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Abstract

The Steiner tree packing problem (STPP) in graphs is a long studied
problem in combinatorial optimization. In contrast to many other prob-
lems, where there have been tremendous advances in practical problem
solving, STPP remains very difficult. Most heuristics schemes are ineffec-
tive and even finding feasible solutions is already NP-hard. What makes
this problem special is that in order to reach the overall optimal solution
non-optimal solutions to the underlying NP-hard Steiner tree problems
must be used. Any non-global approach to the STPP is likely to fail.
Integer programming is currently the best approach for computing opti-
mal solutions. In this paper we review some “classical” STPP instances
which model the underlying real world application only in a reduced form.
Through improved modelling, including some new cutting planes, and by
emplyoing recent advances in solver technology we are for the first time
able to solve those instances in the original 3D grid graphs to optimimality.

1 Introduction

The weighted Steiner tree problem in graphs (stp) can be stated as follows:

Given a weighted graph G = (V,E, c) and a non-empty set of vertices
T ⊆ V called terminals, find an edge set S∗ such that (V (S∗), S∗)
is a tree of minimal weight that spans T .

An extensive survey on the state-of-the-art of modeling and solving the stp can
be found in [25]. Many papers on the stp claim real-world applications, espe-
cially in vlsi-design and wire-routing. This usually refers to a generalization of
the stp, the weighted Steiner tree packing problem in graphs (stpp). Instead
of having one set of terminals, we have N non-empty disjoint sets T1, . . . , TN ,
called Nets, that have to be “packed” into the graph simultaneously, i. e., the
resulting edge sets S1, . . . , SN have to be disjoint. In these applications, G is
usually some sort of 3D grid graph. [13, 21, 14] give detailed explanations of
the modeling requirements in vlsi-design. Three routing models for 2D or 3D
grid graphs are of particular interest:

∗The work of the first author is supported by NAFOSTED.
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Channel routing: Here a complete rectangular grid graph is used. The ter-
minals of the nets are exclusively located on two opposing borders. The
size of the routing area is not fixed in advance. All nets have only two
terminals, i. e., |Ti| = 2.

Switchbox routing: We are given a complete rectangular grid graph. The
terminals may be located on all four sides of the graph. Thus, the size of
the routing area is fixed.

General routing: In this case the grid graph may contain holes or have a non
rectangular shape. The size of the routing area is fixed and the terminals
may be located arbitrarily.

The intersection of the nets is an important issue in Steiner tree packing. Again
three different models are possible:

Manhattan (Fig 1(a)) Consider some (planar) grid graph. The nets must
be routed in an edge disjoint fashion with the additional restriction that
nets that meet at some node are not allowed to bend at this node, i. e.,
so-called Knock-knees are not allowed. This restriction guarantees that
the resulting routing can be laid out on two layers at the possible expense
of causing long detours.

Knock-knee (Fig 1(b)) Again, some (planar) grid graph is given and the task
is to find an edge disjoint routing of the nets. In this model Knock-knees
are possible. Very frequently, the wiring length of a solution is smaller
than in the Manhattan model. The main drawback is that the assignment
to layers is neglected.

Node disjoint (Fig 1(c)) The nets have to be routed in a node disjoint fashion.
Since no crossing of nets is possible in a planar grid graph, this requires
a multi-layer model, i. e., a 3D grid graph.

(a) Manhattan model (b) Knock-knee model (c) Node disjoint model

Figure 1: stpp intersection models

While channel routing usually involves only a single layer, switchbox and general
routing problems are typically multi-layer problems. Using the Manhattan
and Knock-knee intersection is a way to reduce the problems to a single layer.
Accordingly, the multi-layer models typically use node disjoint intersection.
While the multi-layer model is well suited to reflect reality, the resulting graphs
become quite large. We consider two1 possibilities to model multiple layers:

1 A third possibility is to use a single-layer model with edge capacities greater than one.
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k-crossed layers (Fig 2(a)) There is given a k-dimensional grid graph (i. e., k

copies of a grid graph are stacked on top of each other and correspond-
ing nodes are connected by perpendicular lines, so-called vias), where k

denotes the number of layers. This is called the k-layer model in [21].

k-aligned layers (Fig 2(b)) This model is similar to the crossed-layer model,
but in each layer there are only connections in one direction, either east-
to-west or north-to-south. [21] calls this the directional multi-layer model.
[20] indicate that for k = 2 this model resembles the technology used in
vlsi-wiring best. [4] mentions that current technology can use a much
higher number of layers (20 and more).

(a) Multi-crossed layers (b) Multi-aligned layers (c) With connectors

Figure 2: stpp modeling taxonomy

Note that for switchbox routing there is a one-to-one mapping between feasible
solutions for the Manhattan one-layer model (mol) and the node disjoint two-
aligned-layer model (tal), assuming that there are never two terminals on top
of each other, i. e., connected by a via.

For the general routing model, this mapping might not be possible. If a terminal
is within the grid there is no easy way to decide the correct layer for the terminal
in the two-layer model.

Unfortunately, in the seven “classic” instances given by [6, 23, 8] two terminals
are connected to a single corner in several cases. This stems from the use
of connectors, i. e., the terminal is outside the grid and connected to it by a
dedicated edge. In the multi-layer models there has to be an edge from the
terminal to all permissible layers (Fig 2(c)).

The Knock-knee one-layer model can also be seen as an attempt to approximate
the node disjoint two-crossed-layer model. But mapping between these two
models is not as easy. [5] have designed an algorithm that guarantees that any
solution in the Knock-knee one-layer model can be routed in a node disjoint
four-crossed-layer model, but deciding whether three layers are enough has been
shown to be NP-complete by [22].

2 Integer programming models

A survey of different integer programming models for Steiner tree packing can
be found in [7]. We will examine two of the models in more detail.
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2.1 Undirected partitioning formulation

This formulation is used in [13]. Given a weighted grid graph G = (V,E, c),
and non-empty terminal sets T1, . . . , TN , N > 0, |Ti| > 0, N = {1, . . . ,N}, we
introduce binary variables xn

ij for all n ∈ N and (i, j) ∈ E, where xn
ij = 1 if and

only if edge (i, j) ∈ Sn. We define δ(W ) = {(i, j) ∈ E|(i ∈ W, j 6∈ W ) ∨ (i 6∈
W, j ∈ W )} with W ⊆ V . The following formulation models all routing choices
for the Knock-knee one-layer model:

min
∑

n∈N

∑

(i,j)∈E

cijx
n
ij

∑

(i,j)∈δ(W )

xn
ij ≥ 1 for all W ⊂ V,W ∩ Tn 6= ∅, (V \ W ) ∩ Tn 6= ∅, n ∈ N (1)

∑

n∈N

xn
ij ≤ 1 for all (i, j) ∈ E (2)

xn
ij ∈ {0, 1} for all n ∈ N , (i, j) ∈ E (3)

In order to use Manhattan intersection another constraint is needed to prohibit
Knock-knees. Let (i, j), (j, k) be two consecutive horizontal (or vertical) edges.
Then,

∑

n∈N1

xn
ij +

∑

m∈N2

xm
jk ≤ 1

for all j ∈ V,N1 ⊂ N ,N2 ⊂ N ,N1 ∩ N2 = ∅,N1 ∪ N2 = N (4)

is called Manhattan inequality.2 The model can be further strengthened with
several valid inequalities as described in [10, 11, 13].

2.2 Multicommodity flow formulation

For our computational investigations we will use a multicommodity flow formu-
lation. For the stp this was formulated in [27].

Given a weighted bidirectional grid digraph G = (V,A, c) and sets T1, . . . , TN ,
N > 0, |Ti| > 0 of terminals, we arbitrarily choose a root rn ∈ Tn for each
n ∈ N := {1, . . . ,N}. Let R = {rn|n ∈ N} be the set of all roots and
T =

⋃

n∈N Tn be the union of all terminals. We introduce binary variables
x̄n

ij for all n ∈ N and (i, j) ∈ A, where x̄n
ij = 1 if and only if arc (i, j) ∈ Sn.

Additionally, we introduce binary variables yt
ij, for all t ∈ T \R. For all i ∈ V ,

we define δ+
i := {(i, j) ∈ A} and δ−i := {(j, i) ∈ A}. For all t ∈ Tn, n ∈ N , we

define σ(t) := n. The following formulation models all routing choices for any
number of layers, crossed and aligned, with Knock-knee intersection:

2 Another way to enforce the Manhattan constraints is given in [15]. Every node v in the
grid graph is split into two nodes vh and vv. vh is connected to the horizontal edges and vv to
the vertical edges incident to v. An additional edge is used to connect vh and vv. This makes
it impossible for more than one net to use both vertical and horizontal edges incident to v.
Note that this is equivalent to converting a one-layer model into a two-aligned-layer model.
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min
∑

n∈N

∑

(i,j)∈A

cn
ij x̄

n
ij (5)

∑

(i,j)∈δ−j

yt
ij −

∑

(j,k)∈δ+

j

yt
jk =







1 if j = t

−1 if j = rσ(t)

0 otherwise







for all j ∈ V, t ∈ T \ R (6)

0 ≤ yt
ij ≤ x̄

σ(t)
ij for all (i, j) ∈ A, t ∈ T \ R (7)

∑

n∈N

(x̄n
ij + x̄n

ji) ≤ 1 for all (i, j) ∈ A (8)

x̄n
ij ∈ {0, 1} for all n ∈ N , (i, j) ∈ A (9)

yt
ij ∈ {0, 1} for all t ∈ T \ R, (i, j) ∈ A (10)

To use node disjoint intersection we have to add:

∑

n∈N

∑

(i,j)∈δ−j

x̄n
ij ≤

{

0 if j ∈ R

1 otherwise
for all j ∈ V (11)

The above system (especially (7)) has the following implications which hold
also for the linear relaxation, i. e., x̄n

ij ∈ [0, 1] instead of (9):

x̄n
ij ≥ max

t∈Tn\R
yt

ij for all (i, j) ∈ A,n ∈ N (12)

Assuming cn
ij > 0, inequality (12) is even met with equality. This leads to

x̄n
jk ≤

∑

(i,j)∈δ−j

x̄n
ij for all j ∈ V \ R, (j, k) ∈ δ+

j , n ∈ N , (13)

i. e., for each net the flow on each outgoing arc is less than or equal to the total
flow into the node. Proof: For each t ∈ T \ R and each j ∈ V \ T equation
(6) states that

∑

(i,j)∈δ−j
yt

ij =
∑

(j,k)∈δ+

j
yt

jk. It follows that
∑

(i,j)∈δ−j
yt

ij ≥ yt
jk

for any (j, k) ∈ δ+
j and further

∑

(i,j)∈δ−j
maxt∈Tn\R yt

ij ≥ maxt∈Tn\R yt
jk for any

(j, k) ∈ δ+
j . Substituting (12) we arrive at (13). This holds also if j ∈ T \ R,

because (6) only limits the flow on outgoing arcs in this case. �

Equation (13) can be strengthened by subtracting the incoming arc anti-parallel
to the outgoing arc in question, giving the following valid inequality:

x̄n
jk + x̄n

kj ≤
∑

(i,j)∈δ−j

x̄n
ij for all j ∈ V \ R, (j, k) ∈ δ+

j , n ∈ N , (14)

Proof: If in any optimal solution x̄n
kj is one, x̄n

jk has to be zero due to (8). In
this case (14) is trivially satisfied. In case x̄n

kj is zero, (14) is equal to (13). �
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2.3 Comparison of formulations

Theorem 1 Any feasible solution of the lp relaxation of the multicommodity
flow formulation of the node disjoint two-aligned-layer model satisfying inequal-
ity (14) defines a valid solution for the lp relaxation of the partitioning for-
mulation of the Manhattan one-layer model by setting xn

ij = x̄n
ij + x̄n

ji for all
(i, j) ∈ E.

Proof: For any given n ∈ N and any given partition W ⊂ V , W ∩ Tn 6= ∅, and
U = (V \W )∩Tn 6= ∅, we can assume without loss of generality that rn ∈ R∩U

and that there exists a terminal t ∈ (Tn \ R) ∩ W . Due to (6) {(i, j) ∈ A | yt
ij}

form a path from r to t, i. e., any feasible solution to (6) will constitute a flow
of one unit within the yt variables from rn to t. It follows that the sum of the
yt in the cut between U and W is at least one. Due to (12) the same holds for
the x̄n, i. e.,

∑

(i,j)∈A,i∈U,j∈W x̄n
ij ≥ 1. Consequently (1) holds. (2) and (3) hold

because of (8) and (9).

In the two-aligned-layer model, each node j in the graph has at most three
neighbors i, k, and l, with l being the node on the other layer.

Due to (2) for (4) to hold it suffices to show that xn
ij + xm

jk ≤ 1 holds for any
j ∈ V and m 6= n. For the two-aligned-layer model we can rewrite this as:

xn
ij + xm

jk = x̄n
ij + x̄n

ji + x̄m
jk + x̄m

kj ≤ 1 (15)

(i) For j ∈ V \ Tn this holds because adding up

x̄n
ij + x̄n

kj + x̄n
lj + x̄m

ij + x̄m
kj + x̄m

lj ≤ 1 holds due to (11)

x̄n
ji − x̄n

kj − x̄n
lj ≤ 0 holds due to (14)

x̄m
jk − x̄m

ij − x̄m
lj ≤ 0 holds due to (14)

results in (15).

(ii) In case j ∈ R, (11) ensures that x̄n
ij + x̄m

kj = 0 and (12) proliferates this

to the corresponding yt variables. It follows from (6) that all yt
ji = 0 for

(j, i) ∈ δ+
j with σ(t) 6= σ(j). Since the m and n are from two disjoint

nets, at most one of x̄n
ji and x̄m

jk can be non-zero and (15) holds.

(iii) In case j ∈ T \ R, (6) requires
∑

(i,j)∈δ−j
y

j
ij = 1. Due to (11), (12) this

forces yt
ij = 0 for all (i, j) ∈ δ−j with σ(t) 6= σ(j). It follows from (6) that

yt
ji = 0 for all (j, i) ∈ δ+

j with σ(t) 6= σ(j). Since m and n are from two
disjoint nets (15) holds. �

Corollary 1 The lp relaxation of the multicommodity flow formulation of the
node disjoint two-aligned-layer model is strictly stronger than the lp relaxation
of the partitioning formulation of the Manhattan one-layer model.

Proof: Theorem 1 implies that for the stpp it is at least as strong. [25] shows
that for the stp the lp relaxation of the multicommodity flow formulation is
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equivalent to the directed cut formulation, which in turn is strictly stronger
than the undirected partitioning formulation. It follows that this holds for the
stpp, since the stp is a special case. �

3 Valid inequalities

3.1 Critical cut inequalities

Consider a graph G = (V,E) with unit edge capacities and a list of nets N . For
a node set W ⊂ V we define S(W ) := {n ∈ N|Tn ∩ W 6= ∅, Tn ∩ (V \ W ) 6= ∅}.
The cut induced by W is called critical if there is no edge disjoint path entering
and leaving W possible, i. e., no net without a terminal in W can pass through
W in any feasible solution [12]. Hence, if s(W ) := |δ(W )| − |S(W )| ≤ 1, the
sum of the corresponding edge variables has to be zero.

In the following, we consider the node disjoint intersection case. If a node i is
a terminal of some net k, then no other net can use the edges incident to i, i.e.,
x̄n

ij = 0, ∀n ∈ N , i, j ∈ V : Tk ∩ {i, j} 6= ∅ for some n 6= k ∈ N .

In the node disjoint case, the support of a critical cut can get even stronger,
as can be seen in Figure 3. For a node set W ⊂ V , the cut induced by W is

Node disjoint

Edge disjoint

Figure 3: Critical cut in the edge disjoint and node disjoint case

called (node-disjoint) δ−-critical if there is no node disjoint path entering and
leaving W in any solution for those nets which have no terminal in W , i.e.,
x̄n

ij = 0, ∀n ∈ N , i, j ∈ V : Tn ∩ W = ∅, {i, j} ∩ W 6= ∅. The cut induced by W

is called (node-disjoint) δ+-critical if there is no node disjoint path leaving and
entering W in any solution for those nets whose terminals belong to W , i.e.,
x̄n

ij = 0, ∀n ∈ N , i, j ∈ V : Tn ⊂ W, {i, j} ∩ V \W 6= ∅. The cut induced by W

is called node-disjoint critical if it is δ+-critical and δ−-critical. Clearly, each
critical cut is node-disjoint critical and the following holds

W is δ+-critical ⇔ V \W is δ−-critical.

Critical cuts can easily be identified, see [24], which provides an efficient tool
to eliminate variables. Finding node-disjoint δ+-critical and δ−-critical cuts
provides a stronger tool, but is not as easy. To do this efficiently, we first have
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to strengthen the criterion for critical cuts. Define

ν(W ) := {i ∈ W | δ(W ) ∩ δ({i}) 6= ∅}.

Therefore:

◮ If |ν(W )| − |S(W )| ≤ 0 or |δ(W )| − |S(W )| ≤ 1, then the cut induced
by W is node disjoint critical.

◮ If |ν(W )| − |S(W )| ≤ 1, then the cut induced by W is δ+-critical.

Practically, though these rules are effective for the multi-aligned layer model,
they are almost useless in case of the multi-crossed layer model. In the following,
we consider some other criteria to find δ−-critical cuts and to fix variables in
advance.

Given a set W of nodes. Assume that there exist nets whose terminals do not
lie in W . The question is whether the cut induced by W is δ−-critical. We
denote A(W ) := {ij ∈ A : {i, j} ⊂ W}, ν(W )+ := {i ∈ W | ∃ij ∈ A : j ∈
V \W}, ν(W )− := {j ∈ W | ∃ij ∈ A : i ∈ V \W}, Nin := {n ∈ N |Tn ⊂ W},
Nout := {n ∈ N |Tn ∩ W = ∅}, and Nr := N\{Nin ∪ Nout}.

We are going to construct a new digraph GW = (VW , AW ) as follows:

◮ GW contains all nodes and edges of the graph (W,A(W )).

◮ For each net in Nin we construct an artificial node and add it to GW .
Denote the set of these nodes as V in

W .

◮ For nets in Nout we construct two artificial terminals and add it to GW .
Denote the set of these two nodes as V out

W .

◮ For each net n in Nr we construct an artificial terminal tan and add it
to GW . Denote the set of these nodes as V r

W .

◮ Connect each node in V in
W ∪V out

W ∪V r
W to ν(W )− and each node in ν(W )+

to V in
W ∪ V out

W ∪ V r
W and add to GW .

Let NW be the set of all nets who have at least a terminal in W , i.e., NW =
Nin ∪ Nr. For each i ∈ NW , denote

TW
i :=

{

Ti if i ∈ Nin

{tai } ∪ Ti ∩ VW otherwise.

We construct an artificial net N + 1 with two terminals TN+1 = V out
W . Define

the weights of edges as follows

c̄n
ij =

{

1 if n = N + 1 and i, j ∈ W

0 otherwise.

Now we have a set of trees to pack on the graph GW of |NW | + 1 nets with
terminal sets TW

i , i ∈ NW , and TN+1. If there exists no node-disjoint solution
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then the cut induced by W is δ−-critical. Otherwise, we have a criterion to
verify whether a node in W does not belong to a net in Nout in each feasible
solution of the stp problem. To do this, we have to find a set of trees with the
largest total length. Since the length of each tree corresponding to a net in NW

is 0, only the length of the tree corresponding to net N + 1 has to be taken
into account. This can be formulated as an Integer Program by modifying the
multicommodity flow formulation of the stpp problem:

max
∑

(i,j)∈AW

c̄N+1
ij y

tN+1

ij (16)

(6) − (11) with V = VW , A = AW ,N = N̄W , T = T̄W , R = R̄W (17)

x̄N+1
rN+1j + x̄N+1

jtN+1
≤n−

j , ∀j ∈ W : (rN+1, j), (j, tN+1) ∈ AW , n−
j ≤ 1, (18)

where rN+1 and tN+1 are the root and another terminal of net N + 1, N̄W :=
NW ∪ {N + 1}, R̄W is the set of all roots of nets in N̄W , TW := ∪i∈N̄W

TW
i ,

and n−
j := |{(i, j) ∈ A | i 6∈ W}|. The optimal value, denoted L, is an upper

bound of the length of each path entering and leaving W , which is used by
some net in Nout, in each feasible solution of (5). For each node v ∈ W , assume
a lower bound lv of each node disjoint path connecting two points in ν(W )
and containing v is known. For example, a lower bound can be obtained by
calculating shortest paths from v to every node in ν(W ), and choosing lv as the
sum of the lengths of two shortest of these paths. If L < lv then no net in Nout

can visit v in a solution of (5), i.e.,

x̄n
uv = x̄n

vu = 0, ∀n ∈ Nout,∀v ∈ W,u ∈ V : L < lv, uv ∈ A.

Note that this problem is easier to solve than the original stpp problem since
the sizes of the graph and the number of terminals are smaller than for the
original problem.

3.2 Grid inequalities

The flow formulation does not ensure

∑

(i,j)∈δ−j

x̄n
ij ≤

∑

(j,k)∈δ+

j

x̄n
jk for all j ∈ V \ (T \ R), n ∈ N (19)

as shown in [19, 25].

The grid inequality described in [13] basically states that it is not possible for
two nets T1 and T2 to cross each other in a 2 × h, h ≥ 2 grid graph. As
shown in Figure 4(a), there exists a non integral solution for the lp relaxation
of the partitioning model in this case (unit edge weights, light gray edges mean
x1

ij = 0.5, medium gray edges indicate x2
ij = 0.5). For an integral solution

some path outside the 2 × h grid is required. In the multicommodity flow
formulation of the directed node disjoint model it is still possible to find a non-
integral solution to the lp relaxation, even though the path outside the 2 × h

9



(a) undirected Knock-knee (b) directed node disjoint

Figure 4: Grid inequalities

grid is already present. Figure 4(b) shows the smallest example of this solution
(unit arc weights, light gray arcs correspond to y1

ij = 0.5, medium gray arcs

indicate y2
ij = 0.5). Note that at least a 3× h grid plus the two terminals of T2

are needed for this configuration to occur.

0.5

0.50.5

0.5

r1

t1

r2

t
2

0.5

0.5 0.50.5

Figure 5: lp relaxation solution violates (20)

For the node disjoint crossed-layer model there is a class of simple but very
effective cuts. Consider a stpp problem of two nets, each has two terminals as
in Figure 5. The flows shown in the picture correspond to an optimal solution
of the lp relaxation. However, it can be seen that if none of the two flows
(r1, t1) and (r2, t2) leaves the upper layer, they have to cross each other, i.e.,
the node disjoint intersection condition is violated.

Given a stpp problem with a set of roots R and a set of terminals T . The
pairs (s1, t1), (s2, t2) ∈ T × (T\R) are called crossed if these four terminals
lie on the boundary and in the same layer, σ(s1) = σ(t1), σ(s2) = σ(t2),
σ(s1) 6= σ(s2), and moreover the line segments (s1, t1) and (s2, t2) cross each
other. Let C be the set of all crossing pairs and for each node v we denote vz

as the layer number node v belongs to. Then the following inequality is valid
for (5):

∑

ij∈A
iz=(r1)z ,jz 6=iz

yt1
ij + yt2

ij ≥ 1, ∀
(

(r1, t1), (r2, t2)
)

∈ C(R), (20)

where C(R) :=
{(

(s1, t1), (s2, t2)
)

∈ C | s1, s2 ∈ R
}

. Equation (20) means that
at least one of the two flows (r1, t1) and (r2, t2) has to leave the layer containing
these terminals. The triple (r1, t1), (r2, t2), (r3, t3) ∈ R × (T\R) is called a
crossing triple if each two of them are a crossing pair in C(R). Let CT be the
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set of all crossing triples then the following inequality is valid for (5):

∑

ij∈A
iz=(r1)z ,jz 6=iz

yt1
ij + yt2

ij + yt3
ij ≥ 2, ∀

(

(r1, t1), (r2, t2), (r3, t3)
)

∈ CT . (21)

This is a direct implication from summing up the three corresponding inequal-
ities of type (20) taking into account that the variables have to be integral.

We now consider another class of valid cuts. Again we assume that all terminals
lie on the boundary. Let u and v be two terminals in one layer of a net n and
the root of this net does not belong to the layer containing u and v. If there
exist a root r and a terminal t of another net such that (u, v) and (r, t) cross
each other, i.e.,

(

(u, v), (r, t)
)

∈ C, then the following inequality is valid for (5)

∑

ij∈A
jz=tz ,jz 6=iz

yt
ij + xn

ij ≥ 2. (22)

The following valid cut is similar to (22) but in this case we need two terminal
pairs and three terminals of a third net. We consider an arbitrary net n with
at least three terminals and four terminals r1, t1, r2 and t2 of two other nets n1

and n2, σ(r1) = σ(t1) = n1 6= n, σ(r2) = σ(t2) = n2 6= n, n1 6= n2, with
r1, r2 ∈ R. If there exist three terminals u, v and w of net n lying in the same
layer such that

∀{s, t} ⊂ {u, v,w}, s 6= t :
(

(s, t), (r1, t1)
)

∈ C or
(

(s, t), (r2, t2)
)

∈ C, (23)

then the following inequality is valid:

∑

ij∈A
jz=(t1)z ,jz 6=iz

yt1
ij + yt2

ij + xn
ij ≥ 2. (24)

Since all terminals lie on the boundary, each line segment between two termi-
nals, which crosses an edge of a ”triangle” of three terminals (including the case
that they lie in a line), crosses exactly two edges of this triangle. Therefore,
condition (23) just ensures that the line segments (r1, t1) and (r2, t2) cross the
triangle (u, v,w) in two different pairs of edges. Inequality (24) means that the
total number of vias used by the flows (r1, t1) and (r2, t2) and the net n to enter
the layer containing these terminals is at least two. The proof can be done by
case differentiation taking into account that the flows between (u, v,w) form a
tree. See Appendix A for details. Moreover, one can prove that, if u, v and w

satisfy the above condition and u, v and w do not lie in the same layer as the
root of net n then the following inequality is valid:

∑

ij∈A
jz=(t1)z ,jz 6=iz

yt1
ij + yt2

ij + xn
ij ≥ 3. (25)

This proof can also be found in Appendix A. The above cuts are special cases
of the following inequalities:
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Given an arbitrary net n and k − 1 terminal pairs (ri, ti), i = 1, . . . , k − 1,
of k − 1 pairwise different nets, which are also different from n. Let ri be the
roots of these nets.

If there exist k terminals of a net n lying in a same layer such that each edge
of the convex k-polygon spanned by these k terminals is crossed by at least one
line segment (rj , tj) for some j and for each i the line segment (ri, ti) is crossed
by at least an edge of the polygon, then the following inequality is valid for (5):

∑

ij∈A
jz=(t1)z ,jz 6=iz

(

k−1
∑

l=1

y
tl
ij

)

+ xn
ij ≥ k − 1, (26)

and if these k of n terminals do not lie in the layer containing the root of net n

then the following also holds

∑

ij∈A
jz=(t1)z ,jz 6=iz

(

k−1
∑

l=1

y
tl
ij

)

+ xn
ij ≥ k. (27)

The proof follows via induction.

The next type of valid inequality does not require any of the terminals to be
the root of the net they belong to. For arbitrary three terminals u1, v1 and w1

of a net n1, and arbitrary three terminals u2, v2 and w2 of a net n2 6= n1, if

∀{s1, t1} ⊂ {u1, v1, w1},∃{s2, t2} ⊂ {u2, v2, w2} :
(

(s1, t1), (s2, t2)
)

∈ C, (28)

and

∀{s2, t2} ⊂ {u2, v2, w2},∃{s1, t1} ⊂ {u1, v1, w1} :
(

(s1, t1), (s2, t2)
)

∈ C, (29)

i.e., the two triangles (u1, v1, w1) and (u2, v2, w2) cross each other, then the
following inequality is valid for (5):

∑

ij∈A
jz=(u1)z ,jz 6=iz

xn1

ij + xn2

ij ≥ 2 + δ1 + δ2, (30)

where δi is 1 if the root of net ni does not lie in the same layer as ui, vi and wi,
and 0 otherwise.

4 Computational results

In this section, we present computational results obtained by generating the
integer program resulting from the directed multicommodity flow formulation
with Zimpl [17] and then solving it with cplex 12.3. All computations are
done on a 48 GB RAM dual quad-core Intel Xeon X5672 at 3.20 GHz with
TurboBoost active and Hyperthreading deactivated. Since the crossed-layer
model proved to be much harder to solve, we used all eight cores, while just one
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Name Size N |T | Variables Constrains Non-zeros

Knock-knee one-layer model

augmenteddense-1 16×18 19 59 70,918 62,561 215,158
dense-1 15×17 19 59 63,366 56,057 192,246
difficult-1 23×15 24 66 94,776 78,292 275,712
modifieddense-1 16×17 19 59 67,260 59,410 204,060
moredifficult-1 22×15 24 65 89,440 73,299 258,688
pedagogical-1 15×16 22 56 56,560 44,909 159,580
terminalintens-1 23×16 24 77 119,196 106,403 365,328

Node disjoint two-aligned-layer model

augmenteddense-2 16×18 19 59 97,940 91,587 326,438
difficult-2 23×15 24 66 131,604 115,399 427,536
moredifficult-2 22×15 24 65 123,890 107,779 400,952
pedabox-2 15×16 22 56 77,168 65,067 245,576
sb11-20-7 21×21 7 77 197,274 243,726 751,884
sb3-30-26d 31×31 29 87 485,212 437,515 1,607,464
sb40-56 41×41 56 112 1,111,264 755,307 3,318,000
sb60-60 61×61 60 149 3,290,218 2,651,399 10,489,672
terminalintens-2 23×16 24 77 164,010 154,947 550,104

Node disjoint two-crossed-layer model

augmenteddense-2 16×18 19 59 153,664 127,257 522,421
difficult-2 23×15 24 66 168,198 121,349 607,212
moredifficult-2 22×15 24 65 204,880 159,488 662,128
pedabox-2 15×16 22 56 95,592 64,184 341,178
sb11-20-7 21×21 7 77 326,634 362,166 1,245,020
sb3-30-26d 31×31 29 87 805,132 651,415 2,667,643
sb40-56 41×41 56 112 1,845,984 1,125,947 5,513,032
sb60-60 61×61 60 149 5,909,158 4,400,252 28,425,308
terminalintens-2 23×16 24 77 271,348 229,526 909,016

Node disjoint three-aligned-layer model

dense-3 15×17 19 59 144,668 131,412 482,722
modifieddense-3 16×17 19 59 154,580 140,307 515,986
taq-3 25×25 14 35 115,640 98,508 368,760

Node disjoint three-crossed-layer model

dense-3 15×17 19 59 229,392 189,570 764,941
modifieddense-3 16×17 19 59 245,086 202,434 817,609
taq-3 25×25 14 35 178,850 137,337 570,570

Node disjoint four-aligned-layer model

alue-4 25×25 22 55 294,084 236,417 933,830

Node disjoint four-crossed-layer model

alue-4 25×25 22 55 443,988 326,637 1,409,982

Table 1: stpp instances
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core was utilized for the other models. Still, for the crossed-layer models we will
use minutes as the unit for reporting time, in contrast to seconds for the other
models. As we had expected from earlier experiments the MCF-Cuts [26, 1]
introduced by cplex 12 had no impact on solving the instances. The reason is
that the models used in this paper are not capacitated. If not noted otherwise
cplex was used in default mode with integer optimality gap tolerance set to
0.0.

Table 1 lists all Steiner tree packing problem instances we have considered. N

denotes the number of nets, and |T | the total number of terminals. The columns
labeled Variables, Constraints, and Non-zeros list the number of variables, con-
straints, and non-zero entries in the constraint matrix of the generated integer
programs before preprocessing.

B&B Time LP
Name Nodes [s] relaxation Arcs

augmenteddense-1 63 1,649 466.5 469
dense-1 150 1,199 438.0 441
difficult-1 1 17 464.0 464
modifieddense-1 1 29 452.0 452
moredifficult-1 1 12 452.0 452
pedabox-1 1 7 331.0 331
terminalintens-1 1 96 535.0 536

Table 2: Results for the Knock-knee-one-layer model

4.1 Results for the Knock-knee one-layer model

Table 2 shows the results for the Knock-knee one-layer model. B&B Nodes
denotes the number of Branch-and-Bound nodes including the root node eval-
uated by cplex. The column labled Time shows the consumed CPU time in
secounds. lp relaxation lists the objective function value of the initial lp re-
laxation of the root node before any cuts applied by cplex. Finally, arcs is the
total number of arcs used in the optimal solution which for one-layer models is
equivalent to the optimal objective value.

As we can see from the table, the lp relaxation of the flow model is rather strong.
This is in line with other reported results including [24, 15]. Since for difficult-1,
modifieddense-1, moredifficult-1, and pedabox-1 the relaxation already provides
the optimal value, it is possible to solve these instances without any branching.
For terminalintens-1 the relaxation is one below the optimum, but cplex is able
to push the lower bound up by generating Gomory rounding and 0-1/2-Chvatal-
Gomory cuts. The number of B&B nodes and therefore the computing time
depends very much on the branching decisions taken. During our experiments
the solutions were always found in the tree and not by heuristics. By using
improved settings, like switching off the heuristics and just trying to move the
best bound the number of nodes needed for augmenteddense-1 and dense-1 can
be at least halved.
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4.2 Results for the node disjoint multi-aligned-layer model

Table 3 shows results for the node disjoint multi-aligned-layer model. Since this
is a multi-layer model we have to assign costs to the vias. These are given in the
column labeled Via-cost. The column labled LP relaxation gives the objective
value of the initial lp relaxation. The next three columns list the numbers of
vias, “regular” arcs, and vias+arcs in the optimal solution.

B&B Time Via- LP Vias
Name Nodes [s] cost relaxation Vias Arcs +Arcs

augmenteddense-2 1 32 1 504.0 35 469 504
augmenteddense-2 1 20 1000 35,469.0 35 469 504
augmenteddense-2 1 67 0.001 469.035 35 469 504

difficult-2 1 23 1 526.0 56 470 526
difficult-2 7 181 1000 50,310.2727 51 484 535
difficult-2 1 50 0.001 468.8363333 63 469 532

moredifficult-2 5 113 1 518.60 61 461 522
moredifficult-2 37 705 1000 50,276.8465 53 481 534
moredifficult-2 1 38 0.001 460.9916667 61 461 522

pedabox-2 1 10 1 390.0 47 343 390
pedabox-2 11 34 1000 45,885.1333 47 343 390
pedabox-2 14 78 0.001 341.4601533 47 343 390

terminalintens-2 1 28 1 596.0 59 537 596
terminalintens-2 1 31 1000 55,562.0 55 562 617
terminalintens-2 1 28 0.001 537.059 59 537 596

dense-3 1 30 1 471.0 35 436 471
dense-3 1 21 1000 35,436.0 35 436 471
dense-3 1 44 0.001 436.035 35 436 471

modifieddense-3 1 24 1 485.0 35 450 485
modifieddense-3 1 26 1000 35,450.0 35 450 485
modifieddense-3 1 33 0.001 450.035 35 450 485

Table 3: Results for the node disjoint multi-aligned-layer model (part 1)
In case of unit via costs, the objective value of the lp relaxation is equal to
the objective value of the optimal integer solution for all instances except for
moredifficult-2 . The value of the lp relaxation for moredifficult-2 is 518.6 (op-
timal 522). This is weaker than the value reported in [13]3, while for pedabox-2
the relaxation is stronger than reported. The instances where the lp relaxation
does not reach the optimum are different ones from the Knock-knee-one-layer
model.

The dense [23] and modifieddense [8] problems are not solvable within the Man-
hattan one-layer model as reported in [13]. Therefore, no solution in the node
disjoint two-aligned-layer model is possible. As can be seen in Figures 9(a)
and 9(b) both problems have a three-layer solution with only one net using

3 This indicates that some of the strengthening cuts used by [13] to tighten the undirected
partitioning formulation can also be used to tighten the directed flow formulation.
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the third layer at a single point. To our knowledge, this is the first time these
solutions have been computed.

4.2.1 Via minimization

Traditionally via minimization is viewed as a separate problem after the routing
has taken place [9]. Since we work with multi-layer models via minimization is
part of the routing. As can be seen in Table 3 we tried the “classical” instances
with three different cost settings for the vias. First unit costs were used to
minimize the total number of arcs, including vias. Next, the number of vias
was minimized by setting the cost to 1,000, which is above the total cost of all
“regular” arcs, ensuring that a global minimum is reached. Finally, the cost of
each via was set to 0.001, effectively minimizing the number of “regular” arcs.
This results in solutions that have the same number of arcs as reported in [13]
for the Manhattan one-layer model.

Interestingly, the number of vias is constant for augmenteddense-2, pedabox-
2, modifieddense-3, and dense-3. For the other instances, minimization of the
number of vias always results in detours, i. e., higher total number of arcs used.

4.2.2 New instances

All the instances presented so far are relatively old and can be solved in less
than 12 minutes with cplex default settings and in less than 5 minutes with
adapted settings. To get an outlook on how far our approach will take us, we
tried some new instances. The results can be found in Table 4.

LP B&B Time LP Vias
Name solver Nodes [s] relaxation Vias Arcs +Arcs

sb11-20-7 Simplex 1 6,935 593.0 107 486 593
Barrier 1 144

sb3-30-26d Simplex 1 1,499 1416.0 130 1,286 1,416
Barrier 1 417

sb40-56 Simplex 1 276 2,452.0 166 2,286 2,452
Barrier 1 598

sb60-60 Simplex 1 90,692 4,698.0 185 4,513 4,698
Barrier 1 27,418

taq-3 Simplex 12 85 429.0 66 371 437
Barrier 9 146

alue-4 Simplex 10 658 784.2857 117 668 785
Barrier 5 782

Table 4: Results for the node disjoint multi-aligned-layer model (part 2)

sb11-20-7, sb3-30-26d, sb40-56, and sb60-60 are all randomly generated switch-
box instances. sb40-56 is about four times the size of the “classical” instances
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and the resulting ip has more than three million non-zero entries in the con-
straint matrix. sb60-60, having 10 million non-zeros, is again about 3 times
larger than sb40-56. sb11-20-7 is noteworthy because all nets have eleven ter-
minals. This value is substantially higher compared to the “classical” instances
where the nets have at most six terminals. For all four instances the value of
the lp relaxation turned out to be equal to the value of the integer optimal
solution. Pictures of the solutions can be found in Figures 13, 14, 15, and 16.
The via cost was set to one in all instances.

taq-3 (Figure 17) and alue-4 (Figure 18) are general routing problems based on
circuits described in [16]. alue-4 is the only instance so far that requires four
aligned layers. In both instances the lp relaxation does not reach the value of
the optimum integer solution. Since for alue-4 the difference to the optimum is
less than 1, it is possible to solve this instance without branching if the optimal
solution can be found. The time needed to solve the root lp relaxation looks
quite high for instances of the given size. Also the number of simplex iterations
needed to reoptimize the subproblems is often several thousand which is quite
above the empirical expectation. Looking at the solver logs, obviously, the
solver experiences many degenerate pivots. Regarding reoptimization another
reason might be that moving from one optimal solution to a new one after
fixing a variable requires many variables to change there value. Variables with
non-integral values imply that at least two nets are competing for a route. By
fixing such a variable at least one net has to be rerouted, possibly several. This
leads to a high number of variables that have to change their value.

Using the barrier or interior-point algorithm especially to solve non-root branch-
and-bound nodes is quite uncommon as the algorithm is in general not restart
capable, i. e., requires to solve each subproblem from scratch. Nevertheless, we
observed for several instances that it was faster to solve the lp relaxations from
scratch with the barrier algorithm than to reoptimize with the dual simplex
algorithm.

For the instances in Table 4, we tested the effect of using the Barrier instead
of the Dual Simplex algorithm to solve the root and the subproblems. As can
be seen, the Barrier is much faster in solving the initial root relaxation. For
taq-3 it takes only five seconds, while the Simplex needs 30. Also the Barrier
setting for some reason seems to lead to fewer B&B nodes in case branching is
necessary. Nevertheless, for taq-3 and alue-4 it can be seen that the time saved
in the root node is later lost in the subproblems, as the average time per node
is still higher than for the Simplex.

4.3 Results for the node disjoint multi-crossed-layer model

Finally, we will have a look at the crossed-layer models. As we will see, several
trends we observed when computing larger aligned-layer models in the previ-
ous section aggravated: cplex had more difficulties to find feasible solutions,
and the performance of the Simplex algorithm both on the root node and the
subproblems became much worse.
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Heur Total B&B LP Vias Best
Name [m] [m] Nodes relaxation Vias Arcs +Arcs Bound

modifieddense-3 – 88 121 476.9078 28 451 479
dense-3 – 55 77 461.8062 30 434 464
augmenteddense-2 108 269 227 492.6260 29 469 498
pedabox-2 18 112 3,027 353.4275 26 336 362
difficult-2 28 822 2,214 492.5417 39 464 503
terminalintens-2 97 3,103 3,453 573.1981 46 538 584
moredifficult-2 60 30,727 24,713 481.1991 38 455 493

sb11-20-7 (B) 1,907 2,271 50 489.7351 65 470 535 494.0174
sb3-30-26d (B) 411 6,032 425 1,310.3073 105 1,286 1,391 1,322.5219
sb40-56 (B) 720 8,588 524 2,266.5803 148 2,278 2,426 2,304.4128
sb60-60 (B) 457 4,289 1 4,548.9633 185 4,513 4,698 4,577.9898
taq-3 – 3 1 330.9000 22 311 333
alue-4 308 43,644 10,029 687.2966 71 628 699 696.4552

Table 5: Results for the node disjoint multi-crossed-layer model

It turned out to be much easier to find solutions to the aligned-layer models
than to the crossed-layer models. Based on this observation, instead of starting
solving the original multi-crossed layers model, we solve several models corre-
sponding to some sparser underlying grids, e.g., the multi-aligned layers grid.
After each step we obtain a feasible solution. We then added some edges to the
grid and resolve the problem corresponding to the new grid using the solution
from the previous step as a start value for the optimization problem. Further-
more, we fixed variables corresponding to edges in some region to the values of
some feasible solution, or fixed variables to zero using the methods described
in Section 3. The number of variables can be significantly reduced thereby.
This way we were able to successively improve a given feasible solution as we
changed the fixing region step by step.

For the instances listed in Table 5, except for dense-3, modifieddense-3 and
taq-3, the above method was used to provide cplex with a starting solution.
For all instances solved to optimality the provided solution turned out to be
already optimal. The time needed to compute these initial solution is given
under Heur.

To solve the instances we used 8 threads in opportunistic mode, the total times
needed including the heuristics is reported in column Total as minutes of wall
clock time. The optimization emphasis of cplex was set to ”optimality”, cut
generation was set “aggressive” for Gomory-, 0-1/2-, and cover-cuts, all other
cuts were set to “moderate”. Furthermore, we explicitly added cuts (20)–(30)
presented in Section 3.

While it is possible to find reasonable solutions with our heuristics proving op-
timality is still hard task. The first part of the table is ordered by increasing
difference between the lp relaxation and the optimum value. As can be seen
this is reflected quite well in the number of B&B nodes needed to prove op-
timality. While the cuts we presented in this paper proved quite helpful, the
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main reason for the long running time is that solving the node lps is very time
consuming. For example, the number of B&B nodes that cplex needs to solve
the instance terminalintens-2 is merely 3,453. However, it takes 51.7 hours to
solve the problem and 43.3 hours only for the first 2000 nodes. For the sb* in-
stances the performance of the Simplex algorithm degregated to the point where
is became useful to use the Barrier instead to solve the lp relaxations. This is
indicated by a (B) after the instance name. The Barrier of course is capable of
utilizing all 8 cores, but will not return a vertex solution of the lp. Therefore,
a procedure known as cross-over is employed by the solver afterwards. This
procedure is very similar to a Simplex algorithm and therefore only runs se-
quentially. In particular for sb11-20-7 the cross-over for the root lp took 82
seconds in comparison to the 60 seconds the barrier algorithm needed to solve
the lp in the first place. For sb40-56, the lower bound of 2,304.4128 is reached
after 65 nodes. There was no change until the computation was aborted 460
nodes and nearly 4 days later, i. e., one core needs more than 1.5 hours to solve
single lp relaxation. The final challenge is sb60-60. Here the barrier algorithm
needs about 212 minutes on 8 threads to solve the initial root relaxation and
then another 45 minutes to perform the crossover procedure. In the following
two days of computation, cplex did not finish even the root processing phase.
The best solution knwo is identical to the one computed for the aligned-layer
model. Regarding taq-3 it should be noted that it is solved by a combination
of generating cutting planes and preprocessing. cplex performs two restarts
until the lower bound reaches the optimum.

Figure 6 shows the primal and dual bounds during the solving process of the in-
stance pedabox-2 with cplex using default setting and cplex using our heuris-
tics, valid cuts, and variables elimination. Clearly, our approach improves both
primal and dual bounds. For pedabox-2 with unit via-cost, our heuristics found
an optimal solution after 17.8 minutes, while cplex alone could not find the
optimal value after more than 80 hours. For this problem, our approach (crit-
ical and crossing cuts and providing the solution form the special heuristics)
gives a dual bound of value 358.2311 directly after the root node, while default
cplex reaches this value only after 46.1 hours and 158,507 nodes. We stop
solving with default cplex after 83.33 hours and 300,516 nodes, and obtain a
dual bound of 358.7628. This value is already reached by our approach after
49.6 minutes and 471 nodes.

As we mentioned in Section 4.2, there exists a three layers solution for modifieddense-
3 in the multi-aligned-layer model. Only two layers are needed for the multi-
crossed-layer model, see Figure 11.

Figure 10–12 show the optimal solutions of dense-3, modifieddense-3, and pedabox-
2 in knock-knee-one-layer and multi-crossed-layer models. For the knock-knee-
one-layer model, we use connectors as mentioned in Section 1. The numbers of
regular arcs needed by the solutions of dense-3 and modifieddense-3 in multi-
crossed-layer model are less than the ones in knock-knee-one-layer model. But
for pedabox-2 it is converse, i.e., the number of regular arcs needed by the solu-
tion of pedabox-2 in the multi-crossed-layer model is more than the one in the
knock-knee-one-layer model.
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Figure 6: pedabox-2 with unit via cost – primal and dual bounds

5 Conclusion and outlook

Our results represent a significant improvement over previous methods, where
it was impossible to solve, or even find good feasible solutions to, the instances
in the crossed-layer model. Especially for the aligned-layer case the linear relax-
ation of the flow formulation proved to be very strong. In general it is possible
now to solve multi-layer models that capture more features of the original real-
world application.

Still, there are several areas where improvements seem possible: Very often the
lp relaxation already yields the value of the optimal integer solution but is not
integral. Can this be improved by either problem specific valid inequalities or
general cuts? If there is a gap, can classes of violated inequalities be found to
improve this? Furthermore, the number of B&B nodes needed depends very
much on the branching decisions taken; Would a problem specific branching
selection be helpful? Alternatively, can the use of a pivot and complement type
heuristic, like those described in [2, 3], help to discover an integral solution once
the optimal objective is reached?

The flow formulation itself still has some unexploited freedom. Computational
experiments show that changing the root vertices of the nets influences the com-
putational time, especially the effectiveness and number of our cuts. However,
it is an open question how to choose the roots in a beneficial way.

Proving optimality could significantly speed up if it were possible to compute
a good lower bound on the number of vias in each feasible solution.

Finally, the biggest bottleneck from the computational side is the difficulty of
solving the lp relaxations quickly. Obviously, the instances we have used here
define a class of hard to solve lp problems. Any progress in lp solving would
directly translate into better solvability of the stpp. One possible way is to
use parallel computers. Since the time to solve a single lp is often several min-
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utes even the use of a distributed memory system seems possible. Nevertheless,
one would encounters severe ramp-up and ramp-down problems with these in-
stances, as the number of open nodes to distribute remains quite small and any
further progress on the modelling side will further reduce the number of nodes
that have to be computed.
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A Proof of the valid cuts

In this section we give proofs of the validity for two classes of cuts presented in
Section 3. The other cuts can be proved similarly.

Proposition 1 For an arbitrary net n with at least three terminals and four
terminals r1, t1, r2 and t2 of two other nets n1 and n2,

σ(r1) = σ(t1) = n1 6= n, σ(r2) = σ(t2) = n2 6= n, n1 6= n2,

with r1, r2 ∈ R, if there exist three terminals u, v and w of net n lying in a
same layer such that

∀{s, t} ⊂ {u, v,w}, s 6= t :
(

(s, t), (r1, t1)
)

∈ C or
(

(s, t), (r2, t2)
)

∈ C, (31)

then the following inequality is valid

∑

ij∈A
jz=(t1)z ,jz 6=iz

yt1
ij + yt2

ij + xn
ij ≥ 2. (32)

Proof: In each feasible solution, the flows between r and the terminals u, v

and w form a tree. The minimal subtree of this tree containing the terminals u,
v and w has one of the forms shown in Figure 7, where each edge represents a
node disjoint path. One can easily prove that (32) holds. We only consider the

u

v

w

(a) Case 1

u

v w

(b) Case 2

u

v w

a

(c) Case 3

u v

w

b

(d) Case 4

u

b

c

wv

(e) Case 5

u w
v

b

(f) Case 6

Figure 7: The 6 possible cases.

case 5 as an example. Let us denote the layer that contains u, v, and w by L.
We consider the following three cases:

Case 5.1 – c 6∈ L: That means each of the two flows (c, v) and (c, w) has to
enter the layer L at least once, i.e., (32) holds.

Case 5.2 – b 6∈ L and c ∈ L: That means each of the two flows (b, u) and (b, c)
has to enter the layer L at least once, i.e., (32) holds.
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Case 5.3 – b ∈ L and c ∈ L: Since each of the three paths (u, v), (v,w),
and (w, u) is crossed by either (r1, t1) or (r2, t2) and b, c ∈ L, at least two
of the six flows (r1, t1), (r2, t2), (b, u), (b, c), (c, v), or (c, w) have to leave the
layer L and enter this again, otherwise the node disjoint intersection constraint
is violated. By summing up we have that (32) holds. �

Proposition 2 For an arbitrary net n with at least three terminals and four
terminals r1, t1, r2 and t2 of two other nets n1 and n2,

σ(r1) = σ(t1) = n1 6= n, σ(r2) = σ(t2) = n2 6= n, n1 6= n2,

with r1, r2 ∈ R, if there exist three terminals u, v and w of net n lying in a
same layer, which does not contain the root r of net n, such that

∀{s, t} ⊂ {u, v,w}, s 6= t :
(

(s, t), (r1, t1)
)

∈ C or
(

(s, t), (r2, t2)
)

∈ C, (33)

then the following inequality is valid
∑

ij∈A
jz=(t1)z ,jz 6=iz

yt1
ij + yt2

ij + xn
ij ≥ 3. (34)

Proof: In each feasible solution, the flows between r and the terminals u, v

and w form a tree with root r. This tree has one of the forms in Figure 8,
where each edge represents a node disjoint path. We only consider the case
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w
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u c
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r
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u w
v

b

(i) Case 9

Figure 8: Nine cases

7. Other cases can be treated with similar arguments. Let us denote the layer
that contains u, v, and w by L. We consider the following three cases:

Case 7.1 – b ∈ L: That means the flow from r to b has to enter the layer L at
least once. The subtree with root b is exactly the case 5 in the proof of Theorem
1. Therefore, (34) holds.
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Case 7.2 – b 6∈ L and c ∈ L: That means each of the two flows (b, u) and (b, c)
has to enter the layer L at least once. Since the path between v and w is
crossed by either (r1, t1) or (r2, t2) and c belongs to L, at least one of the four
flows (r1, t1), (r2, t2), (c, v), or (c, w) has to leave the layer L and enter this
again. By summing up we have that (34) holds.

Case 7.3 – b 6∈ L and c 6∈ L: That means each of the three flows (b, u), (c, v),
and (c, w) has to enter the layer L at least once, i.e., (34) holds. �

B Solutions

(a) dense-3 (b) modifieddense-3

Figure 9: Node disjoint three-aligned-layer solutions

(a) Knock-knee-one-layer (b) Three-crossed-layer

Figure 10: Solutions of dense-3
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(a) Knock-knee-one-layer (b) Two-crossed-layer

Figure 11: Solutions of modifieddense-3

(a) Knock-knee-one-layer (b) Two-crossed-layer

Figure 12: Solutions of pedabox-2

(a) Multi-aligned-layer (b) Multi-crossed-layer

Figure 13: sb11-20-7
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(a) Multi-aligned-layer

(b) Multi-crossed-layer

Figure 14: sb40-56
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Figure 15:
sb3-30-26d
aligned-layer

Figure 16:
sb60-60
aligned-layer
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(a) Multi-aligned-layer

(b) Multi-crossed-layer

Figure 17: taq-3

(a) Multi-aligned-layer

(b) Multi-crossed-layer

Figure 18: alue-4
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