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Abstract

Because CFD programs, like FDS, generally consist of a large number of differ-
ent components representing the variety of participating numerical algorithms
and chemical / physical processes, it is nearly impossible to verify such codes in
their entirety, for example with comparisons of fire tests. Instead, a careful ver-
ification and validation with respect to the underlying mathematical conditions
and applied numerical schemes is indispensable. In particular, error cancela-
tions between single program components can only be detected by such detailed
component-level tests.

In part I [7] of this article series a conceptual deficiency of the FDS program
package with regard to multi-mesh computations was illustrated and an alter-
native domain decomposition strategy FDS-ScaRC was introduced. In this
second part we will present the structure of a comprehensive test concept and
the needs for a more mathematically and numerically orientated test procedure
that is much more suited for a reliable evaluation than only a simple visual
comparison of the numerical results with experimental fire tests.

After a general introduction of our test concept we will demonstrate the high
potential of the new FDS-ScaRC technique compared to the FDS-FFT tech-
nique which is used in the FDS program package as yet. Based on this concept,
we will present a comprehensive set of analytical and numerical test results.
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1. Introduction

In part I of this series [7] we explained a conceptual lack of the current FDS pro-
gram package concerning the geometric decomposition of the computed domain
into smaller subdomains or meshes. We presented a new generalized domain
decomposition strategy for the efficient parallel solution of the FDS-pressure
equation that guarantees the necessary accuracy. In this second part, we de-
scribe a comprehensive test methodology and first tests to prove the correctness
of this new strategy.

Due to a positive experience with certification processes for tools and com-
ponents for civil engineering, it seems appropriate to develop analogous quality
assessment procedures for fire safety-related CFD programs as described in [16].
In fact, in analogy with fire tests for structural elements, the comparison of CFD-
based simulation data with measurements from fire experiments has become one
standard approach for testing the applicability of such codes.

However, on the basis of such global comparisons it is not possible to decide
whether a CFD code produces good results because it is really correct, or simply
because of internal error cancelation. Unfortunately, the required details of the
flow fields are often plainly inaccessible due to a lack of appropriate measurement
techniques, e.g., in the presence of intense smoke. Thus, quality assessments
of CFD codes for fire safety should not rely exclusively on comparisons with
experimental results. This conclusion is further supported by the fact that only a
limited range of flow regimes can be realized in the laboratory. As a consequence,
even if a CFD code has positively passed scrutinizing tests based on comparisons
with a large experimental data base, there is no guarantee whatsoever that it
will work equally well in flow regimes which the experiments have not covered.
For example, it is an open issue whether fire events in very large open-space
buildings can be downscaled to laboratory sizes while maintaining all the rules
of similarity.

Another disadvantage concerning a detailed justification of a CFD programs is
the fact that data from fire experiments always consider net effects of all physi-
cal processes of a fire. Therefore cancelation of errors inside the computational
results may remain undetected.
Especially the simulation of fire and
smoke spreading requires the modelling
of complicated physical and chemical
processes, which are partially not really
well understood. For this reason, the
developers of such programs use empir-
ical models as well as many approxima-
tions to limit the computational costs
in an appropriate range. Furthermore,
there is a strong non-linear coupling be-
tween these processes, for example be-
tween turbulence, combustion and radi-
ation.

heat transfer

Combustion
heat release
species yields

Turbulence
flow and whirls
local mixture

Radiation

Figure 1: Process interaction
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And last but not least it is possible that because of the limited range of exper-
imental facilities errors outside this range can not be detected.

In summary, comparisons with fire experimental data are necessary and useful.
But, if adopted as the only means of testing they are insufficient to document
the performance of CFD programs. Therefore, a more comprehensive testing
strategy is indispensable.

1.1. Component-level and isolated process tests

Verification and validation (V&V) is widely discussed in the CFD community
(e.g., [1, 5, 8, 17]). It is beyond the scope of this paper to summarize the discus-
sion regarding different definitions of verification and validation. In contrast, we
aim to provide some evidence why other types of tests are necessary to ensure
reliable results from CFD programs. Figure 2, from Schlesinger [19], illustrates
various facets of what we will expand upon in the present text.

Validation

Computer

Simulation

Model

Programming

Verification

Model

Qualification

Model

Analysis

Conceptual Model
- Physic

- Numeric

Computerized Model

Reality

Figure 2: The issue of verification and validation [19]

1. Model Qualification: is the process of determining whether an adopted
conceptual model accurately represents the real world as far as its intended
use is concerned. To do so, the conceptual model should include descrip-
tions of all physical system components and processes that are of interest
for the intended use. Conceptual models for CFD consist of the equations of
fluid dynamics extended by auxiliary model equations, e.g., for turbulence
and chemical reactions, and of initial and boundary conditions, [17].

2. Model Verification: is the process of determining whether a computer-
ized model accurately represents the developer’s conceptual model and its
solutions [1]. The fundamental goal of verification is the identification and
quantification of errors in the computational model and its solution. In
verification activities, the accuracy of a computational solution is primar-
ily measured relative to two types of references: analytical solutions and
highly accurate numerical solutions [17].
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3. Model Validation: is the process of determining the degree to which the
computerized model is an accurate representation of the real world from
the perspective of the intended utilization [1]. The strategy of validation
is to assess how accurately computational results match with experimental
data, with quantified error and uncertainty estimates for both [17].

Because computerized models, namely the CFD programs, generally consist of
very large numbers of different components representing the variety of partic-
ipating system components and processes, it is close to impossible to verify a
CFD program in its entirety. Instead, careful verification and validation of sin-
gle components as well as groups of components of increasing complexity are
imperative. In particular, error cancelations between a program’s components
can only be detected by such component-level tests.

To illustrate the scope of the issue, here is a sample of the components of a CFD
program which will require individual assessment:

• Physical submodels: turbulence, radiation, boundary conditions, . . .

• Numerical algorithms: flux functions, time integrators, linear algebra
solvers,. . .

• Data handling components: data structures, parallelization, load bal-
ancing, . . .

• Grid handling components: discretization techniques, domain decom-
position, grid refinement, . . .

All these components interact in various ways, so that component-level tests
must process the components themselves as well as the interactions between
them.

Although all steps are important, the present paper focuses on the verification
issues to test the implementation of the new FDS-ScaRC scheme in comparison
to the current scheme. Furthermore, we will give a rough introduction of some
useful strategies to prove the quality of numerical schemes which are much
more suited for a reliable evaluation than only a simple optical comparison of
the numerical results.

2. Test of numerical qualities

Because the current von-Neumann computer can not handle partial differential
equations, numerical discretization schemes play an important role for the CFD
code’s quality. Our comprehensive testing strategy considers the requirements
needed to use these discretization techniques in the right way. In the next
subsections we will present a short introduction into the background story of
numerical qualities that are useful to test CFD programs.
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2.1. Boundary conditions

Algebraic equations, e.g. the discretization algorithm to compute a gradient
(3), are mostly easy to implement in computational areas far away from the
boundary of the domain. However, more or less complicated situations arise
in areas near the boundary. In the example below we have to use a value
outside the computational domain, a so-called ghost value, if the gradient along
the boundary is computed. In this context, code developers often have to use
suitable assumptions in order to solve such problems.

To give an example, suppose that a cell-centered value ϕ is used. To compute
the face-centered gradient of ϕ in first order accuracy we use equation (3). In-
side the computational domain we can compute the gradient at the cell face A
without any problem. At the boundary the situation is somewhat more tricky.
To compute the difference of ϕ at the cell face B we need a value of ϕ outside of
the computational domain or another formula to compute the gradient at the
boundary. Therefore boundary conditions can play a major role for the quality
of numerical results.

∂ϕ
∂xA

∂ϕ
∂xB

i + 3 ?i i + 1

Figure 3: Example: Compute the gradient of ϕ.

Although periodic boundary conditions are of small importance for practical
fire safety engineering problems, they are important to test numerical schemes
because they eliminate the influence of boundary effects, such that the quality
of the pure solver method can be evaluated. Meanwhile this type of “theoreti-
cal”boundary condition is implemented in the source code of FDS.

2.2. Consistency, convergence and stability

As demonstrated in the previous paper [7] of this series, numerical discretization
schemes have a crucial influence on a CFD code’s quality. It is beyond the scope
of the present paper to provide more than a rough overview of the related theory
for convergence investigations, but some basics are necessary to understand the
main principles, see e.g. [21].
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The current von-Neumann computer operates with a finite precision represen-
tation of real numbers called floating-point numbers. It can form only a finite
number of such floating point values and can store only a finite number of them
in its memory space. As a consequence, it cannot handle continuum problems
described by differential equations such as

∂ρ

∂t
+

∂(ρu)
∂x

= 0 (1)

directly. Instead, the continuum equations are approximated by discrete ana-
logues through a “discretization scheme”. A common way to derive discrete
approximations, e.g., for the partial derivatives in (1), uses Taylor series expan-
sions. The Taylor expansion for ϕ(xi+1) of a function ϕ(x) around x = xi reads
as

ϕi+1 = ϕi +
(

∂ϕ

∂x

)
i

·∆x +
(

∂2 ϕ

∂x2

)
i

· ∆x2

2!
+

(
∂3 ϕ

∂x3

)
i

· ∆x3

3!
+ . . . (2)

A change in the sequence of terms leads to an approximation for the gradient
of ϕ at the point i

(
∂ϕ

∂x

)
i

≈ ϕi+1 − ϕi

∆x
−

(
∂2 ϕ

∂x2

)
i

· ∆x

2!
−

(
∂3 ϕ

∂x3

)
i

· ∆x2

3!
− . . .︸ ︷︷ ︸

truncation error O(∆x)

. (3)

For the approximation of the gradient of ϕ only a finite number of terms in (3)
can be considered. The rest is necessarily neglected and remains as a “truncation
error”. This type of discretization is widely used in CFD programs and there
exists a big range of concepts for the justification of the accuracy and correctness
of the resulting numerical approximation schemes.

• Order of consistency: The quality of the numerical solution will de-
pend on the order of the scheme, described by the truncation error. The
“order of a discretization”is determined by the power of the discretization
parameter (here ∆x) that appears in the first neglected term of the Taylor
expansion. Therefore, the discretization in (3) is of first order O(∆x). For
modern CFD programs second order discretizations are state of the art.

• Convergence: With convergence tests, the correctness of a numerical
scheme can be probed empirically. As the grid size ∆x vanishes, the
truncation error should vanish as well, and at a rate determined by the
order of the scheme,

lim
∆x→0

(
∂ϕ

∂x
− ∆ϕ

∆x

)
= 0. (4)
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Convergence studies involving calculations of the same problem on grids
with varying mesh sizes are necessary to check this basic aspect. Only a
series of convergence tests on well-selected non-trivial test problems can
establish with reasonable certainty that a code correctly implements the
discretization schemes that it has been built upon. Unless a code has
passed such theoretical tests, one cannot expect that it produces reliable
results for realistic problems. Therefore, authorities should insist on a de-
tailed documentation of convergence tests before accepting data derived
from numerical simulations.

• Stability: There will be a large number of input data x defined by the
user, for many of which only coarse estimates will be available. Essen-
tially, a numerical scheme F (x) for evaluating a function f(x) is called
stable if small input errors result in controlled, small changes in the com-
puted output, i.e., |F (x + δx) − F (x)| → 0 as δx → 0. In the graphical
illustration the stabilty of the numerical scheme means that the ratio be-
tween the hatched area of the input deviation and the hatched area of the
total deviation of the numerical result must be limited.
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Figure 4: Stability and error propagation

All these requirements have been known for a long time. Already in 1902 the
French mathematician Hadamard identified consistency, convergence and sta-
bility as necessary conditions for a useful mathematical model.
With regard to the discussion of the convergence order in section 4 we would like
to point out that the hydrodynamic solver in FDS consists on more than only
the pressure solver which was solved with the FFT scheme as yet. Therefore
potential deficiencies in the remaining components of FDS are not affected by
the new ScaRC scheme by which the FFT scheme was replaced. This means
the improvement of the new scheme can only be seen in a relative comparison
between FDS-FFT and FDS-ScaRC, rather than in absolute values.

Additionally, the efficiency of the code is another very important quality crite-
rion because the computational results must be available in a reasonable time.
Ultimately, everything depends on the correctness of the underlying numerics.
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2.3. Practical relevance

Figure 5: Falling
droplet

Apart from the mathematical and numerical argumen-
tation, there is even a physical relevance. An often used
argument of practitioners is that as long as important
input data can only be roughly estimated, digits after
the decimal point can be neglected. In the context of
numerical schemes this argumentation fails. Even the
small terms of the Taylor series (3) represent physical
properties. This should be demonstrated by a simple
numerical experiment, the falling droplet test.
Let us assume that we drop a droplet into a fluid sur-
face, as shown in figure 5. Now we simulate the falling
droplet. For this purpose, we use a CFD program [13],
which can switch between first and second order accu-
racy by neglecting the second term (1st order) or third
term (2nd order) in the approximation of the gradient
(3).

Now we compare the density and velocity field after the impact of the droplet
on the fluid surface at the same time. Whereas in the right picture (2nd order)
a compact wave rolls to the right, the left picture (1st order) looks more like a
small fluid hill with a flow along a line to the right upper edge of the picture.

first order second order

Figure 6: Comparison of a first and second order solution

The reason is that the approximation of a curvature, necessary to form waves,
needs the second derivative. Nevertheless, this curvature term is neglected in
the first order approximation.(
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i

≈ ϕi+1 − ϕi
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1st order approximation

−
(
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2.4. Usefulness for code testing

From a physical point of view the solution of the underlying set of equations
must be independent of the underlying domain decomposition. Simplified: the
solution of a single- and multi-mesh-calculation should be the same. But what
does that explicitly mean? Domain decomposition methods to solve boundary
value problems always lead to more or less additional numerical errors and
increase the inaccuracy of a numerical scheme. Nevertheless, the numerical
error of a domain decomposition method or parallelization strategy must be
limited by the numerical error defined by the order of the underlying numerical
scheme. In the case of FDS the scheme should be of second order accuracy in
time and space (see [9]). Therefore convergence tests provide an appropriate
quality criteria to prove CFD progams.

3. Concept and Strategy

One important feature of the FDS program package is the possibility to de-
compose the computational domain geometrically into smaller subdomains or
meshes. This technique is a prerequisite for parallel computing and a time
efficient numerical computation of practical problems. But the usage of multi-
meshes in serial as well as parallel simulations in FDS may cause inaccuracies
or instabilities, as demonstrated by different authors e.g. [3, 6, 7, 12, 18].

These errors result from deficiencies in the domain decomposition strategy in
conjunction with the FFT-solver used to solve the pressure equation in FDS.
Therefore completely new strategies for the solution of the pressure equation
should be developed. As a consequence a new parallelization concept, the gen-
eralized domain decomposition/multigrid method ScaRC, was presented in part
I [7].

In the present part we are describing a comprehensive test strategy to prove the
correctness of this new strategy. Following the idea of component-level tests and
the described V&V rules, the test strategy focuses on the hydrodynamic solver
and the domain decomposition method first. Nevertheless the concept can be
expanded by testing other submoduls and solvers as demonstrated in [11].

3.1. Classification

There will be different sources for reference data, which can be used for V&V
work. The presented concept distinguishes between:

A Analytical tests
The results of these analytical tests are known because of mathematically or

numerically based considerations. One example is the “PIPE 2D”test described

in subsection 4.3.
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SE Semi-experimental tests
Semi-experimental tests are based on a clearly restricted number of physical or

chemical processes / submodels to proof the interaction. For example we focus

only on heat conduction.

N Numerical tests
Numerical tests are comparisons with results from more detailed or higher qual-

ified programs. See the example in subsection 4.3, “CD VA 2D”test example.

E Experimental tests
These are small- or full-scale fire tests as well as complex buoyancy-driven fluid

flow experiments.

To realize the component-level strategy the classification differentiates between
the physical and chemical processes and more numerical criteria like order, con-
vergence and symmetry. Additionally the implementation of boundary con-
ditions plays an important role for error-detection. At the current state, we
subsume these criteria under the term “structure test”(DD: domain decomposi-
tion, OC: order and convergence, PA: parallelization, BC: boundary condition,
SY: symmetry). A comprehensive test table will be presented at the end. The
classification of each test is described in this table.

Test Type Physical. components
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CD NSA 2D A X DD,OC
CD VA 2D N X DD,OC
Pipe 2D A X DD,OC,BC
. . .

Table 1: V & V Test table

4. Tests

To demonstrate the advantages of the new generalized domain decomposition
technique FDS-ScaRC and the power of the numerically orientated test strat-
egy, we are presenting the results of some test examples. For all computations
we use the official code version 5.4.3 revision 5210. This code version is the basis
of the offical binary version FDS 5.4.3 provided by the NIST download server.

Following the concept described in chapter 3 we are differentiating between
single components of the FDS scheme. Because the FDS-ScaRC technique
replaces the FFT pressure solver, an important component of the gasdynamic
solver scheme of FDS, we are focusing our tests on this part of the hydrodynamic
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solver and the boundary conditions involved. Especially the numerical scheme
for the turbulence modeling must be switched off in order to prevent errors
resulting from its empirically based modus operandi. As a result we get the
characteristics of the pure gasdynamic scheme. The gasdynamic scheme is of
great importance because all chemical and physical schemes, e.g. turbulence,
combustion, radiation, . . . , are based on it. Even if we neglect these components
here, they must be proved in a similar way.

On the base of the previous limitations we are considering the time integration
of variable density non-reaction flows. As described in subsection 2.1, boundary
conditions can play a major role for the quality of numerical results. Although
periodic boundary conditions are of small importance for practical fire safety
engineering problems, they are very well suited for the test of numerical schemes,
because they eliminate the influence of boundary effects.

4.1. CD NSA 2D test example

This analytical test case is widely used by developers of numerical schemes to
test the advection properties of a gasdynamic solver, e.g. [2, 10, 13, 22]. The
main developers used this case in the FDS verification guide for a serial 1-mesh-
geometry in order to demonstrate the second-order accuracy of the underlying
numerical scheme.

Furthermore, an accurate advection of vortices is an important prerequisite for
the simulation of smoke spreading. Therefore, it’s an ideal test case for the new
FDS-ScaRC scheme, especially with respect to its scalability towards higher
numbers of meshes.
The following tests are based on the
same initial conditions as the test in
the FDS verification guide. Because
the current concept for the defini-
tion of FDS-input files doesn’t of-
fer the possibility to define the cor-
responding initial conditions, they
had to be hardcoded in the FDS
source code. The test case describes
a viscous-free advection of vortices
in a simple square in two dimen-
sions with periodic boundary con-
ditions. We use a uniform grid with
∆x = ∆y. The physical domain of
the problem is a square of length
L = 2π. The grid spacing is uniform
∆x = ∆y = L/N in each direction
with N = {16, 32, 64, 128}.

2π

π

π 2π0
0

Figure 7: Initial velocity u (arrows) and
vorticity ω (contourlines) for
[−3,−2,−1, 1, 2, 3]

The solution is spatially periodic on an interval 2π in each direction, and is
temporally periodic on 2π.
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Because of the absence of physical viscosity this test is suitable to prove the
numerically indicated dissipation of the scheme. Figure 7 shows the velocity
field and an isoline plot of the vorticity. The vorticity is a characteristic value for
the location and magnitude of vortices in a flow field. Mathematically speaking,
it is the curl of the flow velocity ω = ∇× u, a vector quantity, whose direction
corresponds to the axis of the flow field rotation. In our two-dimensional test
case, the vorticitiy vector is perpendicular to the x− y plane.

From a physical point of view the vorticity is a quantity to describe the spin
of a flow, which influences the mixing process (e.g. of species concentrations,
particles, . . . ). Therefore the correct computation of vortices transport processes
is an important issue for CFD programs in the area of fire safety engineering.

The initial and analytical solution for this test case is

ρ(x, y, t) = 1
u(x, y, t) = 1− 2 cos ((x− t)) sin ((y − t))
v(x, y, t) = 1 + 2 sin ((x− t)) cos ((y − t))
p(x, y, t) = 1
p̃(x, y, t) = − cos (2(x− t))− cos (2(y − t)) .

(5)

Therefore the density ρ is constant and the divergence constraint of the initial
velocity field u = [u, v]T is

∇ · u = 0. (6)

Instead of the hydrodynamic pressure p̃ FDS uses the variable H as a modified
pressure term to solve the divergence constraint (see part I [7]). Therefore the
corresponding analytical solution for H is

H =
|u |2

2
+

p̃

ρ∞
. (7)

However, for the verifcation it is more useful to investigate the velocity u and
the hydrodynamic pressure p̃ separately.

4.1.1. Test of the hydrodynamic solver

Subsequently, different subdivisions of the underlying computational domain
into M ×M submeshes will be considered. Starting with M = 1 we will investi-
gate the solution of the hydrodynamic solver in an one-mesh computation. To
this end, we will use FDS in the DNS mode and switch-off the viscosity term.
These are important prerequisites to force the FDS program to use only the
hydrodynamic solver and neglect the LES turbulence model. Because all sides
of the domain are of simple periodic type we can prevent errors from boundary
condition implementations.

A main criterion to prove the correctness of the solver is the advection of the
vortices. The vortices move diagonally from the lower left to the upper right
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edge of the domain. Figure 8 compares the isolines of the vorticity at the initial
time t = 0 and after one period t = 2π.

Figure 8: Isolines of the vorticity of an one-mesh N = 64 FDS-FFT compu-
tation at t = 0 (continuous lines) and t = 2π (dashed lines) for
[−3,−2,−1, 1, 2, 3].

To analyze the computed solution we plot the vorticity along the diagonal line
from (0, 0) to (2π, 2π) after one period.

Figure 9: Vorticity of an one-mesh N = 64 FDS-FFT computation at t = 0
(continuous lines) and t = 2π (dashed lines) along the diagonal from
(0, 0) to (2π, 2π).
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Figure 9 shows an insufficient vortex advection after one period. From a theo-
retical point of view the FDS hydrodynamic solver should be able to compute
this test case very well. Because we used a self-defined FDS input file we com-
pared our input file with that of the verification test case documented in the
FDS verification guide. In this input file the FDS developers used the additional
condition CFL MAX = 0.25 to limitate the CFL time step computation. And
indeed, with this additional limitation in our input file FDS computes the test
case very well.

Figure 10: Isolines of the vorticity of an one-mesh N = 64 FDS-FFT compu-
tation at t = 0 (continuous lines) and t = 2π (dashed lines) with
CFL MAX = 0.25 for [−3,−2,−1, 1, 2, 3].

Figure 11: Vorticity of an one-mesh N = 64 FDS-FFT computation at t = 0
(continuous lines) and t = 2π (dashed lines) along the diagonal from
(0, 0) to (2π, 2π) with CFL MAX = 0.25.
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The bad results in case that no additional “CFL MAX-restriction”is used seem
to be caused by an inadequate adjustment of the time step computation which
obviously results in too big time intervals. To compute the time step for a nu-
merically solved advection problem the Courant Friedrich Levy (CFL) condition
is a widley used limitation algorithm. The condition should prevent a wave with
a finite travelling speed from jumping over a discrete finite volume (cell) during
one time step. The time step must be less than the time the wave needs to
travel to the adjacent finite volume.

umax ∆t

∆x
< 1. (8)

The CFL condition is a necessary but not sufficient condition for stability. To
be conservative an additional factor, the CFL number (0 < CFL < 1), can
be used to adjust the time step computation to smaller ranges. Of course, the
computational costs increase with smaller time steps.

To get adequate computational results the FDS developers used the additional
limitation “CFL MAX = 0.25”in this test case. This option adjusts the com-
puted time step of FDS to guarantee

CFL MAX ≥ ∆t MAX
(
|u|
∆x

,
|v|
∆y

,
|w|
∆z

)
. (9)

As shown in figure 11 the computed results of FDS-FFT reproduce the analytical
solution of (5) after a time period of t = 2π very accurately with this additional
time step limitation. The solution is periodic in time and the difference between
the isolines of the advected vorticity are very small.

Important remark for practitioners
This result indicates the basic correctness of the FDS implementation of the
advection scheme for nonviscous flows with constant density. But it must be
remarked that this is only true with the problem-dependend additional time
step limitation mentioned above, which most probably will never be used for
practical problems by any user. With the default time step computation FDS
damps out vortices. Furthermore, only a convergence study can show if FDS is
of second order accuracy for this problem.

4.1.2. Test of the domain decomposition

To compare the analytic solution with the numerical results in conjunction with
the domain decomposition method, the domain is split up to M = 2, 4 and 8
subdomains in x− and y− direction as shown in figure 12.
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Figure 12: Domain decomposition

As in the previous subsection, we are using the advection of the vorticity ω
as reference criterion. Therefore we investigate the vorticity values along the
diagonal from (0, 0) to (2π, 2π) for different topologies. As shown in figure 13
and 14 the deviations between the analytical and advected diagonal vorticity
seem to be small for both schemes. As mentioned before we need a convergence
study to prove the second order accuracy.

Figure 13: Vorticity of a 4× 4-mesh N = 32 FDS-FFT and FDS-ScaRC com-
putation at t = 0 (continuous lines) and t = 2π (dashed lines) along
the diagonal from (0, 0) to (2π, 2π) with CFL MAX = 0.25.
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Figure 14: Vorticity of a 8× 8-mesh N = 64 FDS-FFT and FDS-ScaRC com-
putation at t = 0 (continuous lines) and t = 2π (dashed lines) along
the diagonal from (0, 0) to (2π, 2π) with CFL MAX = 0.25.

4.1.3. Convergence study

At first sight there seems to be a good visual correspondence for FDS-FFT in
case of different M×M subdivisions. However, a closer look reveals degradations
in the approximation quality leading away from the second order convergence
when the number of subdomains is increased. In contrast to that FDS-ScaRC
shows a consistent convergence behavior of second order independent of the
number of subdomains. This fact is illustrated in the figures 15 and 16, which
show the L2-errors of FDS-FFT and FDS-ScaRC for the velocity in x-direction
in the case of the 4×4- and 8×8-subdivisions in logarithmic representation. Due
to symmetry reasons the results for the velocity in y-direction are principally
the same and are omitted for the sake of simplicity.

Both figures are related to a sequence of different grid sizes N which are dis-
played by dots (FDS-ScaRC) and squares (FDS-FFT). Figure 15 is based on
N = 16, 32, 64 and 128 cells per direction. In contrast to that figure 16 only
relies on N = 32, 64 and 128 cells because the case with N = 16 cannot be su-
divided into 8× 8 submeshes. For a more suggestive visualization, both figures
contain comparative lines indicating first and second order convergence.
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Figure 15: L2-errors of a 4× 4-mesh FDS-FFT and FDS-ScaRC computation
with CFL MAX = 0.25 for N = 16, 32, 64 and 128.

Figure 16: L2-errors of a 8× 8-mesh FDS-FFT and FDS-ScaRC computation
with CFL MAX = 0.25 for N = 32, 64 and 128.

Second order convergence clearly implies that the resulting convergence graph
is parallel to the comparative line of second order convergence which obviously
holds true for FDS-ScaRC. In contrast, the slope of FDS-FFT approaches more
and more the comparative line for first order convergence.
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4.2. CD VA 2D test example

This test case considers the advection of a vortex by a constant background
flow, originally proposed by Gresho and Chan [4] and used by e.g. [11, 20, 22].
In the original setting the domain is rectangular with size [0, 4]× [0, 1] and has
periodic boundary conditions at the short sides and walls at the long sides.
In comparison to the CD NSA 2D test case there is now an interaction with
free-slip boundary conditions at the long sides.

The initial conditions are

ρ = 1
u = uadv − vθ sin(θ)
v = vθ cos(θ)
p = 1

vθ =


5 r umax, for 0 ≤ r < 1

5

(2− 5 r) umax, for 1
5 ≤ r < 2

5

0, for 2
5 ≤ r

uadv = umax = 1

The radius r is computed by r =
√

(x− 1
2 )2 + (y − 1

2 )2 and θ is the deflection
angle of r. Figure 17 shows the velocity distribution of the vortex if uadv = 0,
in the test case we are using uadv = 1 of course.

Figure 17: Initial velocity data with uadv = 0.

The vortex rotates with the maximal tangential velocity umax and is advected
with the velocity uadv. Therefore the exact velocity data for t > 0 can be
computed by u(x, y, t) = u(x − uadvt, y, 0) and v(x, y, t) = v(x − uadvt, y, 0).
The computational domain of the orginal test case consists of 80× 20 grid cells
and was performed on a uniform grid with ∆x = ∆y.

4.2.1. Test of the hydrodynamic solver

To analyze the hydrodynamic solver we first compute the solution in an one-
mesh case. As in the previous test case we are using the DNS mode and switch-
ing off all other physical submoduls or components. Because this flow is a
nonviscous flow, the vortex must be simply advected, therefore we are using the
vorticity as a reference quantity. Based on the experience gained in the pre-
vious test case “CD NSA 2D”we are using the additional time step constraint
“CFL MAX=0.25”right from the beginning. Figure 18 shows the isolines for
the computed FDS-FFT solution at t = 0, 1, 2 and 3 for the one-mesh case.

19



Figure 18: Isolines of the vorticity of an one-mesh N = 80 × 20 FDS-FFT
computation at t = 0, 1, 2 and 3 with CFL MAX = 0.25 for
[−8,−6,−4,−2, 2, 4, 6].

As figure 18 shows the advected vortex smears of and the core of the advected
vortex approaches the bottom of the computational domain instead of moving
along the center line. Indeed, due to the coarse discretization a considerable
deformation of the vortex was to be expected. However, in view of the previous
test case “CD NSA 2D”we’ve anticipated a much more accurate advection of
the vortex core.

Therefore, we analyzed a variety of different discretizations with comprehensive
variations of the underlying grid sizes and time step restrictions. Furthermore,
we changed the boundary conditions to be completely periodic at all sides of the
computational domain as in the “CD NSA 2D”case. Nevertheless, we were not
able to compute a solution of the advected vortex without a strong smearing of
the circular vortex structure.
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For comparison we also computed the same test case with the research code
MOLOCH, see figure 19. This code is based on a comparable zero-Mach scheme
of second order accuracy [13]. Although the numeric scheme of this code pro-
duces more numerical dissipation than FDS, it doesn’t smear of the vortex
structure as much as FDS. Especially the vortex core is advected almost along
the center line.

Figure 19: Isolines of the vorticity of an one-mesh N = 80 × 20 MOLOCH
computation at t = 0, 1, 2 and 3 with CFL = 0.25 for
[−8,−6,−4,−2, 2, 4, 6].

Because of the insufficient results in case of the one-mesh FDS-FFT computa-
tion, a deeper investigation of the differences between the FFT and ScaRC-
scheme for several multi-mesh constellations doesn’t seem to be senseful at that
time. Vortex advection is an important challenge for CFD programs for fire
safety issues, therefore further investigations are necessary to analyze the rea-
son for this behaviour.
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4.3. PIPE 2D test example

The pipe test is an analytical test case to analyze the hydrodynamic solver in
conjunction with nonviscous inflow, open boundary and free-slip wall conditions
[14, 15]. At the left side a channel is impinged with an accelerated velocity flow
u(t). The right side of the channel is open. To test the accuracy of the domain
decomposition method, we subdivide the computational domain in M = 1 to 8
subdomains as demonstrated in figure 20.
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Figure 20: Multi-mesh pipe test

The gradient of the pressure drop ∆p be-
tween the left and right side of the channel
can be analytically determined from the mo-
mentum equation

ρ

(
∂u
∂t

+(u · ∇)u
)

+ ∇p = Sρu.

This is true because the flow velocity is spa-
tially homogeneous, therefore the advection
term of the momentum equation vanishes.
Furthermore, the source term Sρu in this
example is zero. This leads to the equation

ρ
∂u
∂t

= − ∇p ≈ −∆p

∆x
. (10)

To investigate the hydrodynamic solver of FDS we use two definitions for the
velocity acceleration u(t). With (10), ∆x = L and the defined u(t) the mean
pressure drop between in- and outflow is

1. for the linear acceleration u(t) = u0 t

∆pexact = −ρ u0L, (11)

2. for the sinusoidal acceleration u(t) = sin(2π t)

∆pexact = −ρ u02π cos(2πt)L. (12)

In this special test configuration the pressure difference ∆p is identical with the
hydrodynamic pressure ∆p̃, used in FDS as described in part I of this series [7].

4.3.1. Test of the hydrodynamic solver

Starting with M = 1 we investigate the solution of an one-mesh computation
with u0 = 1 m

s , ρ = 1.19882 kg
m3 , and L = 0.8 m. Subsequently, pfds represents

the computed FDS-solution p̃ and pexact the exact solution. As shown in figure
21 the computed results of FDS-FFT reproduce the analytical solution of (11).
However, there are two perceptible deviations between the pressure graphs for
both accelerations.
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Figure 21: Result of an one-mesh FDS-FFT computation with u(t) = t.

First, there is a small difference between the mean values of pfds and pexact.
The second observation consists in the small irregular peaks in the pressure
graph. For the sinusoidal test case we get similar results. As shown in figure
22 the computed results of FDS-FFT reproduce the analytical solution of (12).
However, there are oscillations at the minima and maxima of the graph, too.

Figure 22: Result of an one-mesh FDS-FFT computation with u(t) = sin(2πt)
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To verify that these oscillations are not an inevitable consequence of the underly-
ing zero-Mach scheme, we compare the result with the research code MOLOCH,
see figure 23. This code is based on a comparable zero-Mach scheme of second
order accuracy [13]. Obviously, this code matches the analytical solution very
well and no differences or oscillations are observable at all. This inidicates that
the differences and oscillations are a result of deficiencies in the implementation
of the numerical scheme in the FDS program.
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Figure 23: Result of a computation with the research code MOLOCH and u(t) =
sin(2πt)

Analyzing the deviations
Using our component-level strategy, we have carefully investigated all parts of
the FDS code, which are involved in the computation of these results. In the
underlying numerical scheme of the FDS solver the pressure drop between the
left and right side of the channel guarantees the compliance of the divergence
constraint (see part I [7] eq. (10)). In consideration of the analytical solution
(11) the pressure drop depends on ρ, u0 and L.

A first investigation verifies that the computed velocity field is a constant par-
allel flow (u = u(t), 0, 0) for each single time step. Therefore the divergence
constraint is fulfilled at each time step. By using the very simple accelera-
tion definition u(t) = t we detected, that FDS computes the data at the time
t−∆t instead of t. Therefore the divergence constraint is fulfilled at the wrong
computational time.

Furthermore the output of the hydrodynamic pressure is related to the cell
center of the grid cell adjacent to the domain boundary even though the correct
geometrical position of the boundary face is defined in the output line of the
FDS file. Therefore there is an offset of half of the gridwidth 0.5 ∆x between
the location of the cell-centered pressure data and the cell face boundary. As a
consequence the numerical distance between in- and outflow is L−∆x.
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Recapitulatory, FDS can’t print out the pressure difference between the real
in- and outflow boundary faces, but only slightly shifted. For a numerically
correct comparison of the computed FDS solution we therefore have to define
a “numeric”pressure difference instead of the exact pressure difference ∆pexact

which explicitly uses the adjacent cell-center values instead of the real boundary
values.

∆pnumeric = −ρ u02π cos(2πt)(L−∆x). (13)

If we take these limitations into account, the scheme in the corrected FDS
program works very well. The detected errors are being discussed with the FDS
developers and will be corrected in the next future. Furthermore, a similar test
case will be used as standard test in the FDS verification guide.

Figure 24: Results of a corrected one-mesh FDS-FFT computation with u(t) = t
without any differences or oscillations.

The new FDS-ScaRC scheme can be used as an alternative of the FDS-FFT
scheme. It must be noted that this new scheme replaces only the pressure solver
in FDS. All other surrounding components of the FDS program are not affected
by this replacement. For this reason the FDS-FFT and FDS-ScaRC schemes
produce the same results in case of a one-mesh computation. The correctness
for the single mesh case is demonstrated in figure 25.
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Figure 25: Results of a corrected one-mesh FDS-ScaRC computation with
u(t) = sin(2πt)

The solution presented in figure 24 and 25 already relies on a temporally correct
evaluation of the inflow data and is compared to pnumeric instead of pexact.

Figure 25, which is the same for FDS-FFT and FDS-ScaRC, indicates an ab-
solute conformance in the one mesh case. But if we zoom in one maximum of
figure 25, there are still small deviations between the numerically exact pexact

and the computed solution pfds. To quantify this error a convergence study is
indispensable.

Figure 26: Zoom into one maximum of the one-mesh computation of FDS-FFT
for u(t) = sin(2πt)
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To be precise, the small irregular peaks in the pressure graph of figure 21 and
22 are caused by a slightly coding error in FDS which will be resolved in future
versions of the code. The small pressure difference between the computed and
analytical solution is caused by a limitation of the underlying discretization
scheme. This is not an error, but rather a program limitation. Users of FDS
should take this limitation into consideration.

4.3.2. Test of the domain decomposition

To test the gasdynamic solver in conjunction with the domain decomposition
method, the domain is split up from M = 1 to 8 subdomains. For these com-
putations the described error in the source code of FDS 5.4.3 revision 5210
was already fixed in our version. Furthermore we have compared the pressure
drop against the numerical correct solution (13) instead of the analytical exact
solution (12).

However, as shown in figure 27 the computed results of the FDS program be-
come errorneous if the computational domain is divided into single subdomains.
Although this case is a simple parallel flow with constant density, FDS-FFT is
not able to compute the correct results in this case.

Figure 27: Results of corrected FDS-FFT computation with M = 1, 2, 4 and 8
subdomains and u(t) = sin(2πt)

Taking the differences between the numerically correct solution (13) and the
results for different M-mesh computations gives unacceptable errors up to 7.65
Pa, as illustrated in figure 28.
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Figure 28: Error between numerically correct solution and computed pressure
drop of a corrected FDS-FFT computation with M = 1, 2, 4 and 8
subdomains and u(t) = sin(2πt)

However, in comparison with these insufficient FDS-FFT results, the new FDS-
ScaRC technique demonstrates the advantage of a numerical scheme following
the mathematical characteristics of the underlying set of equations.

Figure 29: Result of corrected FDS-ScaRC computation with M = 1, 2, 4 and
8 subdomains and u(t) = sin(2πt)
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As figure 29 demonstrates, the computed solution is independent from the
amount of subdomains or meshes, which is a major prerequisite for the par-
allelization of numerical computations.
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Figure 30: Extended domain decomposition in x- and y-direction

Furthermore, if we split the computational domain in M submeshes in x-direction
and y-direction as shown in figure 30, the errors of the FDS-FFT scheme in-
crease, whereas the FDS-ScaRC scheme is not affected by the domain decom-
position, no matter how many submeshes are used. This fact is demonstrated
in figure 31 for the FDS-FFT and in figure 32 for the FDS-ScaRC technique.

Figure 31: Results of a corrected FDS-FFT computation with subdomains in x-
and y-direction and u(t) = sin(2πt)

29



Figure 32: Results of a corrected FDS-ScaRC computation with subdomains
in x- and y-direction and u(t) = sin(2πt)

4.3.3. Convergence study

Obviously, the upper figures demonstrate basic problems of the current FDS-
FFT scheme with respect to multi-mesh computations. Although the new FDS-
ScaRC scheme seems to provide much more correct results, only a convergence
study can prove its real convergence order.

For several FDS-FFT and FDS-ScaRC computations with respect to different
M × 1-subdivisions, figures 33 and 34 show the resulting convergence orders for
the velocity in x-direction with respect to the euclidean L2-norm.

As expected after the previous discussion, FDS-FFT suffers from deteriorations
of its convergence order which isn’t even of first order any more. In contrast to
that, the results for the FDS-ScaRC scheme are independent of the number of
submeshes and show its big potential for improvement. Here, the L2-error lies
in the range of machine accuracy which indeed can be expected from a modern
numerical scheme for a simple velocity progression like this.
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Figure 33: L2-errors of the velocity in x-direction for an FDS-FFT computation
using the sinusoidal acceleration with M = 1 (top left), M = 2 (top
right), M = 4 (bottom left) and M = 8 (bottom right) meshes.

Figure 34: L2-errors of the velocity in x-direction for an FDS-ScaRC computa-
tion using the sinusoidal acceleration with M = 1 (top left), M = 2
(top right), M = 4 (bottom left) and M = 8 (bottom right) meshes.
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For a more detailed investigation of the properties of FDS-ScaRC we consider
the more complicated solution of the hydrodynamic pressure drop, used in the
previous discussion. Whereas the L2-error of the FDS-FFT computation is far
away from first order accuracy (see figure 35 ).

Figure 35: L2-errors of the pressure drop for an FDS-FFT computation using
the sinusoidal acceleration with M = 1 (top left), M = 2 (top right),
M = 4 (bottom left) and M = 8 (bottom right) meshes.

The L2-error of the new FDS-ScaRC scheme is located between first and second
order accuracy, depending on the kind of subdivision (see figure 36 ).
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Figure 36: L2-errors of the pressure drop for an FDS-ScaRC computation using
the sinusoidal acceleration with M = 1 (top left), M = 2 (top right),
M = 4 (bottom left) and M = 8 (bottom right) meshes.

Nevertheless the pressure drop in figure 35 and 36 doesn’t consider all discrete
values of the computational domain, because the drop is only computed by the
difference between the left and right boundary values over the pipe width.

To consider all values of the computational domain we have computed a discrete
pressure derivative by simply taking local difference quotients in x-direction at
neigboring pressure nodes. We can not use the pressure value itself, because
the solution of the underlying elliptic equation involves an unknown constant,
which can differ between the meshes.

Figure 37: L2-errors of the pressure derivative for an FDS-FFT computation
with M = 1 (top left), M = 2 (top right), M = 4 (bottom left) and
M = 8 (bottom right) meshes.
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Figure 38: L2-errors of the pressure derivative for an FDS-ScaRC computation
with M = 1 (top left), M = 2 (top right), M = 4 (bottom left) and
M = 8 (bottom right) meshes.

Although the results of the FDS-ScaRC scheme are unquestionably better than
that of FDS-FFT, the resulting slopes give rise to further investigations because
they don’t indicate a pure second order convergence. Even in the case of the
single-mesh computation which is not affected by domain decompostion issues
and is independent of the choice of the pressure solver, there are degradations
in case of the finest grid width. This may be caused by some open issues in
other FDS components. It should be noted that this type of errors can only be
detected with such comprehensive numerically oriented test cases.
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4.4. Flow around body test example

Whereas the previous test cases focused on the properties of the hydrodynamic
solver isolated from many other components of FDS, the next test case is more
like a numerical experiment. Although we have no experimental data for this
test case and there is no analytical solution available, we use this type of test
to demonstrate the importance of the new FDS-ScaRC scheme even for more
practical situations.

Figure 39: Flow around body test case

As shown in figure 39 we compute the flow around a small body inside a large
room. At the left side of the large room an inflow with 1 m/s through a small
opening is forced. The right side of the room is an open vent. The computational
domain consists of 180× 155× 90 cells with a uniform grid width of 10 cm and
is subdivided into 6 meshes in x-direction. The computation uses the default
settings of FDS including the LES-solver, only the radiation is switched off.

Figure 40 shows the slice plot of the velocity of a FDS-ScaRC computation
and figure 41 the results for the FDS-FFT computation. Both plots represent
the same computational time and use the same color scaling. A simple optical
comparison of both plots demonstrates the deficiencies of the FDS-FFT compu-
tation with respect to domain decomposition. Only the FDS-ScaRC solution
is independend from the way of decomposing the computational domain. The
numerical consequences have already been discussed in detail in the context of
the previous test cases. Therefore we refrain from a more detailed numerical
investigation here.
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Figure 40: FDS-ScaRC: Slice-Plot of the velocity

Figure 41: FDS-FFT: Slice-Plot of the velocity

The test case clearly illustrates the stagnant information transfer between dif-
ferent meshes in the FDS-FFT computation. As already explained in part I
[7], the efficient parallelisation of an elliptic partial differential equation as the
pressure equation in FDS is a particular challenge in many simulation programs
for fire-induced flows. This type of equation possesses a very specific charac-
ter, namely an infinite rate of propagation for information. Local information
is spread extremely fast over the whole domain, regional perturbations instan-
taneously impact the solution on all parts of the domain, resulting in a very
strong overall coupling of data. The correct solution of the pressure equation
has a direct influence to the fulfillment of the divergence constraint which is
extremely important for the progress of the whole method. In case that the
pressure equation isn’t solved appropriately, the divergence constraint may re-
main violated.

4.5. Discussion of the test cases

In this context, the open multi-mesh issues being discussed in the underlying
article can be led back to the very different treatment of the information transfer
in the ScaRC and FFT-schemes. Due to its local character, the FFT-scheme
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is only able to exchange data between directly neighboring meshes during one
time step. To pass an information from one end of the domain to the other
a more or less comprehensive sequence of staggered exchange cycles between
neighboring meshes is needed. Depending on the number of subdomains, this
process may take many time steps and cause a very unphysical slow-down of the
propagation velocity which stands in conflict to the real physical behavior. This
fact is very well illustrated in figure 41 of the “Flow around body test example”.
In contrast to that, ScaRC is based on global transfer mechanisms which are
able to spread information all over the domain within only one time step and
therefore much better map the physical properties of the pressure.

In the “CD NSA 2D”and “CD VA 2D”cases, physical changes in the considered
quantities are transported very slowly through the domain. The velocity field
at the opposite end of the domain only changes with significant temporal delay.
Therefore, the consequences of the insufficient global information transport in
case of the FFT scheme are only small for these examples. However, for the
“PIPE 2D”case an instantaneous information transfer through all subdomains
is needed. Due to the divergence constraint the accelerated inflow at the left
side of the domain requires an immediate adaption of the velocities in the whole
flow area which has to be completed in the course of only one time step, see
part I [7]. This cannot be realized by a step-by-step sequence of local data
exchanges but only by a suitable global data transfer. Therefore, this example
illustrates the insufficient consideration of the elliptic pressure character by the
FFT-scheme very clearly. A comparable effect can be seen in case of a local
heat source, because the divergence constraint impacts the velocity field up to
the boundaries ot the whole domain (see e.g. [16]).

5. Summary and Outlook

The interdisciplinary character of Scientific Computing requires the sophisti-
cated interaction of different scientific fields: After a suitable modelling by the
corresponding applied sciences as for example physics or chemistry, the essen-
tial task of mathematics consists in the design and verification of efficient solver
methods on the base of the most modern numerical methodology. With re-
spect to the current hard- and software developments these methods must be
transferred to efficient algorithms and ported to different computer architec-
tures, which is mostly an issue of computer sciences. At last, the simulation
results must be validated by comparing them with experimental reference val-
ues, which again requires the cooperation with the associated applied sciences.
Only a perfectly concerted approach leads to a meaningful simulation which is
able to replace expensive experiments and provides a reliable evaluation of the
considered phenomenon.

In the present article we have illustrated that the widely used comparisons with
fire experimental data are not sufficient to check the quality of CFD programs.
Beyond doubt, they are necessary and useful but the demonstrated results high-
light the necessity of a more comprehensive testing strategy which has to include
investigations of numerical quality criteria (convergence, stability and order) and
component-level tests. Our test examples show the advantages of analytical and
numerical component-level tests.
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Obviously, FDS-ScaRC produces much better results than FDS-FFT in the
case of multi-mesh computations. As described before, the solution of FDS-
ScaRC is independent with respect to the number of subdomains M , whereas
FDS-FFT may leads to increasing errors when the number of meshes is in-
creased. A convergence analysis supports these results. In the multi-mesh case
FDS-FFT does no longer guarantee second order accuracy. The reasons are
described in [7]. Therefore computations without domain decomposition on sin-
gle meshes are not affected by this problem. Also it should be noted that the
ScaRC technique cannot produce better results than the one-mesh FFT ver-
sion, because it only replaces the FFT pressure solver but not the surrounding
parts of the code. Therefore irregularities in an one-mesh computation can not
be fixed by using the ScaRC technique, but can be identified by a more com-
prehensive testing strategy as we have demonstrated here. Furthermore, the
different results depending on the CFL-settings in the advected vortices test
case indicate that there are most probably other open issues.

Until today, the Fire Dynamics Simulator is based on the FFT-solver scheme,
which obviously isn’t reliable in the multi-mesh case. The exclusive focus on
computational costs, the main motivation to use the FFT-scheme, affects the
correctness of the underlying numerical scheme. Even if users comply with the
instructions related to the proper definition of subgrids given in the User Guide,
they cannot expect correct results of second order accuracy in the case of multi-
mesh computations. This was impressively demonstrated by the upper pipe-test
mentioned above with its very simple parallel flow character.

The consequences of the detected problems in the case of multi-mesh compu-
tations in the large area of fire safety applications can not be estimated by
the authors. However, authorities and fire safety engineers would be advised
to be aware of the current multi-mesh deficiencies. Correct computations are
not inconsistent with fast computations. But fast and faulty computations are
questionable.

Finally, the authors express a special thanks to all persons who were/are in-
volved in the development of FDS, especially Kevin McGrattan und Randy
McDermott, with regard to their high degree of commitment and very success-
ful work. Even if there are many software tools freely available in the internet,
the open-source supply of such an extensive and sophisticated CFD-program is
far from being a matter of course. Furthermore, the authors don’t know any
other CFD-program with such a fast and engaged support as the FDS-team
continuously provides. Therefore, we are highly interested to make a positive
contribution to bring this great work forward. This also includes the basic dis-
cussion of open issues and possibilities for improvement with the FDS developers
as we already experienced for many times.
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