
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin
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Fair Ticket Prices in Public Transport

Ralf Borndörfer Nam Dũng Hoàng∗

Abstract

Ticket pricing in public transport usually takes a welfare or mnemonics

maximization point of view. These approaches do not consider fairness in

the sense that users of a shared infrastructure should pay for the costs that

they generate. We propose an ansatz to determine fair ticket prices that

combines concepts from cooperative game theory and integer program-

ming. An application to pricing railway tickets for the intercity network

of the Netherlands demonstrates that, in this sense, prices that are much

fairer than standard ones can be computed in this way.

Mathematics Subject Classification (2000). 91A12, 91A46, 91B24,

90C10
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1 Introduction

Public transport ticket prices are well studied in the economic literature on
elasticities and welfare optimization as well as in the mathematical optimization
literature on certain network design problems, see, e.g., the literature survey in
[3]. To the best of our knowledge, however, there is no work on the fairness
of ticket prices. The point is that typical pricing schemes are not related to
infrastructure operation costs and, in this sense, favor some users, which do
not fully pay for the costs they incur. For example, in this paper’s (academic)
example of the Dutch IC railway network, with the current distance tariff, the
passengers in the central Randstad region of the country pay over 25% more than
the costs they incur, and these excess payments subsidize operations elsewhere.
We therefore investigate the construction of ticket prices that reflect operation
costs better.

The ticket pricing can be seen as a cost allocation problem. This problem
is widespread. Whenever it is necessary or desirable to divide a common cost
between several users or items, a cost allocation method is needed. In the liter-
ature there are some examples of cost allocation applications using cooperative
game theory, e.g, aircraft landing fees [7], water resource planning (or Tennessee
Valley Authority) [8, 10], water resource development [12], distribution cost of
gas and oil transportation [5], investment in electric power [6] and telephone
billing rates [1].

In this paper we focus on a concept of game theory, namely the f -nucleolus.
The nucleolus was originally suggested by Schmeidler [9] as a solution which
minimizes the maximum discontent among all coalitions of the players in a
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cooperative game. Several modifications of the nucleolus concept have been
suggested, such as the weak nucleolus (or per capita nucleolus) and the pro-
portional nucleolus [12]. These three types are special cases of the so called
f -nucleolus.

Our approach models ticket pricing as a cooperative cost allocation game
to minimize overpayments. The f -nucleolus of this game can be computed by
solving a sequence of linear programs, each of which has a number of constraints
that is exponential in the number of players, and can be solved using a cutting
plane approach, whose associated separation problem is a NP-hard combinato-
rial optimization problem.

The article is structured as follows. Section 2 recalls some concepts from
cooperative game theory. A model that treats ticket pricing as a cost allocation
game is presented in Section 3. The final Section 4 is devoted to the IC example.

2 Game Theoretical Setting

The cost allocation game deals with price determination and can be defined as
follows, see [11] for a survey/an introduction. Given is a set of players N =
{1, 2, . . . , n}, a cost function c : 2N\{∅} → R+, a polyhedron P = {x ∈
Rn |Ax ≤ b, xi ≥ 0 ∀i ∈ N}, which gives conditions on the prices x that
the players are asked to pay, and a weight function f : 2N\{∅} → R+. For each
vector x ∈ P , x = (x1, x2, . . . , xn) ∈ P , and each coalition S ⊂ N , we define the
f-excess of S at x as

ef (S, x) :=
c(S) − x(S)

f(S)
.

Here, x(S) :=
∑

i∈S xi, and we assume that the following set

X (Γ) := {x ∈ P |x(N) = c(N)}

is non-empty. The f -excess represents the gain (or loss, if it is negative) of
coalition S, if its members accept to pay x(S) instead of operating some service
themselves at cost c(S); we will assume in this article that the weight function
f has the form f = α + β| · | + γc with α, β, γ ≥ 0 and α + β + γ > 0. The
excess measures price acceptability: the smaller ef (S, x), the less favorable is
price x for coalition S, and for ef (S, x) < 0, i.e., in case of a loss, x will be seen
as unfair by the members of S. The cost allocation game Γ = (N, c, P ) is to
determine a price x ∈ X (Γ) which minimizes the loss (or maximizes the gain)
over all coalitions. Let us recall some related definitions from game theory.

Definition 2.1. Let

Cε,f (Γ) := {x ∈ X (Γ) | ef (S, x) ≥ ε, ∀∅ 6= S Ã N}.

Cε,f (Γ) is called the (ε, f)-core of Γ. In particular, C0,f (Γ) is the core of Γ. The

f -least core of the game Γ, denoted LCf (Γ), is the intersection of all nonempty

(ε, f)-core. Equivalently, let εf (Γ) be the largest ε such that Cε,f (Γ) 6= ∅, i.e.,

εf (Γ) = max
x∈X (Γ)

min
∅6=SÃN

ef (S, x),

then LCf (Γ) = Cεf (Γ),f . In other words, the f-least core is the set of all vectors

in X (Γ) that maximize the minimum f-excess of proper subsets of N .
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Lemma 2.1. If X (Γ) is non-empty then the f-least core of Γ is non-empty.

Proof. We consider the following LP

max
(x,ε)

ε

s.t. x(S) + εf(S) ≤ c(S), ∀S ∈ 2N\{∅, N} (1)

x ∈ X (Γ).

The polyhedron defined by the constraints of (1) is non-empty because with each
x ∈ X (Γ), since f(S) > 0 for all non-empty set S, we can choose ε sufficiently
small such that

x(S) + εf(S) ≤ c(S), ∀S ∈ 2N\{∅, N}.

On the other hand, the objective value of (1) is bounded for all feasible solutions:

ε ≤
c(S)

f(S)
, ∀S ∈ 2N\{∅, N}.

Therefore, the LP (1) has an optimal solution. Let ε∗ be the optimal value,
then the f -least core of Γ is

{x ∈ X (Γ) | (x, ε∗) is a feasible solution of (1) },

which is non-empty.

The f -least core contains, in general, more than one point. However, unique-
ness can be enforced by imposing a lexicographic order as follows. For each
x ∈ X (Γ), let θf (x) be the vector in R2n−2 whose components are the f -excesses
ef (S, x) of proper subsets S of N , arranged in nondecreasing order, i.e.,

θi
f (x) ≤ θj

f (x), ∀1 ≤ i < j ≤ 2n − 2.

For x, y ∈ X (Γ), θf (x) is lexicographically greater than θf (y), denoted θf (x) ≻
θf (y), if there exists an index i0 such that

θi
f (x) = θi

f (y) ∀i < i0 and θi0
f (x) > θi0

f (y).

We say x is more acceptable than y.

Definition 2.2. The f -nucleolus of a cost allocation game Γ, denoted by Nf (Γ),
is the set of vectors in X (Γ) that maximize θf with respect to the lexicographic

ordering.

For S ⊂ N , let χS denote the incidence vector of S, i.e., χi
S is 1 if i ∈ S and 0

else. For a set Σ of sets S ⊂ N , we denote

χΣ := {χS |S ∈ Σ}.

The following algorithm computes points in the f -least core, and terminates
with the f -nucleolus.

Algorithm 1. Compute the f-nucleolus of Γ = (N, c, P ).

1. Set k := 0, A1 := {χN}, and P1 := X (Γ).
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2. Set k := k + 1, and solve the linear program

max
(x,ε)

ε

s.t. x(S) + εf(S) ≤ c(S), ∀S ∈ Sk (2)

x ∈ Pk,

where

Sk := 2N\{S ⊂ N |χS ∈ spanAk}.

If the problem is infeasible then stop, Nf (Γ) = ∅. Otherwise, let (xk, εk)
and (λk, µk) be primal and dual optimal solutions.

3. Define

Πk+1 := {S ∈ Sk |λ
k
S > 0},

Bk+1 ⊂ Πk+1 : χBk+1
is a basis of spanχΠk+1

Pk+1 := {x ∈ Pk |x(S) = c(S) − εkf(S), ∀S ∈ Bk+1},

Ak+1 :=Ak ∪ χBk+1
.

4. If |Ak+1| < n then goto 2, else {xk} is the f-nucleolus of Γ.

Theorem 2.1. If X (Γ) is non-empty then the f-nucleolus is non-empty and

contains a unique point. Algorithm 1 gives a point in the f-least core of Γ after

each step and terminates after at most n − 1 steps.

Proof. By induction, using an argument which is similar to the one in the proof
of Lemma 2.1, we can easily prove that the LP (2) has an optimal solution for
every k ≥ 1. The fact that xk ∈ LCf (Γ) for every k ≥ 1 is trivial. We now
prove by induction that

Nf (Γ) ⊂ Pk 6= ∅ (3)

holds for every k ≥ 1 and that the number of steps is bounded by n − 1. Pk

is non-empty because xk−1 belongs to Pk for every k ≥ 2 and P1 = X (Γ) 6= ∅.
If Nf (Γ) is empty then (3) is true. We consider the case that Nf (Γ) is non-empty
and prove (3) by induction. With k = 1, (3) holds since

Nf (Γ) ⊂ X (Γ) = P1.

Assume that (3) holds for k = k̄, i.e., Nf (Γ) ⊂ Pk̄. Clearly, for each vector x̃ in

the f -nucleolus, (x̃, εk̄) is an optimal solution of (2) with k = k̄. If it is not the
case, then (x̃, εk̄) is infeasible. But since x̃ ∈ Nf (Γ) ⊂ Pk̄, we have

min
S∈Sk̄

ef (S, x̃) < εk̄.

Let (x̄, εk̄) be an optimal solution of (2) with k = k̄, then

min
S∈Sk̄

ef (S, x̃) < εk̄ = min
S∈Sk̄

ef (S, x̄).

On the other hand, since x̃, x̄ ∈ Pk̄, there holds

ef (S, x̃) = ef (S, x̄), ∀S ∈ {T ∈ S1 |χT ∈ spanAk̄} = S1\Sk̄.
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Therefore, we have

{ef (S, x̄) |S ∈ S1 : ef (S, x̄) < εk̄} ( {ef (S, x̃) |S ∈ S1 : ef (S, x̃) < εk̄}.

From this it follows that
θf (x̄) ≻ θf (x̃),

which contradicts the assumption that x̃ belongs to the f -nucleolus. Now let x̃
be a vector in the f -nucleolus Nf (Γ). Since (x̃, εk̄) is an optimal solution of (2)
with k = k̄, due to the complementary slackness theorem, we have

x̃(S) = c(S) − εk̄f(S), ∀S ∈ Bk̄+1.

Hence, since Nf (Γ) ⊂ Pk̄, and from the definition of Pk̄+1, there holds

x̃ ∈ Pk̄+1.

It means that (3) holds for k = k̄ + 1.
We now consider the k-th. step of Algorithm 1 with |Ak| < n. Trivially, the

set Sk is non-empty. Let (λk, µk) be a dual optimal solution of (2). Then we
have ∑

S∈Sk

f(S)λk
S ≥ 1 > 0.

Therefore, since f(S) > 0 for all S ∈ Sk, the set Πk+1 is non-empty. Hence,
Bk+1 is non-empty and

|Ak+1| − |Ak| ≥ 1.

On the other hand, we have A1 = {χN}. Therefore

k ≤ |Ak| ≤ n, ∀1 ≤ k ≤ n.

So there exists 1 ≤ k ≤ n such that

|Ak| = n. (4)

Let k∗ ≤ n be the smallest number k satisfying (4). The algorithm stops after
k∗ − 1 steps. Clearly, Ak∗ is independent. Therefore, Pk∗ contains exactly a
point, since Pk∗ is non-empty due to (3). Moreover, due to (3), if the f -nucleolus
is non-empty then it contains a unique point, namely, the point in Pk∗ .

In the following, we prove that the point in Pk∗ belongs to the f -nucleolus.
Denote this point by x∗. For each 1 ≤ j < k∗, since the optimal solution (xj , εj)
of (2) with k = j is also a feasible solution of (2) with k = j + 1, we have

εj ≤ εj+1. (5)

As already mentioned, with |Aj | < n the set Bj+1 is non-empty. Let T be a
subset of N that belongs to Bj+1. Clearly, T ∈ Sj\Sj+1, and hence there holds

min
S∈Sj\Sj+1

ef (S, x) ≤ ef (T, x) = εj , ∀x ∈ Pj+1. (6)

On the other hand, since xj ∈ Pj+1, we have

ef (S, x) = ef (S, xj), ∀S ∈ S1\Sj+1, x ∈ Pj+1. (7)
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As (xj , εj) is a feasible solution of (2) with k = j, there holds

ef (S, xj) ≥ εj , ∀S ∈ Sj . (8)

Combining (7), Sj ⊂ S1 and (8) yields

ef (S, x) ≥ εj , ∀S ∈ Sj\Sj+1, x ∈ Pj+1. (9)

From (6) and (9) follows

min
S∈Sj\Sj+1

ef (S, x) = εj , ∀x ∈ Pj+1.

Especially, with x = x∗, we have

min
S∈Sj\Sj+1

ef (S, x∗) = εj . (10)

Since Sk∗ = ∅, there holds

Sk = ∪k∗−1
j=k (Sj\Sj+1), ∀1 ≤ k < k∗. (11)

Combining (5), (10) and (11) yields

min
S∈Sk

ef (S, x∗) = εk, ∀1 ≤ k < k∗. (12)

Now let y be an arbitrary vector in X (Γ)\{x∗}. As P1 = X (Γ) and Pk∗ = {x∗},
and since

X (Γ)\{x∗} = ∪k∗−1
j=1 (Pj\Pj+1),

there exists 1 ≤ l < k∗ satisfying

y ∈ Pl\Pl+1,

i.e., there exists a set U ∈ Bl+1 ⊂ Πl+1 such that

x(U) + εlf(U) 6= c(U). (13)

Recalling
Πl+1 = {S ∈ Sl |λ

l
S > 0},

where (λl, µl) is a dual optimal solution of (2) with k = l. Clearly, it holds

min
S∈Sl

ef (S, y) < εl. (14)

Otherwise, since y ∈ Pl and εl is the optimal value of (2) with k = l, (y, εl)
is an optimal solution of (2) with k = l, which contradicts (13) due to the
complementary slackness theorem. On the other hand, since x∗, y ∈ Pl, we have

ef (S, x∗) = ef (S, y), ∀S ∈ S1\Sl. (15)

From (12), (14) and (15) follows

{ef (S, x∗) |S ∈ S1 : ef (S, x∗) < εl} ( {ef (S, y) |S ∈ S1 : ef (S, y) < εl}.

That means
θf (x∗) ≻ θf (y).

Therefore, x∗ belongs to the f -nucleolus Nf (Γ).
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3 Ticket Pricing as a Cooperative Game

To apply the framework of Section 2 to the ticket pricing problem, we define a
suitable cost allocation game Γ = (N, c, P ). Consider a railway network as a
graph G = (V,E), and let N ⊆ V ×V be a set of origin-destination (OD) pairs,
between which passengers want to travel, i.e., we consider each (set of passengers
of an) OD-pair as a player. We next define the cost c(S) of a coalition S ⊆ N as
the minimum operation cost of a network of railway lines in G that service S.
Using the classical line planning model of [4], c(S) can be computed by solving
the integer program

c(S) := min
(ξ,ρ)

∑

(r,f)∈R×F

(c1
r,fξr,f + c2

r,fρr,f )

s.t.
∑

r∈R,r∋e

∑

f∈F

ccapf(mξr,f + ρr,f ) ≥
∑

i∈S

P i
e , ∀e ∈ E

∑

r∈R,r∋e

∑

f∈F

fξr,f ≥ F i
e , ∀(i, e) ∈ S × E

ρr,f − (M − m)ξr,f ≤ 0, ∀(r, f) ∈ R×F
∑

f∈F

ξr,f ≤ 1, ∀r ∈ R

ξ ∈ {0, 1}|R×F|, ρ ∈ Z
|R×F|
≥0 .

The model assumes that the P i passengers of each OD-pair i travel on a unique
shortest path Pi (with respect to some distance in space or time) through the
network, such that demands P i

e on capacities of edges e arise, and, likewise,
demands F i

e on frequencies of edges. These demands can be covered by a set
R of possible routes (or lines) in G, which can be operated at a (finite) set of
possible frequencies F , and with a minimal and maximal number of wagons m
and M in each train. ccap is the capacity of a wagon, c1

r,f and c2
r,f , (r, f) ∈ R×F ,

are cost coefficients for the operation of route r at frequency f . The variable ξr,f

equals 1 if route r is operated at frequency f , and 0 otherwise, while variable
ρr,f denotes the number of wagons in addition to m on route r with frequency
f . The constraints guarantee sufficient capacity and frequency on each edge,
link the two types of route variables, and ensure that each route is operated at
a single frequency.

Finally, we define the polyhedron P , which gives conditions on the prices x
that the players are asked to pay, as follows. Let (uj−1, uj), j = 1, . . . , l, be
OD-pairs such that uj , j = 0, . . . , l, belong to the travel path Pst associated
with some OD-pair (s, t), u0 = s, and ul = t, and let (u, v) be an arbitrary
OD-pair such that u and v also lie on the travel path Pst from s to t. We then
stipulate that the prices xi/Pi, which individual passengers of OD-pair i have
to pay, must satisfy the monotonicity properties

0 ≤
xuv

Puv

≤
xst

Pst

≤
l∑

j=1

xuj−1uj

Puj−1uj

.

Γ = (N, c, P ) defines a cost allocation game to determine cost-covering prices
for using the railway network G, in which coalitions S consider the option to
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bail out of the common system and set up their own, private one. Computing
prices in the f -least core or the f -nucleolus of Γ requires to solve several linear
programs of type (2). This can be done using cutting planes. We start with a
(small) subset ∅ 6= Σ ⊂ Sk and consider the LP obtained from (2) by deleting
the constraints corresponding to the coalitions S ∈ Sk\Σ, i.e.,

max
(x,ε)

ε

s.t. x(S) + εf(S) ≤ c(S), ∀S ∈ Σ (16)

x ∈ Pk.

Let (x∗, ε∗) be an optimal solution of this LP. The separation problem for (x∗, ε∗)
is to find a coalition T ∈ Sk such that (x∗, ε∗) violates the constraint

x(T ) + εf(T ) ≤ c(T ). (17)

Recalling f = α + β| · | + γc. If ε∗ ≥ 0, then, since α, β ≥ 0, there holds for
each S ∈ Σ

x∗(S) + ε∗γc(S) ≤ x∗(S) + ε∗f(S). (18)

On the other hand, since (x∗, ε∗) is a feasible solution of (16), we have

x∗(S) + ε∗f(S) ≤ c(S). (19)

From (18), (19), x∗(S) ≥ 0 and c(S) > 0 follows

ε∗γ ≤ 1. (20)

Trivially, the inequality (20) holds for ε∗ < 0, as well. Therefore, the separation
problem can be formulated for our application as the integer program

max
(ξ,ρ,z)

∑

i∈N

(x∗
i + βε∗)zi + (γε∗ − 1)

∑

(r,f)∈R×F

(c1
r,fξr,f + c2

r,fρr,f ) + αε∗

s.t.
∑

r∈R,r∋e

∑

f∈F

ccapf(mξr,f + ρr,f ) −
∑

i∈N

P i
ezi ≥ 0, ∀e ∈ E

∑

r∈R,r∋e

∑

f∈F

fξr,f − F i
ezi ≥ 0, ∀(i, e) ∈ N × E (21)

ρr,f − (M − m)ξr,f ≤ 0, ∀(r, f) ∈ R×F
∑

f∈F

ξr,f ≤ 1, ∀r ∈ R

ξ ∈ {0, 1}|R×F|, ρ ∈ Z
|R×F|
≥0 , z ∈ χSk

.

A violated constraint exists iff the optimum is larger than 0. If the optimal
value is not positive, then (x∗, ε∗) is a feasible solution of (2). Otherwise, we
can find a feasible solution (ξ̄, ρ̄, z̄) of (21) with a positive objective function
value. Define T := {i ∈ N | z̄i = 1}, then (x∗, ε∗) violates the constraint (17).

4 Fair IC Ticket Prices

We now use our ansatz to compute ticket prices for the intercity network of the
Netherlands, which is shown in Figure 1. Our data is a simplified version of
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that published in [4], namely, we consider all 23 cities, but reduce the number
of OD-pairs to 85 by removing pairs with small demand. However, with 285 − 1
possible coalitions, the problem is still very large. Solving LP (2) (with Sk =
S1 = 2N \ {∅, N}), and separating the coalition constraints by solving IPs (21),
we determine a point x∗ in the c-least core (i.e., f = c) and define c-least core

ticket prices (lc-prices) for each OD-pair i as p∗i := x∗
i /P i.

Breda

Eindhoven

Sittard

Arnhem

Zwolle

Assen

Groningen

Apeldoorn

Maastricht

Leeuwarden

Amsterdam

Den Haag

Heerenveen

Schiphol

Rotterdam

Rosendaal

Zevenaar

Oldenzaal

Hengelo

Lelystad

Utrecht

Figure 1: The intercity network of the Netherlands.

Figure 2 and Figure 3 compare these lc-prices p∗ with the distance dependent
prices p that have been used by the railway operator NS Reizigers for this

network as reported in [2]. Figure 2 plots the relative c-profits c(S)−x(S)
c(S) with

respect to x = x∗ and x = x = p ◦ P (◦ denotes the coordinate-wise product)
of some 8000 coalitions computed in the course of the cutting plane algorithm,
and sorted in non-decreasing order. Note that the core of this particular game
is empty, and some coalitions have to pay more than their cost. The maximum
c-loss of any coalition with respect to the lc-prices is a mere 1.1%. This hardly
noticeable unfairness is in stark contrast with the 25.67% maximum c-loss with
respect to the distance prices. In fact, there are 10 other coalitions with losses
of more than 20%. Even worse, the coalition with the maximum loss is the main
coalition of passengers traveling in the center of the country, i.e., in our model,
a major coalition would earn a substantial benefit from shrinking the network.

How do the lc-prices look like? Figure 3 plots the distribution of the ratio
between the lc-prices and the distance prices. It can be seen that lc-prices are
lower, equal, or slightly higher for most passengers. However, some passengers,
mainly in the periphery of the country, pay more to cover the costs that they
produce. The increment factor is at most 3.78 except for two OD-pairs. The top
of the list is the OD-pair Den Haag HS to Den Haag CS, which gets 14.4 times
more expensive. The reason is that the travel path of this OD-pair consists of
a single edge that is not used by any other travel route, i.e., the network is too

dense at this point.
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