsch, and K. Wolter.
SCIP – Solving Constraint Integer Programs, documentation.
http://scip.zib.de.

[3] V. Kaibel, M. Peinhardt, and M. E. Pfetsch. Orbitopal fixing. In
M. Fischetti and D. Williamson, editors, Proc. of the 12th IPCO,
volume 4513 of LNCS, pages 74–88. Springer-Verlag, 2007.

[4] V. Kaibel and M. E. Pfetsch. Packing and partitioning orbitopes.
Mathematical Programming, 114(1):1–36, 2008.

[5] F. Margot. Pruning by isomorphism in branch-and-cut. Mathematical
Programming, Series A, 94:71–90, 2002.

[6] F. Margot. Symmetric ILP: Coloring and small integers. Discrete
Optimization, 4:40–62, 2007.

[7] B. McKay. nauty User’s Guide (version 2.4), 2007.

[8] J. Ostrowski, J. Linderoth, F. Rossi, and S. Smirglio. Orbital branch-
ing. In M. Fischetti and D. Williamson, editors, Proc. of the 12th
IPCO, volume 4513 of LNCS, pages 104–118. Springer-Verlag, 2007.

[9] J. Ostrowski, J. Linderoth, F. Rossi, and S. Smirglio. Constraint
orbital branching. In A. Lodi, A. Panconesi, and G. Rinaldi, edi-
tors, Proc. of the 13th IPCO, volume 5035 of LNCS, pages 225–239.
Springer-Verlag, 2008.

6

http://scip.zib.de

	Symmetries in Binary Programs
	Complexity of Detecting Orbitopal Symmetries

