
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

THORSTEN KOCH TED RALPHS1 YUJI SHINANO

What could a million cores do
to solve Integer Programs?

1 Lehigh University, Bethlehem, PA 18045 USA

ZIB-Report 11-40 (Oct 2011, revised version January 2012)

Herausgegeben vom

Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125
e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

http://www.zib.de

What could a million cores do to solve Integer

Programs?

Thorsten Koch, Ted Ralphs, and Yuji Shinano

January 15, 2012

Abstract

Given the steady increase in cores per CPU, it is only a matter of time
until supercomputers will have a million or more cores. In this article,
we investigate the opportunities and challenges that will arise when try-
ing to utilize this vast computing power to solve a single integer linear
optimization problem. We also raise the question of whether best prac-
tices in sequential solution of ILPs will be effective in massively parallel
environments.

1 Introduction

Prediction is very difficult, especially about the future.
Niels Bohr

Until about 2006, one could rely on the fact that advances in solver algorithms
over time would be augmented by inevitable increases in the speed of the com-
puting cores of central processing units (CPUs). This phenomenon led to two
decades of impressive advances in solvers for linear and integer optimization
problems [12, 30]. Since then, the single-thread performance of processors has
increased only moderately and what meager improvements have occurred are
mainly due to improvements in CPUs such as better instruction processing and
larger memory caches. The raw clock speed of general purpose CPUs has stayed
more or less constant, topping out at 5 GHz with the IBM Power6 CPU. The
increases in clock speed that occurred so reliably for decades have now been
replaced by similar increases in the number of processing cores per CPU. Fig-
ure 1 summarizes CPU development since 1985. Currently, CPUs with 12 cores
are available from AMD and Intel is planning to release specialized CPUs with
50 cores for high-performance computing next year.

Not surprisingly, current trends in supercomputing are focused around the use
of ever increasing numbers of computing cores to achieve increases in overall
computing power. Today, the ten fastest machines in the world (as measured
by the Linpack benchmark) have 180,000 cores on average and it is likely that
a million cores will be available soon. While increased clock speeds contribute

1

 10

 100

 1000

 1985 1990 1995 2000 2005 2010

 1

 2

 4

 6

 10

C
lo

ck
 s

pe
ed

 [M
H

z]

N
um

be
r

of
 c

or
es

Year

Number of cores
Single core CPU clock speed

Multi core CPU clock speed

Figure 1: Clock speed and number of cores for Intel processors from the
80386DX in 1985 to the Westmere-EX in 2011

directly to increases in the performance of a solver over time, it is not as clear
whether increases in the number of processing cores will be equally beneficial.
In general, the challenge of effectively utilizing such complex architectures lies
both in dividing the computation into tasks of roughly equal difficulty and in
ensuring that the data required to perform each of these task is locally available
to the core assigned to perform it. This becomes increasingly challenging as
the number of available cores becomes larger and larger, especially if the set of
tasks is essentially unknown at the outset of the computation.

The natural question that arises is whether and how we can harness such vast
computing power to solve difficult optimization problems. In what follows,
we address this question with respect to integer linear optimization problems
(ILPs), which are optimization problems of the following form:

c⋆ = min cT x, Ax ≤ b, x ∈ Z
n,

where A ∈ R
m×n, b ∈ R

m, and c ∈ R
n. Nevertheless, the discussion applies sim-

ilarly to the solution of a wide range of problem classes for which enumeration
algorithms are generally employed.

Why is it important to think now about what we can do with a million cores?
After all, such systems are not yet available and may even seem fanciful by
today’s standards. We see several reasons to consider this question: First, we
argue below that it is not unreasonable to expect million core systems in the
relatively near future. Currently, a major target in the super computer area
is to build a so-called Exascale machine. By any forecast, these machines will
employ a million cores and more. The main point of concern regarding future
supercomputers is the amount of energy they will consume. The current number

2

one supercomputer, the K computer, requires nearly 10 MW, even though it is
considered comparatively energy efficient. Since the amount of energy a CPU
needs grows increasingly with clock speed, there is a trend for future systems to
trade clock speed for cores, i.e. have more but slower cores. This will amplify
the the problems we envision in this paper regarding scaling ILP algorithms.

As it is generally the case that the power of a supercomputer today will become
available in a desktop system within a few years, we may see such computing
power and many-core designs on the desktop within a decade. Even if all this
were not to come to pass, there are important applications, e.g., infrastructure
planning for power, water, and gas networks, where the question is not whether
we can solve the associated models at a reasonable cost with current desktop
computing technology, but rather whether we can solve them by any means at
our disposal.

No matter what the specifics of future computing platforms turn out to be,
it is clear that parallel algorithms able to run effectively in massively parallel
environments will have to be developed if we expect to continue to see advances
in the size and difficulty of ILPs we can solve. It is therefore important to
question what will be different in such an environment. Do the assumptions
we normally make about the way an ILP should best be solved hold in this
environment? It is very likely that this is not the case. We therefore endeavor
to undertake this thought experiment as a means to examine what long-held
beliefs we might have to abandon in order to achieve efficiency in massively
parallel computing environments.

It should be emphasized that what follows is highly speculative and should be
viewed with appropriate skepticism. In order to answer the question posed in
the title, we make assumptions about the future of both computing and opti-
mization technologies based on our best current understanding of the trends.
Performance numbers given in the paper are based on a few preliminary ex-
periments that the authors believe are useful to explain certain trends. These
experiments should, however, be questioned, reproduced, and extended before
drawing further conclusions.

With respect to solution technologies, we address algorithms that are enumer-
ation based, i.e., explore a search tree via a traditional LP-based branch-and-
bound (B&B) algorithm, though many of the ideas we explore here apply to
the more broadly defined class of tree search algorithms, which in turn fall into
the even broader class of algorithms that take a divide-and-conquer approach,
recursively dividing the problem domain to obtain subproblems that can be
solved (more or less) independently of each other. Although such algorithms
appear to be “embarrassingly parallel”, this appearance is deceiving because
the question of how to effectively divide the search space is provably difficult
in itself (see [34]) and must be answered as the solution process evolves. We
address primarily algorithms that derive bounds on subproblems by solving re-
laxations of the original ILP that are (continuous) linear optimization problems
(LPs) obtained by dropping the integrality requirements on the variables. These
relaxations are typically augmented by dynamically generated valid inequalities

3

(see, e.g., [47, 2] for details regarding general ILP solving and [50, 46, 6, 42] for
distributed memory solution techniques).

The above assumptions and the setting we consider mean that the processing
of individual subproblems in the search tree is non-trivial. The complexity of
these computations as atomic units has been growing steadily over time as more
sophisticated (and time-consuming) methods of computing bounds are devel-
oped. Investigation of so-called branch-and-cut algorithms (e.g. [23, 40]) has
lead to a tremendous reduction in the size of the search tree needed to solve a
given instance, leading to substantial reductions in the time required to solve
instances on a sequential computing platform. In fact, it is now often possible to
solve ILPs without any enumeration at all. Unfortunately, although this leads
to big improvements in computational time on sequential computing platforms,
it confounds efforts to parallelize computations in the more most straightfor-
ward way on parallel computing platforms. All of this makes it necessary to
consider methods of parallelizing the computations undertaken in processing an
individual node in the search tree, which is a challenging problem in its own
right. In Section 7, we address methods for parallelizing the solution of the LP
relaxation, which seems the most promising approach to this at present.

Our main purpose in making these assumptions is not to lend credance to the
de facto direction in which efforts to parallelize solution algorithms have so far
gone, but to evaluate whether this direction is sustainable and if parallelized
versions of our current state-of-the-art algorithms will scale to a machine with a
million cores. We will not investigate the question whether a different method-
ology for solving ILPs should be used. So far, despite considerable research,
there is no promising alternative algorithm known to the authors. There are
many ideas one could try, e.g. basis reduction [17], or primal methods [1], but
it appears unlikely any of these will be an improvement in the general case,
though it is entirely possible that some alternative that is more effective in a
parallel setting will eventually emerge. One promising direction we also will
not consider here is the use of decomposition algorithms for parallelization of
search tree nodes, like e.g. [21]. These have been shown to be highly effective
for certain specialized applications.

With respect to computing technologies, we assume that the trends observed
in the last five years will continue. For the purposes of describing a future
million-core system, the word core will be used to denote the part of a CPU
that executes single sequences of instructions and the word thread to denote a
sequential program consisting of such a set of instructions. A parallel program
will be taken to consist of a set of threads executing simultaneously either (1)
on multiple cores of the same CPU, (2) on multiple cores of different CPUs
sharing a memory space (shared memory execution), or (3) on multiple cores
of different CPUs that may or may not share memory (distributed memory
execution). We assume that each core executes a single thread, so that there
are never more threads than cores (though there might be more cores than
threads). For the foreseeable future, we assume that computers having a million
cores will necessarily use distributed memory with the overall system consisting
of clusters of processing elements (PE). We define a PE loosely as one shared

4

memory node within this distributed system. One PE might have one or more
CPUs, with each CPU having several cores. More details on what such a system
might look like are given in Section 3.

2 Solvability of ILPs

Before we address the question of which ILPs might be tackled effectively in
parallel with multiple cores, we first examine the reasons why ILPs cannot be
solved by today’s solvers using a sequential algorithm (see also [13]).

1. Weak formulation. Because the solution space of an ILP is defined im-
plicitly as the integer points inside a given polyhedron, the same ILP can
have a wide variety of alternative formulations. The specific formulation
chosen has a strong influence on the difficulty of solving the problem. The
“strength” of the formulation is usually measured by how close the bound
obtained from solving the LP relaxation is to the optimal solution value.
If the bound obtained from the LP relaxation is far from the optimum
value of the ILP, it is likely that a large enumeration tree will be needed
to solve the problem. Another reason why a particular formulation may
be ineffective is the presence of symmetry in the solution space, i.e., many
equivalent solutions of similar cost, again requiring substantial amounts
of enumeration [9, 36].

Weak models can arise due to “improper” modeling on the part of the
user, but there are cases in which no better model is known. In some such
cases, the solver may actually be capable of automatically reformulating,
but often, an improved starting formulation is necessary to overcome this
difficulty. Note that just because a formulation produces poor bounds
does not mean the optimal solution will be difficult to find. In many cases,
the optimal solution can be easily produced—it is proving optimality that
is difficult (see Section 6.1). Empirically, it can be often observed that in
case of weak formulations the branch-and-bound procedure becomes quite
ineffective, producing extremely large search tree up to the point where
the amount of computing resources spent does not matter anymore.

2. Poor numerical conditioning. Poor numerical conditioning means
that because of the specific structure of the matrix describing the in-
stance, an accurate solution to the LP relaxation may not me easily ob-
tained, given the limited numerical precision of current CPUs. Typically,
this must be addressed with either an improved model or a more ro-
bust solution technique. For instance, one might use a so-called “exact”
solver employing rational arithmetic [16]. An easier-to-implement alter-
native would be to use additional branching to increase precision at the
expense of increasing the size of the search tree (see item 5). It is also
possible to improve the situation (possibly with hardware) by the use of
quad-precision floating point arithmetic, but this will also increase the
computational burden (see item 4).

5

3. Difficult-to-find primal solutions. In some cases, the structure of a
particular problem makes it difficult even to find a feasible solution, let
alone an optimal one. This can arise simply because very few such so-
lutions exist, i.e., the effective feasible region is small (and unknown).
Simply through brute force enumeration, we anticipate that more cores
are likely to be helpful in this case. Nevertheless, there is some empirical
evidence that failure to find the primal solution is seldom the reason for
not being able to solve an ILP. In contrast to the case of weak formu-
lation, finding the “optimal” dual bound may be easy in this case (see
Section 6.1), though solving the problem is not.

4. Long node processing times. Typically, this situation arises either
because solving the initial LP relaxation is difficult or because reopti-
mization (solving subsequent LP relaxations from a warm start) is not
efficient. It may also arise due to excessive time spent generating valid
inequalities or an excessive number of inequalities generated. In the ab-
sence of a better way to solve the linear relaxations, we expect that this
can be resolved through the employment of additional cores.

5. Large enumeration trees. Any of the above phenomena could con-
tribute to the generation of large enumeration trees that would simply
take too long to explore sequentially. In such cases, the ability to evalu-
ate more B&B nodes clearly helps, as long as the tree is balanced enough
to effectively divide the computation.

6. Model is too big. If there is not enough memory to solve the LP relax-
ation of the model on a single PE, solution is impossible with most mod-
ern solvers. We investigate whether a distributed computing approach
can overcome this challenge in Section 7.

In this paper, we focus primarily on showing how using more cores may help
for items 4, 5, and 6 above, though, as we already noted, the ability to deal
with these cases may also be of indirect benefit in other cases.

3 A Million Core System

A supercomputer is a machine for turning a
compute-bound problem into an I/O-bound problem.

Ken Batcher

As we briefly discussed in Section 1, we expect future systems to be composed,
loosely speaking, of clusters of PEs. Table 2 shows the top ten systems of the
June 2011 Top500 list1, all of which fit this description of a supercomputer.
If we assume the availability of 32 core CPUs in the near future and further
assume four CPUs per PE, then each PE will have about 128 cores with a single

1www.top500.org

6

Table 1: Relative Memory Latency, [32, 41]
Data Hierarchy Normalized Latency
Layer Access Times

L1 Cache 1×
L2 Cache 4×
L3 Cache 16×
Local / Remote Memory 50 − 700×
Network >1,000×
Disk >3,000,000×

shared memory space. A cluster consisting of 8,000 of these PEs would have
a million cores. Comparing these numbers to the K computer, which has eight
cores per CPU, four CPUs per PE, and 17,136 PEs, it is easy to argue that
once 32 core CPUs are available, systems with one million cores will quickly
become standard in supercomputing.

An important overarching trend in the current evolution of computing technol-
ogy is the ever-increasing complexity of the so-called memory hierarchy. The
challenge of parallel computing can be viewed at a high level as the challenge of
having the data required for computations in the right place at the right time.
From the local viewpoint of a single core, the global store of problem data can
be divided into classes according to how long it will take to access it. Data
in the L1 cache attached directly to the core can be accessed quickly, whereas
data stored in higher levels of cache, in local memory attached to the core, in
local memory attached to other cores, and finally on other PEs can only be
accessed at the cost of increasingly higher access times (known as latency), see
Table 1. As computing devices grow more complex and the memory hierarchy
gains more levels, the problem of where to store data for effective computation
will continue to grow ever more complex [48].

We envision two basic alternatives to the above setup when it comes to the de-
sign of tomorrow’s supercomputers. The first is specialty machines like IBM’s
BlueGene and the second is large aggregations of “commodity” PCs. For spe-
cialty machines, the number of cores per PE will likely be much higher than
what was described above, while the memory per core will be lower. Such ma-
chines will also likely have extremely fast interconnect and thus low latency
(compressed memory hierarchy). For aggregations of PCs, one might expect
something more like 64 cores per PE, in which case one would need about
16,000 PEs to get a million cores. These details do not substantially change
the broad conclusions drawn in the following.

The K computer has 2 GB per core, while contemporary PCs have anywhere
from 2–16 GB per core. Assuming 4 GB per core for the million core machine,
we would need 512 GB per PE, resulting in four petabytes of memory for the
machine in total. It seems reasonable to further assume that, in comparison to
today’s computers:

7

Table 2: Top500 list as of June 2011
Build Total CPU Cores

Computer Year Cores Family GHz /CPU

1 K computer 2011 548,352 Sparc 2,00 8
2 NUDT TH MPP 2010 186,368 EM64T 2,93 6
3 Cray XT5-HE 2009 224,162 x86 64 2,60 6
4 Dawning TC3600 Blade 2010 120,640 EM64T 2,66 6
5 HP ProLiant SL390s 2010 73,278 EM64T 2,93 6
6 Cray XE6 2011 142,272 x86 64 2,40 8
7 SGI Altix ICE 8200EX/8400EX 2011 111,104 EM64T 3,00 4
8 Cray XE6 2010 153,408 x86 64 2,10 12
9 Bullx super-node S6010/S6030 2010 138,368 EM64T 2,26 8

10 BladeCenter QS22/LS21 Cluster 2009 122,400 Power 3,20 9

• the total memory of the system will increase;

• the memory per PE will also increase; but

• the memory per core will rather decrease.

We note that with such a system, reliability becomes a serious issue. It is to be
expected that faults which might be considered very rare today will occur with
regularity. According to [45], memory errors are correlated with the number of
memory modules installed, but not with the number of bits. Nevertheless, the
authors write that “Uncorrectable errors on 0.22% per DIMM per year make a
crash-tolerant application layer indispensable for large-scale server farms.” In
[43], the authors cite failure rates of 1–2% in the first year and much higher in
subsequent years for disk drives in a large population. At these failures rates,
one might expect multiple drive failures per day in a million core system. Other
subsystems, such as power supplies and motherboards, would also be subject to
failure. We discuss approaches to dealing with such failures in Section 6.2. In
general, the observation is that the number of failures depends on the number of
components, e.g. DIMMs, CPUs, harddisks, and not on the capacity, e.g. bits,
cores, bytes, of those components. Since the increase in capacity is mostly com-
ing from increased integration, e.g. more bits per DIMM, more cores per CPU,
more bytes per disk, the reliability of the systems stays somewhat constant.
Nevertheless, for the high-end systems reliability tends to be a problem.

For the following analysis we always assume that the system is built using gen-
eral CPUs. The reason for this assumption is as follows: It can be observed
that the properties of CPUs and GPUs are converging again. CPUs get more
and more cores, e.g. Intel announced the Knight’s Corner CPU with approx-
imately 60 general cores, each with four fold hyperthreading and AVX vector
extensions, to be delivered in 2012. On the other hand each generation of GPUs
allows a more flexible programming model and incorporates features belonging
to CPUs before. Nvida is marketing the Tessla accelerator as the first Gen-
eral Purpose GPU and implemented double precision floating point operations.

8

Furthermore, regarding the operations that are needed for ILP solver, so far no
efficient GPU acceleration is known.

4 Benchmarking

An important question that must be addressed in order to perform meaningful
experiments with large parallel systems is how to measure performance. Even
in determining a proper experimental set-up, there are a number of challenges
to be faced, as we detail below.

4.1 Traditional Measures of Performance

Generally speaking, the question to be answered with respect to a parallel
algorithm running on a given parallel system is whether it “scales,” i.e., is able
to take advantage of increased resources such as cores and memory. The most
commonly used measure of scalability is the efficiency, which is an intuitive
and simple measure that focuses on the effect of using more cores, assumed to
be the bottleneck resource, to perform a fixed computational task (e.g., solve a
given optimization problem). The efficiency of a parallel program running on
N threads is computed as

EN := (T0/TN)/N,

with T0 being the sequential running time and TN being the parallel running
time with N threads. Generally speaking, the efficiency attempts to measure
the fraction of work done by the parallel algorithm that could be considered
“useful.” An algorithm that scales perfectly on a given system would have an
efficiency of EN = 1 for all N . A related measure is the speed-up, which is
simply

SN := NEN .

Reasons for a loss of efficiency as the number of threads is increased can gen-
erally be grouped into the following categories.

• Communication overhead : Computation time spent sending and receiv-
ing information, including time spent inserting information into the send
buffer and reading it from the receive buffer. This is to be differenti-
ated from time spent waiting for access to information or for data to be
transferred from a remote location.

• Idle time (ramp-up/ramp-down): Time spent waiting for initial tasks to
be allocated or waiting for termination at the end of the algorithm. The
ramp-up phase includes inherently sequential parts of the algorithm, such
as time spent reading in the problem, processing the root node, etc., but
also the time until enough B&B nodes are created to utilize all available
cores. The ramp-up and ramp-down time is highly influenced by the shape
of the search tree. If the tree is “well balanced” and “wide” (versus deep),
then ramp-up time will be minimized.

9

• Idle time (latency/contention): Time spent waiting for data to be moved
from where it is currently stored to where it is needed. This can include
time waiting to access local memory due to contention with other threads,
time spent waiting for a response from a remote thread either due to in-
herent latency or because the remote thread is performing other tasks and
cannot respond, and even time spent waiting for memory to be allocated
to allow for the storage of locally generated data.

• Performance of redundant work : Time spent performing work (other than
communication overhead) that would not have been performed in the se-
quential algorithm. This includes the evaluation of nodes that would not
have been evaluated with fewer threads. Primarily, the reason for the oc-
currence of redundant work is differences in the order in which the search
tree nodes are explored. In general, one can expect that the performance
of redundant work will increase when parallelizing the computation, since
information that would have been used to avoid the enumeration of cer-
tain parts of the search space may not yet have been available (locally)
at the time the enumeration took place in the parallel algorithm).

The degree to which we can control/limit the impact of these sources of overhead
determines the efficiency of the algorithm.

4.2 Measures of Performance for Branch and Bound

Although efficiency is a commonly quoted measure of performance, it is not
ideal in this setting for a number of reasons. First, it assumes the use of a fixed
test set on which the algorithm can be run to completion on a single thread.
For a million core system, we do not expect problems that can be solved in
a reasonable amount of sequential computing time to be of much interest. It
is of course possible to measure efficiency with respect to a different baseline
number of threads, but even this may not be practical with a million core
system where running times may be limited. In [31], a measure of scalability
called the iso-efficiency function is introduced that measures the rate at which
the problem size has to be increased with respect to the number of processors in
order to maintain a fixed efficiency. However, since size does not correlate well
with difficulty in the case of ILPs, choosing a test set would become even more
problematic. A final difficulty with efficiency as a measure is that it only takes
into account increases in the number of cores, whereas increases in memory may
be equally important. We argue in Section 7 that memory may soon become
more of a bottleneck resource than cores. More effort is needed to develop
coherent performance measures for this type of computation.

In the analysis below, we consider alternative measures of performance that
provide a good indication of parallel performance in practice and do not require
extensive testing with varying numbers of cores. These measure are based on
the principle that the running time of a branch and bound algorithm is simply
the product of the number of search tree nodes required to be processed (the
size of the search tree overall) with the throughput rate, i.e., the number of

10

search tree nodes processed per second per core. If both the size of the tree and
the throughput remain constant as the number of cores is scaled up, then the
result will be perfect efficiency. If efficiency drops, then it must be that either
the size of the tree has increased (i.e., redundant work is being performed) or
the throughput rate has dropped due to slowdowns resulting from any of the
effects discussed in the previous section.

4.3 Sources of Variability

Unfortunately, even with the use of sensible measures of performance, rigorous
experimentation on the scale we are proposing here is still extremely difficult
due to the high variability experienced in execution of the solver, even when
running on the same platform and solving the same problem. There are two
main reasons for this variability: (1) lack of consistency in running times of
single threads due to hardware effects and (2) lack of determinism in the order
of execution of instructions with multiple threads. We examine each of these
below.

Variability in Execution Time. In trying to improve the performance of a
single CPU without increasing the clock speed, chip manufacturers have intro-
duced some techniques that make it inherently difficult to measure performance
consistently.

To begin with, all current multi-CPU systems employ cache coherent non uni-
form memory access (ccNUMA), which means that depending on where the
specific memory to be accessed is located, the access time might vary by up to
a factor of two. Because memory allocation may be different from one run to
another, running times may vary due to these effects.

The latest generation of Intel CPUs employs a so-called TurboBoost function-
ality by which each CPU has an energy (or heat) budget. If this is not fully
utilized, e.g., because some of the cores are idle, the clock speed of the working
cores may be dynamically increased. This means that starting a second thread
might decrease the clock speed of the first thread.

In addition to the physical computing cores, each CPU might have a number
of logical cores through the use of a technique called Hyper Threading (HT) or
Simultaneous Multi Threading (SMT). Typically, there are two (Intel Xenon),
four (IBM Power7), or even eight (Sun T2) logical cores per physical core.
Since these logical cores compete for the physical resources of the CPU, the
total computing power depends very much on the load of the cores. For this
investigation, both TurboBoost and Hyperthreading were switched off when
available.

Finally, certain operations related to I/O that one may perform in a sequential
algorithm without penalty may not scale well due to specific design limitations
of the architecture. Most notably, the cost of memory allocation and deallo-
cation, which may be acceptable on a single core, does not scale linearly with
the number of cores due to memory fragmentation effects and other related is-

11

sues. This can become a very substantial scalability issue when a code performs
frequent memory allocation and deallocation operations in processing a search
tree node.

Nondeterministic Execution. For a single-threaded computer program,
one would expect execution to be deterministic, i.e., two executions of a pro-
gram in identical environments should be identical. However, this is not neces-
sarily the case for a parallel program in a multi-threaded or distributed-memory
environment. When a parallel program’s execution is not deterministic, per-
formance measurement becomes difficult and must be done by sampling over
multiple runs. For the foreseeable future, this will be too expensive on a mil-
lion core system. Furthermore, debugging also becomes complex, as there is no
guarantee that a bug will appear at the same stage of the program when run
again.

It is possible to ensure deterministic behavior of a program by forcing all com-
munication between the threads to happen at predefined points in the execution.
However, this leads to increased idle time during the run and degrades perfor-
mance. Depending on the size of the system and the variation in processing
speed of the nodes, an extreme loss of efficiency is possible. While ensuring
determinism for a shared memory system with a moderate number of threads
can be done with acceptable efficiency [38], this is not the case for massive
parallel distributed memory systems. On a system as described above, it may
be extremely difficult to achieve even an identical environment for two runs.
Assuming 8,000 PEs, there will be differences due to errors or genuine differ-
ences in hardware configuration of different PEs. As will be shown in the next
section, the performance of current solvers can change dramatically depending
on the number of threads used. All-in-all, one has to assume non-deterministic
behavior of the solvers.

5 Solution on a Single PE (Shared Memory)

In solving an ILP on a single (shared-memory) PE, we have, in principle, two
basic approaches available to us. We can either parallelize the processing of
individual nodes by solving the LP relaxation in parallel using the barrier algo-
rithm, or we can parallelize the search by processing multiple search tree nodes
simultaneously. Because the simplex algorithm can be restarted so effectively,
the latter approach has been adopted by all parallel ILP solvers currently avail-
able. Nevertheless, the former approach may have its place in certain situations,
as we explore in Section 7.

A multi-threading execution mode is available in most commercial solvers. Im-
plementation of this approach is relatively easy, since the tree can be stored
wholly in the memory and accessed by all threads (though contention becomes
an issue as the number of threads increases). Putting aside the potential effects
of ccNUMA memory access, one does not have to be concerned about moving
data around to ensure it is available where it is needed, since the memory is

12

shared. This means that the search strategy of the solver can remain relatively
unchanged from the sequential case and, at least in principle, the impact of
scaling on the size of the tree should be relatively minor.

As usual, the ultimate question is whether the solver performance actually
does scale in practice. In [30], the average speed-up for all solvers when going
from 1 to 12 threads was roughly a factor of 3. Since instances that can be
solved within a few B&B-nodes generally will not scale, we examined five in-
stances from the Large Tree subset of the MIPLIB 2010 [30], namely: glass4,
gmu-35-40, noswot, pigeon-10, and timetab1. Using a 32 core Sun Galaxy
4600 equipped with eight Quad-Core AMD Opteron 8384 processors at 2,7
GHz and 512 GB RAM running Gurobi 4.52, solving these instances required
between 97,223 nodes (noswot, 24 threads) and 665,106,682 nodes (gmu-35-40,
eight threads). We can therefore assume there is ample opportunity to paral-
lelize the processing of the B&B tree. Gurobi was used as a solver for this test
because it was designed from scratch to utilize multi-core architectures. We as-
sume therefore that its performance would be representative of the state of the
art. All times given in the pictures include the time for reading the instance,
preprocessing, and solving the root node, though the total time for these tasks
was in all cases much less than one percent of the total running time.

5.1 Computational Experiments

Figure 2 depicts the number of B&B nodes processed by the solver per thread
per second. It is not surprising that noswot exhibits the largest decrease in
this measure as the number of threads is increased, as solving noswot requires
both the smallest number of B&B nodes and the smallest processing time per
node. Accordingly, due to memory contention, the time required to update
central data structures is likely slowing the solver down. The performance of
pigeon-10 is perhaps nearest to what one would expect, while the reason for
the increase in performance for gmu-35-40 and glass4 when going from one
to two threads is difficult to discern. The latter may be due to changes to the
internal settings in the multi-threaded case, e.g., a higher tendency to dive or a
reduced number of heuristic calls per thread. It could also be due to differences
in memory allocation and better use of cache with multiple threads. In any
case, we observe that with respect to this measure, the scalability properties of
these instances look rather promising.

A natural question to ask at this point is how these results would scale to a
128-core system. If one simply replaces the existing 4-core processors by 16-core
processors, the efficiency regading the number of nodes per second per thread
would approach zero, eventually comming to the point were adding threads
reduces the total number of nodes computed per second. The reason is that
for a given system (number of CPU sockets) the total memory bandwidth is
limited. Once the memory interface is fully saturated, adding further cores to
the computation will not have any beneficial effect. On the other hand, since

2www.gurobi.com

13

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 8 10 12 16 20 24 28 32

N
od

es
 p

er
 s

ec
on

d
pe

r
th

re
ad

 r
el

at
iv

e
to

 s
in

gl
e

th
re

ad

Threads

pigeon-10
glass4

noswot
gmu-35-40

timtab1

Figure 2: B&B nodes processed per thread per second

this is a known bottleneck, every new system usually has a higher memory
bandwidth than its predecessor and also bigger cache memories3 in order to
reduce the need for memory accesses. So one could expect the picture to look
pretty similar, but with scaled numbers on the x-axis for a new designed 128-
core system.

Next, we investigate how this translates into parallel efficiency. A snapshot
of typical real-world behavior is shown in Figure 3. Here, the behavior of
pigeon-10 is more or less what one would expect, while the achieved efficiency
of the other instances looks more random and is usually poorer than hoped.
When employing 32 threads, the best of these achieves an efficiency of 0.3,
while the typical is more like 0.1. Worse than this, it is difficult to predict what
the efficiency will be ahead of time. A partial explanation for this can be seen
in Figure 4 (note the logarithmic scale of the y-axis). With the exception of
pigeon-10, the number of nodes needed to solve an instance varies substantially
with different numbers of threads and is often higher than in the sequential case.
Especially for glass4 and gmu-35-40, the number of nodes needed can be as
much as 30 times higher than in the sequential case. Even with no decrease in
the number of nodes evaluated per second per thread, this increase in the total
number of nodes evaluated is enough to substantially reduce efficiency. More
information about performance variability of ILPs can be found in [30].

3The upcoming Intel Poulson processor is going to have 54 MB level 3 cache.

14

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1 2 3 4 5 6 8 10 12 16 20 24 28 32

E
ffi

ce
nc

y

Threads

pigeon-10
glass4

noswot
gmu-35-40

timtab1

Figure 3: Solver efficiency by number of threads used

 0.2

 0.5

 1

 2

 5

 10

 20

 50

 1 2 3 4 5 6 8 10 12 16 20 24 28 32

T
ot

al
 n

od
es

 p
ro

ce
ss

ed
 r

el
at

iv
e

to
 s

in
gl

e
th

re
ad

Threads

pigeon-10
glass4

noswot
gmu-35-40

timtab1

Figure 4: Total number of B&B nodes processed by number of threads

15

Table 3: Instances from MIPLIB2010 used as examples

Case Name Rows Columns Nonzeros Status

(4) Slow LPs stp3d 159,488 204,880 662,128 solved
(5) Large tree reblock354 19,906 3,540 52,901 solved
(6) Big hawaii10-130 1,388,052 685,130 183,263,061 unsolved
(6) Big zib01 5887041 12,471,400 49,877,768 unsolved

5.2 Challenges

Although parallelizing branch and bound on a shared memory architecture
seems straightforward, it can be difficult to achieve efficiencies close to one.
Among the reasons for this are effects such as contention for access to shared
data structures and increased memory access times resulting from ccNUMA
architectures. Scaling to higher numbers of threads seems possible for those
instances for which many B&B nodes must be evaluated, provided we could
ensure that the number of nodes needed is not generally much higher than in
the sequential case. However, as the number of cores per PE scales up, we
expect latencies to increase as the PE itself begins to look more and more like
a distributed memory machine due to bottlenecks resulting for limited internal
memory bandwidth.

6 Solution on Many PEs (Distributed Memory)

We now move to the question of whether we can effectively utilize several thou-
sand PEs to solve one ILP. To get a feel for the answer to that question, we
performed preliminary experiments with the Ubiquity Generator (UG) Frame-
work [46] employing SCIP[2] as an ILP solver and using CPLEX 124 to solve the
LP relaxations. UG consists of a supervisor (load coordinator) system capable
of maintaining the trunk of a B&B tree and distributing the solution of an ILP
over a large number of PEs running solvers by use of the MPI communication
protocol. Note that the variation in performance is higher in a distributed
environment and singular results sometimes have rather complex explanations.

Four instances from MIPLIB 2010 will be used as examples in this and the next
section. Table 3 shows some statistics about these instances. The number in
the Column labeled Case corresponds to the list of reasons for failing to solve
an ILP given in Section 2.

6.1 Computational Experiments

Using UG[SCIP/CPLEX/MPI], the optimal solution to reblock354 from MI-
PLIB 2010 was computed. 41,918,266,856 B&B nodes had to be processed.
This took about 36 CPU years, delivered in less than one week of real time on

4www.cplex.com

16

Table 4: Solving times for stp3d on the HLRN-II ICE2 complex using dis-
tributed memory

Cores 4096 7168

Wall clock time [h] 42.32 30.68

Total CPU time [years] 19.79 25.08
Total Idle time [years] 0.80 1.82
Total Root time[years] 6.85 8.49
Nodes processed 9,779,864 10,328,113

2,000 cores of the HLRN-II SGI Altix ICE 8200 Plus (ICE2) supercomputer,
which consists of 960 Infiniband connected nodes with double quad-core Intel
Xeon X5570 processors at 2.93 GHz with 48 GB memory each.

In the same way, it was possible to solve stp3d, introduced in MIPLIB 2003 [5],
for the first time. Table 4 lists the solution times comparing the use of 4,096
and 7,168 cores. stp3d clearly falls into category 4 of “hard-to-solve LPs” from
the list given in Section 2, as can be seen from the rather low number of nodes.
Using UG[SCIP/CPLEX/MPI], an efficiency of 0.79 was achieved when scaling
from 4,096 to 7,168 cores, even though the parameter settings proved to be
suboptimal.

It should be noted that for the stp3d run, the optimal solution was given
as input. However, this appears to have much less influence on the solution
time than one might think. In fact, there are astonishingly many cases in
which having the optimal solution from the start actually leads to an increased
solution time. The important point to note is that once the optimal solution is
found, the remaining execution of the algorithm basically becomes an exercise
in high-throughput computing, as the order of the processing of the nodes does
not matter (much) anymore.

Table 5 list those instances from the MIPLIB 2010 benchmark set which were
solved by SCIP 2.0.1, but needed more than 10,000 B&B nodes. As can be seen
in the table, in all cases considered, SCIP found the optimal primal solution
before the dual bound reached the optimal value. For most instances, the
optimal solution was found before even half of the nodes were enumerated.

6.2 Challenges

There are a number of difficulties with a distributed solution approach and we
outline a few of these challenges here. The biggest of these is the substantial
fraction of the running time occupied by the ramp-up and ramp-down phases
(see discussion in [50]). There are approaches, such as, e.g., racing ramp-up [46],
to utilize idle PEs during the ramp-up phase. As has been shown in [30] the
performance of an ILP solver might vary randomly and substantially depending
on the order of the constraints and variables in the problem and also on the
number of threads employed. This effect is of course even stronger if one is

17

Table 5: % number of nodes processed until first solution and optimal solution

Total % nodes % nodes
Instance nodes at first at optimum

mik 415149 0.0 0.0
iis-100-0-cov 103865 0.0 0.2
noswot 605006 0.0 0.4
n4-3 81505 0.0 1.6
neos-1109824 10792 0.1 1.9
qiu 14452 0.0 2.6
aflow40b 278717 0.0 4.6
pg5 34 257034 0.0 5.8
neos-916792 67445 0.1 14.7
dfn-gwin-UUM 14491 0.0 15.8
eil33 11129 0.0 18.7
ran16x16 344269 0.0 23.3
roll3000 593902 0.0 27.7

reblock67 139635 0.0 28.1

enlight13 622598 30.1 30.1
bienst2 89641 0.0 30.3
binkar10 1 199430 0.0 39.2
rococoC10-001000 462506 0.0 44.5
iis-pima-cov 11113 0.0 45.9
mcsched 23111 0.0 53.5
neos-1396125 49807 9.1 55.3
mine-90-10 56177 0.0 56.5
timtab1 699973 0.0 60.5
unitcal 7 12264 0.0 63.9
harp2 319153 0.0 79.9
rocII-4-11 27610 0.4 85.5
ns1830653 47032 3.1 85.8

18

changing the basic parameters of the solver, like frequency of heuristics, or
number of cutting planes generated. The idea of racing ramp-up is to run
the initial root-relaxation with different solver settings in parallel until some
stopping criterion, e.g. some solvers have generated a sufficient number of
nodes, is reached. Then it is decided which of the so far generated trees performs
best. The nodes of this tree are distributed among the solvers, while all the other
results, with the exception of primal solutions, are discarded. Nevertheless, so
far, these approaches have not proven to be effective enough to make up for the
reduction in subproblems solved per thread per second in the initial parts of
the algorithm.

Connected to this is the question on how to select the next node to process in
the tree. In the beginning it might be helpful to use a selection that leads to a
wide tree, while later in the processing switching to a depth-first search to save
memory might be necessary. Also, the way the subproblems are split has a huge
impact on the shape of the generated tree. While in the sequential case it can
be useful to have an “uneven” split that leads to a quick fathoming of one of the
branches, this is unlikely to be helpful during the ramp-up phase. But then, the
impact of the branching-rule on the overall performance of an B&B-algorithm,
either in sequential or in the parallel case cannot be underestimated. This has
been an area of intensive research, see, e.g., [4, 3, 33].

Ramp-down is usually less critical and, as opposed to ramp-up, profits from
algorithmic developments that make the tree smaller. Nevertheless, both situ-
ations typically decrease the efficiency of the scaling as the number of threads
increase.

Another difficulty is that PEs can run out of memory. Using many cores, a
single PE might produce an excessive number of open B&B nodes when no
subtree can be fathomed. We experienced this, for example, in trying to solve
dano3mip. Writing node files is not feasible, as this would require writing several
petabytes to disk. For the same reason, a transfer of the nodes back to the load
coordinator is also not realistic. A possible solution is to switch to iterated
DFS as the node selection strategy to limit the number of newly created nodes.
While this will increase the number of nodes processed per second, it generally
leads to a higher number of total nodes (see [2] for some details). The bottom
line is that the total number of open nodes is limited (even with the increase
due to parallelism), and this can be problematic.

The third problem comes from the fact that for the foreseeable future, machines
with one million cores will be expensive and somewhat unreliable. This means
that computing time will be limited and runs may have to be interrupted.
After having run two days on a system with a million cores, one would not be
willing to throw the results of the computation away. To remedy this, some way
of checkpointing is necessary. However, as we pointed out previously, writing
descriptions of all open nodes to disk is likely to be excessive. One solution is to
write only the roots of subtrees, as stored by the load coordinator. In this case,
some, but not all, work is lost. The effectiveness of this depends very much on
the instance.

19

The biggest challenge is to decide which instances fall into the category of ILPs
for which this type of computing is appropriate. So far, it has proven difficult
to estimate the number of B&B nodes that will be needed to solve an instance
early in the solution process [18, 39]. It remains very unclear how many more
instances could be solved if 10, 100, or 1000 times the number of nodes can
be evaluated. The instances that could likely profit the most from additional
node evaluations are those instances for which the LPs are hard to solve and
the number of nodes processed per second is the limiting factor. Here, using a
million cores clearly offers a viable approach.

7 Solution of Very Large ILPs

We have assumed thus far that the size of an instance is small enough to fit into
the memory of a single PE, which limits us a priori to instances of a certain
maximum size. On the other hand, we are able to process a vastly larger number
of B&B nodes per second in parallel, therefore enabling us to solve instances
requiring many more total nodes. In addition, we are able to manage a much
larger number of open nodes than on a single PE.

An obvious question that now arises is what to do with instances that are too
big to fit into the memory of one PE. If we assume that one PE is big enough
to solve a single LP relaxation, the revised dual simplex algorithm is clearly the
method of choice for solution of LP relaxations. However, there are cases for
which barrier or even some other alternative are more appropriate choices. One
such case is when the instance is very large, perhaps even too large to solve on
a single PE. In this section, we address this possibility.

7.1 Simplex Versus Barrier

The main advantages of the simplex algorithm are its very good numerical
stability, its excellent warmstart capability, and the fact that it computes vertex
solutions. The biggest drawback is that the simplex algorithm seems to be
inherently sequential. While there has been some success in parallelization in
special cases [11, 29], such as when the number of columns is much bigger than
the number of rows, all attempts at general-purpose parallelization have so far
failed [49, 25]. This is in contrast to the barrier algorithm, which parallelizes
quite well. The barrier algorithm, however, lacks warmstart capabilities. A
speed-up factor of two from warmstart seems to be consistently possible, but
ten is the maximum speed-up that seems remotely possible at the moment (see,
e.g., [22, 52, 8, 28]). Even worse, the solution provided by the barrier algorithm
is not a vertex solution and since this is needed for generation of several of the
most common classes of valid inequalities, a crossover [37, 14] procedure has to
be performed. This crossover is itself a simplex-type algorithm and therefore
sequential. In [44], the authors estimate that the crossover takes up to 20% of
the total solution time when using 12 threads. Finally, the memory consumption
of the barrier algorithm is higher than that of the simplex algorithm. In certain

20

Table 6: Questionable comparison of simplex and barrier algorithms for solving
LPs

Simplex Barrier

Basic speed 1 0.6
Warmstart speed-up 5–500× 1 (2-10) ×

Parallel speed-up 1 (2) × 16+ ×

Needs crossover no yes
Memory requirement 1× up to 10×

Table 7: Performance of simplex and barrier algorithms on large instances

Instance Solver Method Threads Mem [GB] Iterations Time [s]

hawaii10-130 CPLEX Simplex 1 6 55,877 762
Gurobi Simplex 1 21 175,782 6,967
CPLEX Barrier 32 39 130 47,933
Gurobi Barrier 32 56 191 43,037

zib01 CPLEX Simplex 1 7 >15,152,000 >435,145
Gurobi Simplex 1 10 10,833,995 166,177
CPLEX Barrier 32 38 28 4,953
Gurobi Barrier 32 51 34 6,455

cases, it may need as much as ten times the amount of memory. Table 6 shows
a summary comparison of the simplex and the barrier algorithms based on the
above discussion. Numbers in parentheses indicate what is considered possible
without having been generally implemented so far.

The question of whether the simplex or the barrier is the faster algorithm to
solve LPs is not new and is difficult to answer. For small instances, the simplex
is often faster, while for medium-sized instances the barrier seems to hold an
edge. There are two important points. First, it seems the two algorithms are
complementary in the sense that the barrier typically performs quite well on
instances for which the simplex has difficulties and vice versa. Second, there is
still no reliable way to tell in advance which of the two will be faster. Just to
give an example, we tested both algorithms on the two instances hawaii10-130
and zib01 with CPLEX 12.2 and Gurobi 4.5. The results are shown in Ta-
ble 7. The instances were deliberately chosen to show opposing aspects of
algorithm performance. We compare the single-thread performance of the sim-
plex to the 32-thread performance of the barrier algorithm. As can be seen, on
hawaii10-130, the simplex is the clear winner, while on zib01, the barrier is
much faster.

A pivotal question, however, is how much it helped the barrier to be able to
use 32 threads. We solved instance zib01 using several solvers5 with different

5CPLEX 12.2.0.2 (www.cplex.com), Gurobi 4.5.0 (www.gurobi.com), MOSEK 6.0.0.106
(www.mosek.com), XPRESS 22.01.03 (www.fico.com/en/Products/DMTools/Pages/FICO-

21

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 8 10 12 16 20 24 28 32

E
ffi

ce
nc

y

Threads

Scaling of CPLEX 12.2. barrier algorithm without crossover for zib01

AMD 8x4 core CPLEX
AMD 8x4 core Gurobi
Intel 2x6 core CPLEX

Intel 2x6 core MOSEK
Intel 2x6 core XPRESS

Figure 5: Efficiency of solving zib01 with different barrier solvers / including
ordering / no crossover

numbers of threads. The runs with up to 32 cores were performed on the same
SUN Galaxy 4600 as mentioned before. For the runs with 12 cores, a system
with two hexa-core Intel Xeon X5680 CPUs at 3.33 GHz with 32 GB RAM was
used. Figure 5 depicts the results. As can be seen, the barrier algorithm scales
well in all cases with up to four threads, while with CPLEX, it requires 16
threads to bring down the efficiency to 50%. Nevertheless, with 32 threads, we
are down to an efficiency of one third. Interestingly, this is somewhat similar
to what we saw in Figure 3 for solving ILPs. One of the reasons could be the
limited memory bandwidth of the machine.

Looking at the results of several solvers for the MIPLIB 2010 benchmark set,
one can observe that the geometric mean of the number of simplex iterations
needed to solve the root LP is about 1,500 and the number of iterations needed
for reoptimizing the LP relaxation is about 60. Thus, we have an average speed-
up factor of roughly 25, which is less than what is commonly thought. One must,
however, keep in mind that a low speed-up factor is not necessarily an indication
of poor performance, as it may also be due to a low number of simplex iterations
in the initial solve. In those cases, the speed-up achieved for reoptimization
might be lower than average, although the simplex algorithm is still performing
very well. For gmu-35-40, noswot, pigeon-10, and timetab1, the number of
simplex iterations to reoptimize is typically below ten. For instances that can
be solved with such a small number of iterations, the simplex is usually already
faster than the barrier for the initial solve. Empirically, this behavior changes
for larger instances, however. The barrier becomes faster at solving the root
node in comparison, but the speed-up ratio for the simplex algorithm increases.

Xpress-Optimization-Suite.aspx)

22

The above leaves two basic options: either use the barrier in order to profit
from the parallelization (but give up the benefit offered by reoptimization)
or use the simplex and leave 127 of our assumed 128 cores idle on each PE,
assuming that we can only handle one LP relaxation on a single PE due to
memory limitations. If we are in fact limited to solving a single LP relaxation
on each PE at any one time, the simplex might be the only choice, given its lower
memory requirements. However, this gives little hope of utilizing the additional
cores efficiently. Though one typically endeavors to utilize all available CPU
cycles and leave some memory idle, an abundance of cores may require getting
used to the idea of leaving the cores idle and utilizing the memory instead. In
other words, it may turn out that the memory, not the available cycles, may
become the bottleneck.

Given that only one LP can be solved on a PE, the additional memory to run
an ILP solver with iterated DFS node selection is small. Therefore, we can
assume this works as described in the previous section, though this might lead
to an increased number of B&B nodes.

7.2 Alternative Algorithms for LP

In addition to the simplex and the barrier methods, there are a number of
algorithms [10], e.g., Lagrangian relaxation [20], the volume algorithm [7], and
bundle methods [26], that can compute lower bounds on the LP optimum and
might even converge to it. They usually give lower bounds very quickly, do not
need much memory, and are quite suited for large-scale instances. In fact, there
have been a number of successes for special applications, e.g., [15]. Nevertheless,
in the general case, it seems difficult to use these as a replacement for the simplex
or the barrier. They typically produce no primal feasible solution and the dual
solution is not a vertex solution in general. There might be some hope of using
these alternatives for binary problems, but they seem unrealistic for solving
general ILPs, i.e., without being able to exploit special structure.

8 Conclusions

The only rules that really matter are these:
what a man can do and what a man can’t do.

Captain Jack Sparrow

We conclude by summarizing these three basic cases:

The instance is small enough to run multi-threaded on a PE. Based
on the results of Section 5, an efficiency of Ec = 0.2 for a 128 core ILP solver
can reasonably be assumed. This means we can achieve a speed-up of roughly
25. From Section 6, we assume an efficiency for distributing over many PEs of
Epe = 0.1, which means we achieve roughly a speed-up factor of 800 on 8,000

23

PEs in steady state. Together, we have a speed-up of

Ec × Nc × Epe × Npe ≈ 20, 000

compared to a sequential run. Since we can run easily on one PE, this means,
roughly, we can evaluate as many nodes on the million core machine in one
day as we would be able to compute in two years on one PE in steady state.
For instances with very large trees, the ramp-up and ramp-down phases of the
computation should have an acceptable impact on efficiency.

The LP relaxation of the instance can be solved on a single PE. In
this case, we face the question of whether to use the simplex or the barrier
method. As described in Section 7, this depends very much on the instance
and the available memory. We can assume the barrier with crossover to run at
an efficiency of 0.2, giving us a speed-up of 25 on a 128 cores machine. This
is likely about equivalent to the speed-up we get from the simplex running
sequentially, due to warmstart. We end up with a speed-up of

Epe × Npe ≈ 800.

The difference with respect to running on one PE is the same as before, but
we compute about 25 times fewer nodes per second. Furthermore, because
solving an LP that needs half a terabyte of RAM will likely take at least ten
minutes, the whole machine will only be able to compute at most 15 B&B nodes
per second. Hence, the ramp-up and ramp-down phases are likely to impact
efficiency further.

Solution of the LP relaxation has to be distributed. In this case, a
distributed barrier algorithm would currently be the only choice. While there
are some implementations for distributed memory non-linear and semi-definite
programming solvers, e.g. [24, 51, 27, 35, 19], to our knowledge, this approach
has not been implemented yet for pure linear programs. Therefore, we assume
an efficiency of 0.1 for this method. We then end up with

Npe/Nlp × 0.1 × Epe ≈ 10,

assuming we need eight PEs per LP. Even if we assume that we could solve one
distributed LP in 15 minutes, we would have an equivalent performance of 1
B&B node per minute. This would allow us to compute a few thousand nodes
before we run out of computing time. Also, there would be very severe ramp-up
problems.

Furthermore, without a distributed simplex algorithm we will have no cross-
over procedure, which will hamper the generation of cutting planes and will
lead to an increased number of B&B nodes necessary to solve the problem.

In the same sense, many of the primal heuristics would either have to be imple-
mented in a distributed fashion, with the drawback that they rely on solving

24

Table 8: Inabilities and their cures

Symptom HW cure SW cure

Slow LPs Faster cores LP algorithm improvement
Many nodes More cores ILP algorithm improvement
Big instance More memory Different LP algorithm

special LP subproblems. All kinds of diving heuristics are pretty much out of
question with this approach.

It should be noted that solution methodologies for ILP rely very heavily on the
ability to solve LPs quickly and it therefore seems highly questionable whether a
general-purpose ILP solver for instances that need distributed solution of LPs is
useful. In those cases, it seems much more promising to implement specialized
methods.

Table 8 gives an overview of what change would help to solve which challenges.
Faster cores would help in all cases (this was depended upon for decades).
Increased numbers of cores may help in cases where the LP solution times are
slow and may also help with very large instances, but the latter case is hampered
by memory bandwidth constraints, the requirement for sequential LP solution
algorithms, and ramp-up/ramp-down issues. Better LP algorithms would help
a lot for big instances.

So what should we take away from all of this? Unfortunately, the effect of the
development of algorithms for ILPs that are considered “better” in the tra-
ditional sense of sequential computing time is usually a reduction in the size
of the tree, which actually results in less efficient parallelization. The path to
development of more efficiently parallelizable algorithms is thus very unclear.
One thing is clear, however. Straightforward parallelization of algorithms devel-
oped originally for sequential execution will have limited scalability. To move
forward, we must begin to think out of the box. It may be that the key is to
embrace a completely new solution paradigm that breaks from the traditional
strategies we have until now used quite successfully. Rather than drawing any
solid conclusions, we end this investigation by posing some challenge questions
that may help move us in new directions.

• Most current ILP solvers are designed under the assumption that com-
puting cycles are the main bottleneck. This is not generally true any more
if a million cores are available. What implications does this have on the
solver algorithms?

• During the solution of an ILP, there are typically several phases, e.g., the
time until the first feasible solution is found or the time until an optimal
solution has been discovered but not yet proved optimal. Especially in the
case of large enumeration trees (Item 5 from the list given in Section 2),
the distribution of time between the phases might substantially change.
Again, the question arises, which implications this has on the ILP solver?

25

• Typically, the time until 1 million active B&B nodes are available is con-
siderable. A similar effect occurs at the end of the computation. What
should we do during these so called ramp-up and ramp-down phases to
utilize the available computing resources?

• Decomposition has always been a topic with much potential that is diffi-
cult to realize. Might this be the way to go?

• The main obstacle to solving bigger ILP is the solution of the LP sub-
problems. The simplex method does not scale with the number of cores
and the barrier algorithm is not well suited for re-solving LPs as they
occur in B&B based ILP solvers. Improvements in this area will directly
translate in an increased ability to solve bigger instances.

9 Acknowledgements

The work of Thorsten Koch and Yuji Shinano was supported by a Google Re-
search Grant. We would like to thank the HLRN-II for providing computation
time and the HPC department at ZIB for their efforts to make runs with 7,168
cores possible. Finally, we would like to thank Hans Mittelmann for providing
the computations on the 12-core system.

References

[1] K. Aardal, R. Weismantel, and L. A. Wolsey. Non-standard approaches to
integer programming. Discrete Applied Mathematics, 123:5–74, 2002.

[2] T. Achterberg. SCIP: Solving constraint integer programs. Mathematical
Programming Computation, 1(1):1–41, 2009.

[3] T. Achterberg and T. Berthold. Hybrid branching. In W.-J. van Hoeve
and J. Hooker, editors, Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, volume 5547 of
Lecture Notes in Computer Science, pages 309–311. Springer, 2009.

[4] T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Oper-
ations Research Letters, 33:42–54, 2005.

[5] T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Re-
search Letters, 34(4):361–372, 2006.

[6] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The Traveling
Salesman Problem: A Computational Study. Princeton University Press,
2007.

[7] F. Barahona and R. Anbil. The volume algorithm: producing primal solu-
tions with a subgradient method. Mathematical Programming, 87:385–399,
2000.

26

[8] H. Benson and D. Shanno. An exact primal-dual penalty method approach
towarmstarting interior-point methods for linear programming. Computa-
tional Optimization and Applications, 38:371–399, 2007.

[9] T. Berthold and M. E. Pfetsch. Detecting orbitopal symmetries. In B. Fleis-
chmann, K. H. Borgwardt, R. Klein, and A. Tuma, editors, Operations
Research Proceedings 2008, pages 433–438. Springer, 2009.

[10] D. Bienstock. Approximation Algorithms for Linear Programming: Theory
and Practice. CORE Lecture Series. Core, UCL, Belgium, 2001.

[11] R. Bixby and A. Martin. Parallelizing the dual simplex method. INFORMS
Journal on Computing, 12:45–56, 2000.

[12] R. E. Bixby. Solving real-world linear programs: A decade and more of
progress. Operations Research, 50(1):3–15, 2002.

[13] R. E. Bixby. Lectures about LP and MIP solving at Combinatorial Opti-
mization at Work II, 2009.

[14] R. E. Bixby and M. J. Saltzman. Recovering an optimal basis from an
interior point solution. Operation Research Letters, 15:169–178, 1994.

[15] R. Borndörfer, A. Löbel, and S. Weider. A bundle method for integrated
multi-depot vehicle and duty scheduling in public transit. In M. Hickman,
P. Mirchandani, and S. Voß, editors, Computer-aided Systems in Public
Transport, volume 600 of Lecture Notes in Economics and Mathematical
Systems, pages 3 – 24, 2008.

[16] W. Cook, T. Koch, D. Steffy, and K. Wolter. An exact rational mixed inte-
ger programming solver. In Proceedings of the 15th Conference on Integer
Programming and Combinatorial Optimization, pages 104–116. Springer,
2011.

[17] W. Cook, T. Rutherford, H. E. Scarf, and D. Shallcross. An implementa-
tion of the generalized basis reduction algorithm for integer programming.
ORSA Journal on Computing, 5(2):206–212, 1993.

[18] G. Cornùejols, M. Karamanov, and Y. Li. Early estimates of the size of
branch-and-bound trees. INFORMS Journal on Computing, 18(1):86–96,
2006.

[19] F. E. Curtis, O. Schenk, and A. Wächter. An interior-point algorithm for
large-scale nonlinear optimization with inexact step computations. SIAM
Journal on Scientific Computing, 32(6):3447–3475, 2010.

[20] M. L. Fisher. The lagrangian relaxation method for solving integer pro-
gramming problems. Management Science, 50(12):1861–1871, 2004.

[21] G. Gamrath and M. Lübbecke. Experiments with a generic dantzig-wolfe
decomposition for integer programs. In P. Festa, editor, Experimental Algo-
rithms, volume 6049 of Lecture Notes in Computer Science, pages 239–252.
Springer, 2010.

27

[22] J. Gondzio. Warm start of the primal-dual method applied in the cutting-
plane scheme. Mathematical Programming, 83:125–143, 1998.

[23] M. Grötschel, M. Jünger, and G. Reinelt. A Cutting Plane Algorithm
for the Linear Ordering Problem. Operations Research, 32(6):1195–1220,
1984.

[24] A. Gupta and V. Kumar. A scalable parallel algorithm for sparse cholesky
factorization. In Proceedings of the 1994 conference on Supercomputing,
Supercomputing ’94, pages 793–802, Los Alamitos, CA, USA, 1994. IEEE
Computer Society Press.

[25] J. Hall. Towards a practical parallelisation of the simplex method. Com-
putational Management Science, 7:139–170, 2010.

[26] C. Helmberg and K. Kiwiel. A spectral bundle method with bounds. Math-
ematical Programming, 93:173–194, 2002.

[27] I. D. Ivanov and E. de Klerk. Parallel implementation of a semidefinite
programming solver based on CSDP in a distributed memory cluster. Tech-
nical Report CentER Discussion Paper 2007-20, Tilburg University, The
Netherlands, 2007.

[28] E. John and E. A. Yildirim. Implementation of warm-start strategies in
interior-point methods for linear programming in fixed dimension. Com-
putational Optimization and Applications, 41:151–183, 2008.

[29] D. Klabjan, E. L. Johnson, and G. L. Nemhauser. A parallel primal-dual
simplex algorithm. Operations Research Letters, 27(2):47–55, 2000.

[30] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby,
E. Danna, G. Gamrath, A. M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann,
T. Ralphs, D. Salvagnin, D. E. Steffy, and K. Wolter. MIPLIB 2010.
Mathematical Programming Computation, 3:103–163, 2011.

[31] V. Kumar and V. N. Rao. Parallel depth-first search, part II: Analysis.
International Journal of Parallel Programming, 16:501–519, 1987.

[32] D. Levinthal. Performance analysis guide for Intel core i7 processor and
Intel Xeon 5500 processors.

[33] A. Mahajan and T. K. Ralphs. Experiments with branching using general
disjunctions. In Proceedings of the Eleventh INFORMS Computing Society
Meeting, pages 101–118, 2009.

[34] A. Mahajan and T. K. Ralphs. On the Complexity of Selecting Disjunctions
in Integer Programming. SIAM Journal on Optimization, 20(5):2181–2198,
2010.

[35] Y. Makoto and K. Fujisawa. Efficient parallel software for large-scale
semidefinite programs. In Proceedings of the 2010 IEEE Multi-conference
on Systems and Control, Sept. 2010.

28

[36] F. Margot. Symmetry in integer linear programming. In M. Jünger,
T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Ri-
naldi, and L. Wolsey, editors, Fifty Years of Integer Programming: 1958–
2008, pages 647–686. Springer, 2010.

[37] N. Megiddo. On finding primal- and dual-optimal bases. ORSA Journal
on Computing, 3(1):63–65, 1991.

[38] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: efficient deterministic
multithreading in software. SIGPLAN Not., 44:97–108, March 2009.

[39] O. Y. Özaltin, B. Hunsaker, and A. J. Schaefer. Predicting the solution
time of branch-and-bound algorithms for mixed-integer programs. IN-
FORMS Journal on Computing, 23(3), 2011.

[40] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution
of large-scale symmetric traveling salesman problems. SIAM Rev., 33:60–
100, February 1991.

[41] W. Paper. SGI Altix global shared memory performance and
productivity breakthroughs for the SGI Altix UV, Oct. 2010.
http://www.sgi.com/pdfs/4250.pdf.

[42] C. Phillips, J. Eckstein, and W. Hart. Massively parallel mixed-integer
programming: Algorithms and applications. In M. Heroux, P. Raghavan,
and H. Simon, editors, Parallel Processing for Scientific Computing, pages
323–340. SIAM Books, Philadelphia, PA, USA, 2006.

[43] E. Pinheiro, W. Weber, and L. Barroso. Failure trends in a large disk
drive population. In Proceedings of the 5th USENIX Conference on File
and Storage Technologies (FAST’07), Berkeley, CA, 2007. USENIX Asso-
ciation.

[44] E. Rothberg. Barrier is from mars, simplex is from venus, 2010. Talk given
at What a pivot–workshop honouring the 65th birthday of Bob Bixby in
Erlangen, Germany.

[45] B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM errors in the wild:
a large-scale field study. In Proceedings of the eleventh international joint
conference on Measurement and modeling of computer systems, SIGMET-
RICS ’09, pages 193–204. ACM, 2009.

[46] Y. Shinano, T. Achterberg, T. Berthold, S. Heinz, and T. Koch. ParaSCIP
– a parallel extension of SCIP. Technical Report ZR 10-27, Zuse Institute
Berlin, 2010.

[47] L. A. Wolsey. Integer programming. Wiley-Interscience, 1998.

[48] W. A. Wulf and S. A. McKee. Hitting the memory wall: implications of
the obvious. SIGARCH Comput. Archit. News, 23:20–24, March 1995.

29

[49] R. Wunderling. Paralleler und objektorientierter Simplex-Algorithmus.
PhD thesis, Technische Universität Berlin, 1996.

[50] Y. Xu, T. K. Ralphs, L. Ladányi, and M. J. Saltzman. Computational
experience with a software framework for parallel integer programming.
INFORMS Journal on Computing, 21:383–397, 2009.

[51] M. Yamashita, K. Fujisawa, and M. Kojima. Sdpara : Semidefinite pro-
gramming algorithm parallel version. Parallel Computing, 29:1053–1067,
2003.

[52] A. Yildirim, Stephen, and S. Wright. Warm-start strategies in interior-
point methods for linear programming. SIAM Journal on Optimization,
12:782–810, 2000.

30

	Introduction
	Solvability of ILPs
	A Million Core System
	Benchmarking
	Traditional Measures of Performance
	Measures of Performance for Branch and Bound
	Sources of Variability

	Solution on a Single PE (Shared Memory)
	Computational Experiments
	Challenges

	Solution on Many PEs (Distributed Memory)
	Computational Experiments
	Challenges

	Solution of Very Large ILPs
	Simplex Versus Barrier
	Alternative Algorithms for LP

	Conclusions
	Acknowledgements

