
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

STEFAN HEINZ? JENS SCHULZ1 J. CHRISTOPHER BECK2

Using dual presolving reductions to
reformulate cumulative constraints

? Supported by the DFG Research Center MATHEON Mathematics for key technologies in Berlin.
1 Technische Universität Berlin, Institut für Mathematik, Berlin, Germany
2 Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Canada

ZIB-Report 12-37 (October 2012)

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

USING DUAL PRESOLVING REDUCTIONS TO REFORMULATE
CUMULATIVE CONSTRAINTS

STEFAN HEINZ, JENS SCHULZ, AND J. CHRISTOPHER BECK

ABSTRACT. Dual presolving reductions are a class of reformulation techniques that re-
move feasible or even optimal solutions while guaranteeing that at least one optimal solu-
tion remains, as long as the original problem was feasible. Presolving and dual reductions
are important components of state-of-the-art mixed-integer linear programming solvers. In
this paper, we introduce them both as unified, practical concepts in constraint programming
solvers. Building on the existing idea of variable locks, we formally define and justify the
use of dual information for cumulative constraints during a presolving phase of a solver.
In particular, variable locks are used to decompose cumulative constraints, detect irrele-
vant variables, and infer variable assignments and domain reductions. Since the computa-
tional complexity of propagation algorithms typically depends on the number of variables
and/or domain size, such dual reductions are a source of potential computational speed-up.
Through experimental evidence on resource constrained project scheduling problems, we
demonstrate that the conditions for dual reductions are present in well-known benchmark
instances and that a substantial proportion of them can be solved to optimality in presolv-
ing – without search. While we consider this result very promising, we do not observe
significant change in overall run-time from the use of our novel dual reductions.

1. INTRODUCTION

The practice of automatically reformulating and improving models, called presolving, is
an important step in modern mixed-integer linear programming (MIP) solvers. Presolving
takes place before the tree search starts and tries to reduce the size of the model by, for ex-
ample, removing irrelevant information such as redundant constraints or already-assigned
variables; by decomposing or reformulating constraints (e.g., tightening the bounds of the
variables or strengthening coefficients of the constraints); and by extracting structural in-
formation such as cliques (sets of binary variables that must sum up to one) that can be used
by branching heuristics or cutting plane generation. Presolving collects global structure in-
formation and transforms the given problem instance into an equivalent instance w.r.t. the
optimal value, that is potentially easier to solve. In the operations research community, pre-
solving has been shown to be an important ingredient for linear programming [1, 2, 3] and
mixed-integer programming [4]. An overview of presolving techniques for mixed-integer
linear programs is given in [5, 6, 7].

In contrast to standard constraint propagation, but similar to symmetry breaking, dual
reductions are inference techniques that reformulate a feasible problem instance by remov-
ing feasible or even optimal solutions while guaranteeing that at least one optimal solution
remains.

Achterberg [5] defined a mechanism to implement dual reductions based on global in-
formation called variable locks. Essentially, a variable lock represents information about
the relationship between a variable and a set of constraints. Achterberg used this informa-
tion during presolving to infer dual reductions for mixed-integer linear programs within a
constraint-based system.

Our thesis in this paper paper is two-fold:

Supported by the DFG Research Center MATHEON Mathematics for key technologies in Berlin.
1

2 STEFAN HEINZ, JENS SCHULZ, AND J. CHRISTOPHER BECK

(1) The use of presolving and the concept of dual reductions are valuable components
of automated problem reformulation in constraint programming (CP).

(2) Variable locks form a practical and useful source of global information upon which
dual reductions in CP can be based.

To support this thesis, we present a straightforward generalization of variable locks for
constraint programming, in particular for constraint optimization problems (COP). We de-
fine the property of a constraint to be monotone in a variable and show how this property
can be used by a constraint to infer that it does not have to place variable locks on some of
its variables. In our study, we consider the cumulative constraint for resource-constrained
project scheduling problems, which, in general, must place locks on each variable in its
scope. We formalize and prove several conditions under which the cumulative constraint
can use global variable lock information to perform the following dual reductions: (i) de-
compose a cumulative constraint into two or more smaller cumulative constraints, (ii) re-
move a variable from the scope of a cumulative constraint, (iii) assign a variable, and
(iv) remove a value from a variable domain. We implement these dual reductions, together
with a scheduling-specific primal heuristic, as part of the presolving phase of the SCIP con-
straint integer programming solver [8]. Our extensive computational results on resource
constraint project scheduling problems convincingly demonstrate that a substantial propor-
tion of a well-known benchmark set can be reformulated and often solved in presolving.
Despite these positive results, however, our novel techniques do not result in a substantial
change in the mean time to solve the benchmarks.

The paper is organized as follows. In the next section, we provide the necessary back-
ground for our contributions in this paper and discuss the relationship between presolving,
variable locks, and dual reductions to techniques such as symmetry breaking and the use of
dominance rules. In Section 3, we generalize the variable locks for COPs by introducing
the property of a constraint to be monotone in a variable. Section 4 is devoted to the cu-
mulative constraint and the formulation and formal analysis of our novel dual reductions.
Computational results on resource constrained project scheduling problems are presented
in Section 5. In Section 6, we discuss our results before concluding in Section 7.

2. BACKGROUND

In this section, we review the concepts of presolving, primal vs. dual information,
variable locks, and the relation between the work presented in this paper and existing work
on symmetry breaking and dominance rules.

2.1. Presolving. As described in the introduction, presolving is a well-developed phase
of problem solving for state-of-the-art MIP solvers. The basic idea is that before the tree
search begins, computational effort is spent to reformulate the model to a smaller, simpler
form, to employ heuristics to find feasible primal solutions, and to gather global informa-
tion that can be used in the subsequent tree search.

In CP, while there has been extensive work in problem remodeling,1 the majority of
the work focuses on manual remodeling. Automated and semi-automated approaches have
looked at language-level transformations such as translation to a constraint model [9, 10,
11] and decomposed representations of global constraints in solvers that do not support
them [12]; the interpretation of richer annotated models [13, 14]; or symmetry breaking
(discussed in depth in Section 2.3).

We believe that the introduction of presolving as a generic phase of CP search will
provide a unifying framework, as some of this previous work can be implemented within
presolving. Further, specifically identifying a presolving phase immediately prompts re-
search into CP solving techniques that adapt and hybridize MIP presolving techniques.

1For example, the work that has appeared over the last decade at the Workshops on Constraint Modelling and
Reformulation.

USING DUAL PRESOLVING REDUCTIONS TO REFORMULATE CUMULATIVE CONSTRAINTS 3

Presolving may be particularly relevant to CP given the decomposed nature of the
knowledge representation embodied by global constraints. While the modularity of global
constraints has well-established strengths, it is precisely global information and higher-
level structure that cannot be represented due to the limited channels of communication
(i.e., variable domains) in standard CP. We speculate that efficient collection, represen-
tation, and exploitation of richer information as a standard solver phase is a promising
direction to increase the power of CP solvers.2

2.2. Primal vs. dual information. The operations research literature has distinguished
two types of presolving reductions: primal and dual. These terms stem from the duality
theory for linear programs [16] where each reduction in the primal linear program has a
counterpart in the corresponding dual linear program and vice versa. A solution that is
primal and dual feasible is an optimal solution for both linear programs. For other opti-
mization approaches, these terms have been generalized and are often used to distinguish
between reductions that remove infeasible assignments (primal) and those that remove
(potentially) feasible but dominated assignments (dual). Primal reductions are the usual
style of inference in CP, based on proving infeasibility for some variable assignments. In
contrast, dynamic symmetry breaking techniques are dual reductions.

2.3. Symmetry breaking and dominance rules. Unlike standard constraint propagation,
symmetry based techniques remove feasible or optimal solutions while preserving at least
one feasible or optimal solution. Symmetries therefore can be understood as a kind of dual
information. More generally, a valid dominance rule guarantees the following: if there
exists a solution, sA, with characteristic A, then there must also exists a solution, sB , with
characteristic B and sB is as good as or better than solution sA. Therefore, the problem
can be reformulated by removing any solution with characteristic A from the search space.

Much of the substantial body of work in CP on symmetry breaking (e.g., [17]) and
on dominance rules (e.g., [18]) introduces problem specific symmetry breaking or domi-
nance constraints. Automated detection of symmetries can also be done [19], albeit with
substantial computational expense.

We view automatic symmetry detection techniques as promising sources of dual in-
formation in presolving. The computational expense for detection, the extent to which
the symmetries exist, and the expense of breaking them will determine whether particular
approaches can be successfully used in a general CP solver.

Instead of symmetries as a source of dual information, we choose here to explore pre-
solving based on a weakened concept of constraint monotonicity and variable locks, a
mechanism for gathering information about this monotonicity. Our reasoning here is that
variable locks have a negligible computational overhead and have been shown to provide
substantial benefit in solving mixed integer linear programs within a constraint-based sys-
tem.

2.4. Variable locks. In most MIP solvers, dual reductions rely on the fact that it is easy
to access the set of constraints that restrict a given variable. The constraints are often
viewed as the rows of a matrix and the set of constraints relevant to a particular variable is
exactly those rows with a non-zero entry (i.e., coefficient) in the column that represents the
variable. This is called the column representation. Unfortunately, such a representation is,
in general, not available in constraint-based systems due to the more complex semantics of
a richer constraint language.

Variable locks were introduced to partially overcome this representational problem [5].
A constraint must declare a down-lock (resp. up-lock) on a variable if there exists a feasible
assignment such that reducing (resp. increasing) the value of that variable, while leaving all

2Search heuristics based on aggregate solution counting can be seen as an example of this direction [15].

4 STEFAN HEINZ, JENS SCHULZ, AND J. CHRISTOPHER BECK

other variables in the constraint scope unchanged, may violate the constraint. For example,
we are given two integer variables x1, x2 ∈ Z and the following linear constraint:

5x1 − 6x2 ≤ 8.

This constraint places an up-lock on x1 and a down-lock on x2 but, for example, no down-
lock is placed on x1 because reducing its value cannot change the constraint from feasible
to infeasible. In the standard implementation, each constraint places variable locks on a
sub-set of the variables in its scope and each variable maintains a count of the number of
constraints that may become violated if an assigned value is increased or decreased.

Figure 1 shows the presolving reductions for CPLEX 12.3 and SCIP 2.1.0 [8], a constraint-
based solver using variable locks. For the comparison we choose the MIPLIB2010 bench-
mark set [20] and run both solvers with and without dual presolving. The figure shows
that both solvers make heavy use of the dual information and that the variable locks are
almost as informative as the column representation. While CPLEX finds more reductions
than SCIP in few instances, it is not clear if the differences are related to the limitation of
the variable locks. In case of the instance ex9, SCIP reduces the number of variables and
constraints to almost 0% whereas CPLEX stays well above 50%.3 Overall, both solvers use
dual information to substantially reduce problem sizes. These results raise the question of
whether it is also possible and useful to do similar presolving for CPs.

3. COLLECTING DUAL INFORMATION FOR CONSTRAINT PROGRAMS

In this section, we generalize variable locks to constraint programming and show how
these locks can be used to infer dual reductions. As our results hold for both constraint
satisfaction and constraint optimization problems, we introduce them in the more general
optimization context.

Definition 3.1. A constraint optimization problem COP = (X,C,D, f) consists in solving

c? = min{f(X) | C(X) = 1, X ∈ D}
with D = D1 × · · · × Dn representing the domains of finitely many variables X =
(x1, . . . , xn), with n ∈ N, a finite set C = {C1, . . . , Cm} of constraints Ci : D → {0, 1},
i = 1, . . . ,m with m ∈ N, and an objective function f : D→ R.

We remark that for a given variable assignment, that is X ∈ D with xj ∈ Dj for
j = 1, . . . , n, a constraint C indicates whether it is feasible (one) or violated (zero). We
restrict ourselves w.l.o.g. to minimization problems to keep the notation clear. Before we
introduce variable locks, we define the term dual feasible which describes dual reductions
that are feasible for a COP.

Definition 3.2. Given a COP = (X,C,D, f). For any variable xj , a domain reduction
D′j ⊂ Dj is called dual feasible if the non-reduced COP is infeasible or there exists an
optimal solution to the COP where xj is assigned to a value in D′j .

Remark 3.3. Note that a dual feasible domain reduction is an extension of the unify-
ing framework for structural properties of constraint satisfaction problems introduced by
Bordeaux et al. [21]. Their conditions have to hold statically for each feasible (optimal)
solution. For example, a variable x is fixable to a domain value d if, for any feasible (opti-
mal) solution, an otherwise identical assignment that replaces the value of x by d is also a
feasible (optimal) solution.

This is not the case for a dual feasible reduction. We only assume that after applying
a domain reduction there still exists a feasible (optimal) solution for the original problem
if the problem is feasible at all. There is no restrictions on the assignments of the other

3In version 12.3 and earlier, CPLEX ends presolving earlier due to an internal work limit (Tobias Achterberg,
personal communication, November 30, 2011).

USING DUAL PRESOLVING REDUCTIONS TO REFORMULATE CUMULATIVE CONSTRAINTS 5

100% 50% 0%

Variables

50% 100%

Constraints with dual

100% 50% 0%

30n20b8
acc-tight5
aflow40b

air04
app1-2

ash608gpia-3col
bab5

beasleyC3
biella1
bienst2

binkar10 1
bley xl1
bnatt350

core2536-691
cov1075

csched010
danoint

dfn-gwin-UUM
eil33-2
eilB101

enlight13
enlight14

ex9
glass4

gmu-35-40
iis-100-0-cov
iis-bupa-cov
iis-pima-cov

lectsched-4-obj
m100n500k4r1

macrophage
map18
map20

mcsched
mik-250-1-100-1

mine-166-5
mine-90-10
msc98-ip
mspp16
mzzv11
n3div36
n3seq24

n4-3
neos-1109824
neos-1337307
neos-1396125

neos13
neos-1601936

neos18
neos-476283
neos-686190
neos-849702
neos-916792
neos-934278

net12
netdiversion

newdano
noswot

ns1208400
ns1688347
ns1758913
ns1766074
ns1830653
opm2-z7-s2

pg5 34
pigeon-10

pw-myciel4
qiu

rail507
ran16x16
reblock67

rmatr100-p10
rmatr100-p5

rmine6
rocII-4-11

rococoC10-001000
roll3000

satellites1-25
sp98ic
sp98ir

tanglegram1
tanglegram2

timtab1
triptim1
unitcal 7
vpphard

Variables

50% 100%

Constraintswith dual
without dual

SCIP 2.1.0CPLEX 12.3

FIGURE 1. Comparison of presolving reductions with and without
dual information for all instances of the MIPLIB2010 benchmark
set [20] using the MIP solver CPLEX 12.3 and the constraint-based
solver SCIP 2.1.0 [8]. For each instance we depict the remaining per-
centage of variables and constraints after presolving.

6 STEFAN HEINZ, JENS SCHULZ, AND J. CHRISTOPHER BECK

variables. However, most dual reductions known in MIP and the ones we introduce below
can be mapped to one of the conditions introduced by Bordeaux et al. [21].

While domains can be, for example, discrete, continuous, or even power sets, variable
locks rely on the variable domains being totally ordered w.r.t. to the relation “≤”. The
relation “≤” is a total order on a set M if, for all a, b, c ∈ M , it is true that: (i) if a ≤ b
and b ≤ a then a = b (antisymmetry); (ii) if a ≤ b and b ≤ c then a ≤ c (transitivity); and
(iii) a ≤ b or b ≤ a (totality). We assume here that, unless stated otherwise, all considered
variables xj have a totally ordered domain Dj .

The basic idea of the variable locks is to maintain a count, for each variable, of the
number of constraints that might become violated by increasing or decreasing the value of
the variable. To define the variable locks formally, we define the property that a constraint
is monotone in a variable.

Definition 3.4. A constraint C : D → {0, 1}, is monotone decreasing (increasing) in
variable xj , if for all ẋ ∈ D with C(ẋ) = 1, it holds that C(x̂) = 1 for all x̂ ∈ D with
ẋk = x̂k for all k 6= j and x̂j < ẋj (x̂j > ẋj).

If a constraint is either monotone decreasing or increasing in each variable in its scope,
it is a monotone constraint (see Dechter [22]). Depending on the monotone status of a
constraint, variable locks can be omitted.

Definition 3.5. Given a constraint C : D → {0, 1}. The constraint C needs to down-lock
(up-lock) variable xj if and only if the constraint is not monotone decreasing (increasing)
in variable xj . That is, if and only if there exist two vectors ẋ, x̂ ∈ D with C(ẋ) = 0,
C(x̂) = 1, ẋk = x̂k for all k 6= j, and ẋj < x̂j (ẋj > x̂j).

Given a variable xj with a totally ordered domain, a constraint C does not need to down-
lock (up-lock) xj if, for any feasible assignment x̂, any assignment ẋ that differs from x̂
only in that the value of xj is smaller (greater) is also feasible. This definition directly
yields the following corollary.

Corollary 3.6. Given a constraint C : D→ {0, 1}. A variable x can be removed from the
scope of constraint C if this constraint is monotone decreasing and increasing in variable x
(i.e., it does not lock variable x in any direction).

To be able to remove such a “completely free” variable from a constraint, some adjust-
ment to the particular constraint may be necessary (see Lemma 4.5 below).

Individual locks can be aggregated into dual information for a set of constraints. Here,
following Achterberg [5], we accumulate locks by simply counting the number of con-
straints that down- or up-lock a variable, respectively. For a given constraint program, the
(accumulated) variable locks, ζ−j and ζ+j , can be interpreted as the number of constraints
that “block” the shifting of xj towards its lower or upper bound.

Example 3.7. Given four integer variables x1, x2, x3, x4 ∈ {0, . . . , 10} and the following
linear constraint system:

5x1 − 6x2 + x4 ≤ 8

x1 + x3 = 1

The locks are: ζ+1 = 2, ζ−1 = 1, ζ+2 = 0, ζ−2 = 1, ζ+3 = 1, ζ−3 = 1, ζ+4 = 1, and ζ−4 = 0.

Variable locks are not as informative as the column representation and, in fact, can be
seen as a relaxation. However, a substantial number of dual reductions performed in a MIP
solver can be done using only the variable locks [5].

Consider a variable xj with a totally ordered domain and no down-locks (ζ−j = 0), that
is all constraints are monotone decreasing in variable xj . If there exists a feasible solution
x̂ with x̂j 6= min{d ∈ Dj}, then it follows that the solutions ẋ with ẋk = x̂k for all

USING DUAL PRESOLVING REDUCTIONS TO REFORMULATE CUMULATIVE CONSTRAINTS 7

k 6= j and ẋj ∈ {d ∈ Dj | d < x̂j} are also feasible. Therefore, fixing this variable to
its lower bound is a valid inference w.r.t. the feasibility of the problem. This is the case
for variable x4 in the above example. In an optimization context, such a fixing can only be
performed if the objective function, which we assume is to be minimized, is monotonically
non-decreasing in this variable. A symmetric argument holds for up-locks. Hence, each
variable that has a down-lock (up-lock) of zero and the objective function is monotonically
non-decreasing (non-increasing) in this variable can be fixed to its lower (upper) bound.4

Such an inference is dual feasible and is called a dual fixing.
As noted, using variable locks to detect such “half free” variables was already pre-

sented [5]. The following lemma summarizes this idea of dual fixing.

Lemma 3.8. Given a COP = (X,C,D, f). If a variable xj with totally ordered do-
main Dj has ζ−j = 0 (ζ+j = 0) and the objective function is monotonically non-decreasing
(non-increasing) in xj , then fixing this variable to xj = min{d ∈ Dj} (xj = max{d ∈
Dj}) is dual feasible.

Example 3.9. Reconsider the linear constraints from Example 3.7. Given, additionally, an
objective function f(x) = x1 +x2 +x3 +x4 to be minimized, the variable x4 can be dual
fixed to its lower bound. In contrast, variable x2 cannot be fixed to its upper bound since
the objective function is not monotonically non-increasing in x2.

In practice, the accumulated variable locks can be an overestimate of the actual variable
locks since each constraint can guarantee completeness by just locking its variables in
both directions without analyzing Definition 3.5. Such an overestimate is a relaxation and
is still usable. However, if a constraint does not lock a variable where it should w.r.t.
Definition 3.5, the result can be an underestimate of the variable locks that can lead to an
incomplete search if dual fixings are applied for this variable.

As a special case, the variable locks can be used to detect variables that are not involved
in any constraint: that is if, for a variable xj , ζ−j = 0 and ζ+j = 0. If we find such an
xj and the objective functions in monotonically non-decreasing or non-increasing, then
Lemma 3.8 can be applied.

Besides detecting isolated variables, the variable locks can also be used to detect isolated
constraints: constraints with a variable scope that has no overlap with any other constraint
variable scope. Such a constraint defines an independent component and can be solved
separately with a specialized algorithm. Such structure appears for several instances of
the MIPLIB2010 [20]. For example the instances bnatt350 contain isolated knapsack
constraints which can be solved via dynamic programming.

4. THE CUMULATIVE CONSTRAINT

In this section, we discuss the use of the variable locks for the cumulative constraint.
Given a finite set of jobs J and a capacity, C ∈ N, the global cumulative constraint (as
described in [23]) enforces that, at each point in time t, the total demand of the jobs running
at t, does not exceed C. We restrict ourselves to the following settings: each job j ∈ J has
a release date Rj ∈ N, a due date Dj ∈ N, a fixed non-negative processing time pj ∈ N,
and a fixed non-negative resource demand rj ∈ N. Furthermore, C, is fixed and non-
negative. The global cumulative constraint is given by

cumulative(S,p, r, C),

using vectors of start time (decision) variables S, processing times p, and demands r, and
the capacity. An assignment Ŝ, for the start time variables S, is feasible if the following
conditions hold:

4For a variable that is not directly involved in the objective function, the objective function is both monotoni-
cally non-decreasing and non-increasing w.r.t. that variable.

8 STEFAN HEINZ, JENS SCHULZ, AND J. CHRISTOPHER BECK

Ŝj ∈ {Rj , . . . ,Dj −pj} ∀ j ∈ J∑
j∈J

1[Ŝj ,Ŝj+pj)
(t) rj ≤ C for all t,(1)

where the indicator function is defined as 1M (x) = 1 if x ∈M , and zero otherwise.
Depending on the tightness of the earliest start times, estj = Rj , earliest completion

times, ectj = Rj +pj , latest start times, lstj = Dj −pj , and latest completion times,
lctj = Dj , for each job j ∈ J , propagation algorithms (for example, see [24]) are able to
update the release dates and due dates. The computational (worst case) complexity of these
propagation algorithms depends on the number of jobs. Hence, removing jobs globally
from the scope of a cumulative constraint results theoretically in a run-time improvement.

4.1. Effective horizon. The feasible time windows [estj , lctj) of each job j can be used
to define the first and last potential time points where the resource capacity can be possibly
exceeded. We denote with hmin the minimum time point where the resource capacity
could be exceeded and hmax the minimum time point where the resource capacity is surely
satisfied. Formally:

hmin = inf{t ∈ Z |
∑
j∈J

1[estj ,lctj)(t) rj > C}

hmax = sup{t ∈ Z |
∑
j∈J

1[estj ,lctj)(t− 1) rj > C}.

Note that in general hmin ≤ hmax does not hold. Using these two points in time the
effective horizon can be defined.

Definition 4.1. Given a set of jobs J with resource demands r that have to be scheduled
on a resource with capacity of C. We define the effective horizon H as

H =

{
[hmin,hmax) if hmin < hmax

∅ otherwise.

If the effective horizon is empty, it follows from the definition of hmin and hmax

that Condition (1) is satisfied for all assignments Ŝ that respect the release date and due
date of each job. Hence, the corresponding resource condition is redundant and the entire
cumulative constraint can be removed from the problem instance. The following example
illustrates the effective horizon.

Example 4.2. Given are two jobs with unit demand and a resource with unit capacity. The
first job has a release date of 1 and a due date of 6. The second job is released at time 8 and
has to be completed by time 13. Figure 2(a) depicts this situation. In this case hmin =∞
and hmax = −∞ and therefore H = ∅.

Consider additionally a third job with unit demand. This job has a release date of 4
and a due date of 10. Now the effective horizon is not empty: it is H = [4, . . . , 10) (see
Figure 2(b)).

Figure 2(b) also illustrates the possibility of decomposing a cumulative constraint into
two independent cumulative constraints. In case of the three jobs of Example 4.2, the unit
capacity cannot be violated at time t = 7 since only job 3 can potentially be processed
there. Hence, the resource with unit capacity can be modeled using two cumulative con-
straints with unit capacity where the first one contains the jobs 1 and 3 and the second jobs
2 and 3. The following lemma formalizes this decomposition.

USING DUAL PRESOLVING REDUCTIONS TO REFORMULATE CUMULATIVE CONSTRAINTS 9

t
1 3 5 7 9 11 13

est1 lct1 est2 lct2

(a) In this case hmin =∞, hmax = −∞, and H = ∅.

t
1 3 5 7 9 11 13

est1 lct1 est2 lct2

est3 lct3

hmin hmax

H

(b) Here hmin = 4, hmax = 10, and H = [4, 10)

FIGURE 2. Illustration of effective horizon H for Example 4.2.

Lemma 4.3. Given are a set of jobs J with resource demands r that have to be scheduled
on a resource with capacity of C. If there exists t ∈ {hmin, . . . ,hmax−1} such that∑

j∈J
1[estj ,lctj)(t) rj ≤ C,

then this resource restriction is decomposable into two resource restrictions by partitioning
the set of jobs to J1 = {j ∈ J | estj ≤ t} and J2 = {j ∈ J | lctj ≥ t}.

In general, the sets J1 and J2 are not disjoint.

4.2. Exploiting variable locks in the cumulative constraint. In general, a cumulative
constraint must lock each start time variable in both directions since shifting a job in any
direction may result in infeasibility. In such a case, none of the dual reductions described
in the previous section can be applied for these variables since the locks are strictly greater
than zero. Therefore, we define and justify a situation where a cumulative constraint con-
tributes to the variable locks by omitting some of them since it is monotone decreasing or
increasing in a start time variable Sj . We restrict ourselves to the down-locks. All results
stated can be symmetrically transformed to the up-locks.

We start by detecting irrelevant jobs (“completely free” start time variables). A job is
called irrelevant for a constraint if an arbitrary assignment to its start time does not influ-
ence the assignment of any remaining jobs in that constraint. Such a job can be removed
from the scope of the corresponding cumulative constraint. Since the removed variable
does not have to be locked by the constraint, the rest of the constraints in the problem gain
dual information through the reduced number of locks. The following two lemmas state
this situation formally.

Lemma 4.4. Given a cumulative constraint C = (S,p, r, C). A start time variable Sj with
corresponding demand rj ≤ C does not need to be locked in any direction if lctj ≤ hmin,
estj ≥ hmax, rj = 0, or pj = 0.

Proof. The first two cases follow directly from the definition of hmin and hmax. The last
two cases are obvious since the corresponding job does not require any resource capacity.

�

The previous lemma considers the situation where a job is never processed within the
effective horizon. The following lemma defines the case where a job must be processed
through-out the effective horizon.

10 STEFAN HEINZ, JENS SCHULZ, AND J. CHRISTOPHER BECK

C

t
hmin hmax

est lst ect lct

FIGURE 3. Illustration of Lemma 4.6. Shifting the corresponding job
earlier would only relax the situation within the effective horizon H =
[hmin,hmax).

Lemma 4.5. Given a cumulative constraint C = (S,p, r, C), a start time variable Sj with
corresponding demand rj ≤ C does not need to be locked in any direction if lstj ≤ hmin
and ectj ≥ hmax.

Proof. The conditions for the start time variables state that the corresponding job must start
before the beginning of the effective horizon and must end after the end of the effective
horizon. Therefore, the actual start time assigned does not impact the feasibility of any
other variable assignments. Hence, no locking is required. �

Note that, in both cases the cumulative constraint is monotone decreasing and increas-
ing in variable Sj . In case of Lemma 4.4 the corresponding start time variable can be
removed from the scope of the cumulative constraint without any further adjustment. For
Lemma 4.5, however, the capacity of the corresponding cumulative constraint needs to be
decreased by the demand of the removed job.

For jobs processed around hmin or hmax, we may be able to omit the down-lock or up-
lock, respectively. Consider the situation that a job j has a latest start time lstj ≤ hmin.
Depending on its processing time, this job could run either completely before the time
window or overlapping the time window. In the latter case, we know that it overlaps with
time window in such a way that hmin is included. See Figure 3 for an illustration. In this
case moving the start time of this job earlier, out of the effective horizon H will be always
feasible w.r.t. this constraint. Therefore, the cumulative constraint can omit the down-lock
since it is monotone decreasing w.r.t. that start time variable.

Lemma 4.6. Given a cumulative constraint C = (S,p, r, C). If lstj ≤ hmin, then
constraint C is monotone decreasing in start time variable Sj .

Proof. We are given a cumulative constraint C = (S,p, r, C) and assume that, for start
time variable Sj , the latest start time is lstj = Dj −pj ≤ hmin. To prove that the cu-
mulative constraint C does not need to down-lock Sj , we have to show that, for any two
assignments S1 and S2 to the start time variables with (i) S1 being a feasible assignment
for C, (ii) S1

i = S2
i if i 6= j, and (iii) S1

j > S2
j , follows that S2 is a feasible assignment.

Per definition of the assignments for the start time variables, S2
i is a feasible (partial)

solution for the cumulative constraint C for all i 6= j. In the case S2
j < hmin−pj , we

know by definition of hmin that S2 is a feasible assignment. Assume S2
j ≥ hmin−pj .

Since lstj ≤ hmin it follows that S2
j < S1

j ≤ hmin. Due to the last assumption we know
that hmin ≤ S2

j + pj < S1
j + pj . Therefore, in both assignments, job j does not start

later than hmin. For all t ∈ [hmin,min{S2
j + pj ,hmax+1}) we know that job j is also

processed using the assignment S1. Hence, S2 is a feasible assignment.
�

USING DUAL PRESOLVING REDUCTIONS TO REFORMULATE CUMULATIVE CONSTRAINTS 11

C

t
hmin hmax

est ect lst lct

FIGURE 4. Illustration of Lemma 4.7. Fixing the start time variable to
its earliest start time, est, results in a situation where this job does not
influence the effective horizon H .

4.3. Dual reductions via variable locks. In the previous section, we stated conditions
under which the cumulative constraint is monotone decreasing or increasing w.r.t. a start
time variable and hence provides dual information via the variable locks. In this section,
we use the knowledge of the variable locks within the cumulative constraint to infer dual
reductions.

The variable locks define the number of constraints that “block” the shifting of a certain
variable to its lower or upper bound. A constraint can easily detect if it is the only one
locking a certain variable if ζ− = 1 in case of the down-locks. Within the cumulative
constraint, this information can be used to dual fix certain start time variables. The idea is
that if the cumulative constraint is the only one locking the start time variable down (since
lst > hmin), the best bound w.r.t. the objective function is the lower bound (the objective
function is monotonically non-decreasing in that variable), and fixing it to its lower bound
results in a completion time before hmin, then this variable can be dual fixed to its lower
bound. Figure 4 illustrates this situation.

Lemma 4.7. Given a cumulative constraint C = (S,p, r, C). Fixing a start time variable
Sj with corresponding demand rj ≤ C to its earliest start time estj is dual feasible if the
following conditions are satisfied:

(i) ectj ≤ hmin,
(ii) only the cumulative constraint C down-locks Sj , and

(iii) the objective function f is monotonically non-decreasing in Sj .

Proof. From the first condition, fixing the start time variable to its earliest start time means
that the job finishes before hmin. Hence, by the definition of hmin, the assigned start time
does not influence the feasibility of the cumulative constraint.

By the definition of a variable lock, since only the cumulative constraint has down-
locked this variable, none of the other constraints can be violated by fixing the start time
variable to its earliest start time.

The third condition states that the objective function is monotonically non-decreasing
in the start time variable Sj . Therefore, fixing it to the earliest start time is the best thing
to do w.r.t. the objective function.

Hence, if the problem is feasible, there exists an optimal solution with Sj = estj . �

After fixing the variable to its earliest start time it follows that lctj ≤ hmin. Hence this
job is irrelevant and can be removed from the constraint (see Lemma 4.4).

If the earliest start time of a job is smaller than hmin but the earliest completion is
not, the previous lemma is not applicable even if the last two conditions hold. In such a
situation, it is not possible to fix the start time variable but it is dual feasible to remove
some values from the domain of the start time variable. Figure 5 depicts that statement and
the following lemma formalizes it.

12 STEFAN HEINZ, JENS SCHULZ, AND J. CHRISTOPHER BECK

C

t
hmin hmax

est lstect lct

hmin+1

FIGURE 5. Illustration of Lemma 4.8. Fixing the start time variable to
a value greater than the earliest start time and smaller than or equal to
hmin is dual dominated by fixing the start time variable to its earliest
start time.

Lemma 4.8. Given a cumulative constraint C = (S,p, r, C) and a start time variable Sj .
Removing the values {estj +1, . . . ,hmin} from the domain of a start time variable with
demand rj ≤ C is dual feasible if the following conditions are satisfied:

(i) estj < hmin,
(ii) only the cumulative constraint C down-locks Sj , and

(iii) the objective function f is monotonically non-decreasing in Sj .

Proof. Given a cumulative constraint C = (S,p, r, C) and a start time variable Sj that
satisfies the conditions of the lemma. If the proposed domain reduction does not remove
any feasible solution of constraint C, it is obviously valid. Therefore, assume there exists
an assignment S with Sj ∈ {estj +1, . . . ,hmin} that is feasible for C. It follows that
the assignment S′ with S′i = Si for i 6= j and S′j = estj is also feasible for C. Due
to condition (ii), shifting the job earlier does not result in a violation of other constraints
since all other constraints did not down-lock variable Sj . Condition (iii) ensures that this
shift does not increase the objective value. Hence, the proposed domain reduction is dual
feasible. �

The previous two lemmas consider the case of a single cumulative constraint. Both
lemmas are easily generalized for a set of cumulative constraints. For completeness we
state these two corollaries. We denote with hmin(C) the first potential violated time point
for a given cumulative constraint C.

Corollary 4.9. Given a set C of cumulative constraints that have a start time variable Sj

in their scope. Fixing the start time variable to its earliest start time estj is dual feasible if
the following conditions are satisfied:

(i) ectj ≤ hmin(C) for all C ∈ C,
(ii) only the cumulative constraints C ∈ C down-lock Sj , and

(iii) the objective function f is monotonically non-decreasing in Sj .

Corollary 4.10. Given a set C of cumulative constraints that have a start time variable Sj

in their scope. Removing the values {estj +1, . . . ,minC∈C hmin(C)} from the domain of
this variable is dual feasible if the following conditions are satisfied:

(i) estj ≤ hmin(C) for all C ∈ C,
(ii) only the cumulative constraints C ∈ C down-lock Sj , and

(iii) the objective function f is monotonically non-decreasing in Sj .

4.4. Summary. All theoretical results presented in this section are related to jobs that are
processed near the boundary of the effective horizon H . Overall, if a start time variable Sj

is only down-locked by one cumulative constraint C, the objective function f is mono-
tonically non-decreasing in Sj , and the feasible time window of job j is overlapping with
hmin, then at least one of the above lemmas is applicable.

USING DUAL PRESOLVING REDUCTIONS TO REFORMULATE CUMULATIVE CONSTRAINTS 13

The effectiveness of these results w.r.t. the remaining problem can be sorted in the fol-
lowing order. Lemma 4.4 and 4.5 yield the strongest results since in both cases a variable
is removed from the scope of a constraint. As this variable is not locked by that partic-
ular constraint anymore, dual information is provided to the remaining constraints. Then
follows Lemma 4.6 which states a condition such that one of the two locks (down or up)
can be omitted. Finally, the weakest result is given by Lemma 4.7 and 4.8 which require
several additional conditions to be applicable.

5. COMPUTATIONAL RESULTS

In this section, we present computational results showing the impact of the dual reduc-
tions for the cumulative constraint.

5.1. Test sets. For testing, we use resource-constrained project scheduling problems with
generalized precedence constraints. We are given a set J of non-preemptable jobs and
a set K of renewable resources. Each resource k ∈ K has bounded capacity Ck ∈ N.
Every job j has a processing time pj ∈ N and resource demands rjk ∈ N ∪ {0} for each
resource k ∈ K. The start time Sj of a job is constrained by its predecessors, given by a
precedence graph D = (V,A) with V ⊆ J and the distance function d : A → Z. An
arc (i, j) ∈ A represents a “start-to-start” precedence relationship between two jobs, i.e.,
job j cannot start before dij time units after job i starts. In case dij = pi, we have the
common precedence condition stating that job i must be finished before job j starts. The
goal is to schedule all jobs with respect to resource capacity and precedence constraints,
such that the latest completion time of all jobs is minimized. We use a simple, standard
constraint programming model:

min max
j∈J

Sj + pj

subject to Si + dij ≤ Sj ∀ (i, j) ∈ A
cumulative(S,p, r.k, Ck) ∀ k ∈ K
Sj ∈ Z ∀ j ∈ J .

Note that the linear constraints that describe the precedence conditions only lock each of
the two start time variables in one direction: for the predecessor, an up-lock and for the
successor, a down-lock. The objective function is regular [25], that is, monotonically non-
decreasing in the start time variables, and hence allows shifting start time variables down.

For our experiments, we consider two different test sets on which we expect the dual
reductions to have differing impact.

5.1.1. RCPSP. We use resource-constrained project scheduling problems with standard
precedence constraints. That is, for all (i, j) ∈ A, dij = pi. If (i, j) ∈ A and (j, i) ∈ A,
then the instance is trivially infeasible. Therefore, usually only one of these two arcs is
present. The RCPSP is an attractive problem class for our dual reductions since there exist
start time variables that have no down-locks (or have no up-locks) except, possibly, from
the cumulative constraints.

We use the problem instances in the PSPLIB [26]. This library contains four categories,
differing by the number of jobs to be scheduled: 30, 60, 90, or 120 jobs. The first three
categories contain 480 instances each, the latter has 600 instances for a total of 2040 in-
stances. Each category is clustered in classes of 10 instances and so there are 48 classes for
the first three categories and 60 classes for the last category. Each instance contains four
cumulative constraints.

Additionally, we use the PACK instances [27, 28, 29] which have the same type prece-
dence conditions. This test set contains 55 instances which are highly cumulative, meaning
that the ratio of resource capacity to resource demand is large. Hence, many jobs can be

14 STEFAN HEINZ, JENS SCHULZ, AND J. CHRISTOPHER BECK

executed in parallel. This structure is not favorable for our dual reductions since the effec-
tive horizon is in most cases given by the smallest earliest start time and the largest latest
completion time of all jobs.

These two sets together contain 2095 instances.

5.1.2. RCPSP/max. We also consider resource-constrained project scheduling problems
with generalized precedence constraints. Informally, such a constraint represents a mini-
mum or a maximum time that must elapse between a pair of start time variables. In case
both types exist for a pair of start time variables, down- and up-locks have to be placed on
both variables. Therefore, we expect RCPSP/max to be less suitable for our dual reduc-
tions.

We select the problem instances in the PSPLIB [26]. There are 12 test sets available. All
instances have five cumulative constraints and differ in the number of jobs. The test sets
are TESTSETC and TESTSETD each with 540 instances having 100 jobs; UBO10, UBO20,
UBO50, UBO100, UBO200, UBO500, and UBO1000 each with 90 instances and 10, 20, 50,
100, 200, 500, and 1000 jobs, respectively; and J10, J20, and J30 each with 270 instances
and 10, 20, and 30 jobs. In total there are 2520 instances.

5.2. Experimental setup. For our experiments, we use the constraint integer program-
ming solver SCIP [5, 8]. This solver is a constraint-based system, using variable locks to
collect dual information. Within SCIP, constraints are implemented by constraint handlers
in a similar fashion to SIMPL [30]. The cumulative constraint handler provides a variety of
propagation algorithms and linear relaxations (see [31, 32, 29]). We use the time-tabling
propagation algorithm [33] and perform over-load checking via edge-finding [34]. This
combination is known to be most effective for the resource-constrained project scheduling
problems. We run the solver as a pure CP solver. Therefore, we used the predefined CP
parameter settings.5 In particular, the default CP settings do not use any linear relaxations.

For our purposes, we extend the existing cumulative constraint handler. We imple-
mented all presolving reductions except the domain reductions in Lemma 4.8 and Corol-
lary 4.10. These two reductions cannot easily be implemented in the current version of
SCIP because variable domains are realized via intervals and so domain holes cannot be
represented. In addition to the default SCIP components, which are used with their default
settings, we added a primal heuristic based on a fast list scheduling algorithm [35]. This
primal heuristic is suitable for the RCPSP instances but not for the RCPSP/max instances
and is executed during the presolving phase to find “good” feasible solutions.6

To get an impression of the utility of the introduced dual presolving steps we perform
several experiments, targeting the following questions:

(1) How often are dual reductions made?
(2) Does a primal solution increase the number and impact of the dual reductions?
(3) Do the reductions increase the number of fixed variables after presolving?
(4) How do these reductions contribute to the overall performance of the solver?

We have three experimental conditions corresponding to our expectations of worst, rea-
sonable, and best-case situations for the dual reductions. For each condition, we solve the
problem instances twice, once with and once without the dual reductions. Our conditions
are as follows:

• NOPRIMAL: All primal heuristics including the list scheduling heuristic are dis-
abled. As a result, during the presolving phase, no primal solution is available and
so the start time variables are unbounded for the RCPSP/max test sets and only
bounded by the sum of all processing times for the RCPSP and PACK test sets.
Such wide domains reduce the opportunities to make inferences.

5In the interactive shell of SCIP, the CP solver settings can be set (and viewed) using the command set
emphasis cpsolver.

6This primal heuristic is available within the “Scheduler” example of SCIP.

USING DUAL PRESOLVING REDUCTIONS TO REFORMULATE CUMULATIVE CONSTRAINTS 15

• DEFAULT: SCIP is run with its default primal heuristics plus our problem specific
scheduling heuristic.
• BOUNDED: In addition to the DEFAULT settings, the start time domains are bounded

by the objective value of the best known solution7 for each instance. This condi-
tion substantially reduces the start time domains and increases the potential to find
domain reductions during the presolving phase.

5.3. Computational environment. All experiments were run on Intel Xeon Core 2.66 GHz
computers (in 64 bit mode) with 4 MB cache, running Linux, and 8 GB of main memory.
We used SCIP version 3.0.0 plus some bug fixes.8 We did not use any linear programming
solvers since we using SCIP as pure CP solver (see Section 5.2).

5.4. Results. The results are presented in Tables 1–5. The first two tables state results
w.r.t. the presolving phase. Tables 4 and 5 show the overall impact of the presolving steps.

For RCPSP/max instances, no primal solution is found for many instances in the pre-
solving phase, hence, the results for the NOPRIMAL setting are similar to the DEFAULT
setting.

For the PACK instances (part of the RCPSP test set), none of the dual reductions were
applicable during presolving. As expected, the highly cumulative structure of these in-
stances results, in most cases, in an effective horizon that is equivalent to the interval
defined by the smallest earliest start time and the largest latest completion time over all
jobs. Hence, none of the dual reductions are applicable.

In the following, we analyze these results in more detail.

5.4.1. Applicability of dual reductions. Table 1 presents information about the number
of inferences made by each implemented presolving reduction in the corresponding condi-
tion. The first column “Test set” states the name of test set. The remaining columns display
the following information for each setting, that is NOPRIMAL, DEFAULT, and BOUNDED.
The first column “Inst” is the percentage of problem instances where at least one reduction
was made. The percentage is taken w.r.t. all instances of the test sets, including the PACK
instances. There are, therefore, 2095 and 2520 instances for the RCPSP and RCPSP/max
test sets, respectively. The second column prints the “Total” number of times the presolv-
ing reduction was applied. The remaining columns display, for those instances were the
reduction was applied at least once, the maximum (“Max”) number of times it was applied
for a single instance, the average (“Avg”) number, and the standard deviation (“Var”). If
no reductions were found for the whole test set we print “–”. Note that the total number of
times a reduction is applied depends on the “size” of the reduction. The solver may solve
an instance during the presolving phase via a small number of large domain reductions
whereas in another condition the solver may make more, smaller reductions but yet fail
to solve the problem in the presolving phase. So while the number of reductions made is
indicative of whether the conditions required for inference occur, in general a smaller total
number for one setting compared to another does not mean that this setting performs less
total inference.
Decomposition. In case of the decomposition (Lemma 4.3), the availability of a primal
solution appears essential. A good primal solution bounds the start time variables from
above leading to further domain reductions by the time-tabling algorithms. Shrinking the
feasible time window of jobs further increases the applicability of other dual reductions
that move jobs out of the effective horizon, increasing the chance of finding points in
time within the effective time horizon where the capacity is never exceeded. The overall
applicability of Lemma 4.3 is, however, small compared to the total number of instances.
For the RCPSP test set only 8% and 11% of the instances are affected in case of the

7From the PSPLIB [26].
8These fixes will be available in SCIP 3.0.1.

16 STEFAN HEINZ, JENS SCHULZ, AND J. CHRISTOPHER BECK

TABLE 1. This table summarizes the appearance of the different pre-
solving reductions. More detailed results are given in the appendix (Ta-
bles 6 and 7).

NOPRIMAL DEFAULT BOUNDED

Test set Inst Total Max Avg Var Inst Total Max Avg Var Inst Total Max Avg Var

Constraint decompositions (Lemma 4.3)

RCPSP 0.0% – – – – 8.1% 384 14 2.3 1.9 10.8% 706 16 3.1 2.8
RCPSP/max 0.0% – – – – 0.0% – – – – 16.6% 4633 185 11.1 16.6

Irrelevant variables due to no overlap with the effective horizon (Lemma 4.4)

RCPSP 59.9% 47506 308 37.9 62.4 66.1% 52521 308 37.9 60.8 67.4% 59397 486 42.1 65.1
RCPSP/max 19.2% 8798 181 18.2 26.0 19.2% 8800 181 18.1 26.0 34.8% 159423 23802 182.0 963.9

Irrelevant variables due to an overlap with the effective horizon (Lemma 4.5)

RCPSP 0.0% – – – – 1.5% 58 6 1.9 1.5 4.1% 237 19 2.8 3.2
RCPSP/max 0.0% – – – – 0.0% – – – – 4.3% 877 131 8.1 17.8

Variable lock adjustments (Lemma 4.6)

RCPSP 0.0% – – – – 7.9% 578 18 3.5 3.5 13.0% 1778 68 6.5 7.9
RCPSP/max 0.0% – – – – 0.0% – – – – 10.5% 3612 348 13.6 34.0

Dual fixings due to a single constraint (Lemma 4.7)

RCPSP 48.6% 9954 80 9.8 14.5 48.8% 10168 80 9.9 14.6 49.3% 10110 80 9.8 14.5
RCPSP/max 9.6% 503 15 2.1 2.0 9.6% 503 15 2.1 2.0 10.2% 527 15 2.1 2.0

Dual fixings due to a set of constraints (Corollary 4.9)

RCPSP 64.1% 17377 87 12.9 20.6 65.4% 17487 87 12.8 20.4 66.1% 17503 87 12.6 20.3
RCPSP/max 19.2% 2721 45 5.6 7.5 19.2% 2722 45 5.6 7.5 20.4% 2806 46 5.4 7.3

All dual reductions
RCPSP 85.1% 74837 393 42.0 74.0 85.7% 81196 393 45.2 74.3 86.5% 89731 538 49.5 78.1
RCPSP/max 21.5% 12022 225 22.2 33.0 21.5% 12025 225 22.1 32.9 37.0% 171878 23954 184.4 956.4

DEFAULT and BOUNDED setting, respectively. For the RCPSP/max test set 16% of the
instances are reformulated if the BOUNDED setting is applied.
Irrelevant jobs. Irrelevant jobs are those that run completely before or after the effec-
tive horizon (Lemma 4.4) or have to be processed during the entire effective horizon
(Lemma 4.5). The first type of irrelevant jobs appears quite often for the RCPSP test
set, independent of the experimental setting: on average up to 42 start time variables are
irrelevant over the whole set of cumulative constraints. Note that a start time variable that
is irrelevant for several cumulative constraints is counted once for each of these cumulative
constraints.

For the RCPSP/max test set, our experimental results indicate that this reduction is ap-
plicable to fewer instances. However, on instances where it is applicable, there is substan-
tial inference; more, in fact, than on RCPSP instances. On one instance in the BOUNDED
condition, 23802 reductions were triggered.

Knowing a good or even an optimal solution increases the number of identified irrele-
vant jobs. This increase is again related to the more narrowly bounded start time variables.
In those instances where the reduction is applicable, the average number of applications is
low compared to the maximum. The variance is moderate compared to the maximum, indi-
cating that most of the instances have a similar number of irrelevant jobs and only for a few
instances can the particular reductions be applied heavily. Note that the high percentage of
irrelevant variables per constraint is not induced by the decomposition since the percentage
is already high in the setting NOPRIMAL for the RCPSP test set and the DEFAULT setting
for the RCPSP/max test set, where no decomposition takes place.

The second type of irrelevant jobs (Lemma 4.5) only arises (in these test sets) if a
cumulative constraint is decomposed and can be seen as an inference arising from the
decomposition.

USING DUAL PRESOLVING REDUCTIONS TO REFORMULATE CUMULATIVE CONSTRAINTS 17

Variable locks. The results for removing variable locks (Lemma 4.6) are similar to those
for decomposition (Lemma 4.3). It is essential to have a good primal solution to trigger
propagation. Otherwise, the time window of a job is too large compared to its processing
time, dramatically reducing the possibility of removing a variable lock because the con-
dition that the latest start time of a job is smaller than hmin is unlikely to be satisfied. A
closer look at the instances reveals that the applicability of this reduction is not necessarily
related to those instances where a decomposition of a cumulative constraint takes place. In
most cases, a decomposition leads to variable lock deletions. However, there are instances
where locks are removed even though no decomposition was found.
Dual fixings. The applicability of the dual fixing conditions (Lemma 4.7 and Corollary 4.9)
seems to be (almost) independent of having a primal solution for both test sets. These
two reductions are applicable quite often for the RCPSP test set. Note that within our
implementation the single constraint dual fixing is done first, followed by the set-based
version. As a consequence, the number of reductions stated for Corollary 4.9 are those that
the single constraint algorithm could not find because more than one cumulative constraint
locked a particular variable. The total number of dual fixings from these two sources is
therefore the sum of the corresponding numbers in the two rows. Similar to the irrelevant
variable results, these reductions are less effective for the RCPSP/max test set.

The single constraint case is applicable in almost half of the RCPSP test set and fixes
on average 9 of the variables. For RCPSP/max, reductions are found in 10% of instances
with an average of 2 variable fixings. Performing dual fixings on sets of constraints further
increases the number of fixed variables during presolving by more than 12 variables on
average for the RCPSP test set and 5 variables for the RCPSP/max test set. Hence, much
smaller problems, in terms of the number of variables, remain after presolving. We evaluate
this final point in more detail below.

It is notable that considering a set of cumulative constraints increases the applicability
of the dual reductions. These fixings cannot be made by propagating a single constraint.
In SCIP this type of propagation algorithm is natural since constraints of one type are all
known to the correspond constraint handler for that constraint type. Integrated reasoning
about sets of constraints of the same type is similar to what is done in SIMPL [30] but does
not seem to have been otherwise investigated in the CP literature.
Summary. These results show that there are instances within the test sets of the PSPLIB
that are easily solvable via dual reductions. For example, the maximum value in the dual
fixings table shows that for some instances almost all variables are fixed during presolving.
Furthermore, knowing a primal solution is helpful since it bounds the start time variables
from above. Overall, the introduced presolving steps arise for 85% of the instances (in-
dependent of the setting) for the RCPSP test sets (except for the PACK instances). In
particular, the number of irrelevant variables per constraint is on average 10 (recall that
these instances have 4 cumulative constraints) and the number of dual fixings is more than
9.

As expected, for the RCPSP/max test set, the reductions are not as effective. Still these
reductions do arise in 21% of the instances if a primal solution is omitted and 37% of the
instances if an objective limit (BOUNDED) is given. In both cases, some variables are fixed
in presolving.

5.4.2. Presolving impact. The introduced presolving steps are applicable quite often for
the RCPSP test sets and arise frequently for the RCPSP/max test set. Applicability, how-
ever, does not mean that these reductions provide any new information or solving power.
Therefore, Tables 2 and 3 present, for each test sub-set of RCPSP and RCPSP/max, respec-
tively, information about the number of additional variables fixed after presolving due to
our proposed dual presolving steps, compared to when there are no cumulative constraint
dual reductions. Recall that SCIP has a number of default presolving techniques and so
these results test whether our new techniques actually result in more inference above what

18 STEFAN HEINZ, JENS SCHULZ, AND J. CHRISTOPHER BECK

TABLE 2. Effect for the 2095 RCPSP instances of the introduced pre-
solving steps w.r.t. the number of additional variables that are fixed dur-
ing the presolving phase. We omit the PACK test set because no addi-
tional variables were fixed.

NOPRIMAL DEFAULT BOUNDED

Test set Inst Total Max Avg Var Inst Total Max Avg Var Inst Total Max Avg Var

30 jobs 76.5% 4636 31 12.6 13.1 48.1% 973 31 4.2 4.3 17.5% 211 10 2.5 1.9
60 jobs 89.4% 8935 61 20.8 25.3 60.2% 1532 31 5.3 4.6 19.2% 295 18 3.2 2.9
90 jobs 95.0% 13197 91 28.9 37.4 65.2% 2130 73 6.8 6.9 21.7% 280 11 2.7 2.3
120 jobs 88.3% 2801 32 5.3 4.6 87.7% 2750 35 5.2 4.6 54.2% 1241 40 3.8 3.8

RCPSP 85.1% 29569 91 16.6 25.3 64.9% 7385 73 5.4 5.3 28.9% 2027 40 3.4 3.3

TABLE 3. Effect for the 2520 RCPSP/max instances of the introduced
presolving steps w.r.t. the number of additional variables that are fixed
during the presolving phase. For the test sets UBO500 and UBO1000 no
additional variables were fixed and so we omit these rows.

NOPRIMAL DEFAULT BOUNDED

Test set Inst Total Max Avg Var Inst Total Max Avg Var Inst Total Max Avg Var

TESTSETC 46.9% 1890 101 7.5 10.5 46.9% 1790 59 7.1 8.6 5.4% 147 60 5.1 11.2
TESTSETD 39.8% 1336 60 6.2 8.5 39.8% 1336 60 6.2 8.5 7.0% 112 13 2.9 2.9
J10 9.3% 35 3 1.4 0.7 9.3% 35 3 1.4 0.7 6.7% 41 11 2.3 2.4
J20 5.2% 18 2 1.3 0.5 5.2% 18 2 1.3 0.5 5.9% 20 3 1.2 0.6
J30 5.6% 19 3 1.3 0.6 5.6% 19 3 1.3 0.6 4.1% 13 2 1.2 0.4
UBO10 8.9% 10 3 1.2 0.7 8.9% 10 3 1.2 0.7 8.9% 20 11 2.5 3.3
UBO100 1.1% 1 1 1.0 0.0 1.1% 1 1 1.0 0.0 5.6% 7 2 1.4 0.5
UBO20 8.9% 12 2 1.5 0.5 8.9% 12 2 1.5 0.5 7.8% 11 2 1.6 0.5
UBO200 2.2% 2 1 1.0 0.0 2.2% 2 1 1.0 0.0 4.4% 10 6 2.5 2.1
UBO50 1.1% 1 1 1.0 0.0 1.1% 1 1 1.0 0.0 2.2% 4 3 2.0 1.0

RCPSP/max 21.5% 3324 101 6.1 9.1 21.5% 3224 60 5.9 8.2 5.5% 385 60 2.8 5.7

SCIP is already capable of in presolving. The columns in the table have the same meaning
as in Table 1.
RCPSP.. When no primal solution is available (NOPRIMAL), the new dual reduction prop-
agators are able to shrink the size w.r.t. the number of unfixed variables for a great portion
of the instances. Fixings occur in 367, 429, and 456 instances of the test set with 30, 60,
and 90 jobs, respectively, containing 480 instances each. For the test set with 120 jobs
the problem size is additionally reduced for 530 instances out of 600. For the first three
test sets the average number of additionally fixed variables is around one third of the total
number of variables. For the largest test set we have an average of 5.3 variables fixed.

However, if a primal solution is known, the number of instances with additional fixed
variables after the presolving phase is much smaller compared to the case where no primal
solution is known. The reason for this result can be seen in Table 4 (discussed below in
more detail). If no primal solution is available and the dual reductions are omitted, none
of the 2095 instances is solved during the presolving phase. Existence of a primal solution
drastically increases the number of instances solved in presolving. For all such instances,
the number of unfixed variables after presolving is zero and, hence, it is not possible to fix
additional variables. Taking this into account, we can conclude that when a “good” primal
solution is known, the dual presolving steps are able to fix on average between 2 and 6
additional variables.
RCPSP/max. The impact of the dual reductions differs over the different test sub-sets. For
TESTSETC and TESTSETD, we see a similar impact as for the RCPSP instances. With no
primal solution (NOPRIMAL), 253 and 215 instances of TESTSETC and TESTSETD (each
set contains 540 instances), respectively, are additionally reduced. On average 7 and 6
additional variables are fixed. When a primal solution is available, we observe the same

USING DUAL PRESOLVING REDUCTIONS TO REFORMULATE CUMULATIVE CONSTRAINTS 19

phenomenon as for the RCPSP instances: the number of instances with an additional fixing
decreases. For this test set the reason is not due to instances solved during presolving phase
(see Table 5) but it is related. Due to the presence of a primal bound, the domains of the
start time variables are reduced, triggering propagation algorithms which find many of the
fixings. Hence, the dual reductions provide only a small number of additional fixings.

For the test sets J10, J20, and J30 (each having 270 instances), a negligible number of
instances (25, 14, and 15, respectively) are affected when no primal solution is given. For
these few instances only one variable is additionally fixed. When a primal bound is given,
the number of affected instances decreases only slightly and the average number of fixed
variables increases by a small amount for J10 and decreases by a small amount for the
other two test sets.

For the UBO test sets (each of 90 instances) the impact is also negligible. Only between
0 and 8 instances are influenced by the dual reductions, independent of the setting. For
these few instances, only 1 to 2 variables are additionally fixed.
Summary. For both test sets, the tables show that the introduced presolving steps provide
additional domain filtering: substantially more for the RCPSP test set than for RCPSP/max.
Since the worst case complexity of the standard propagation algorithms and the subse-
quently required search depend on the number of jobs, these reductions indicate a theoret-
ical speed-up in problem solving.

5.4.3. Overall impact. In Tables 4 and 5, we present results that indicate the impact of
the introduced presolving steps w.r.t. the overall performance. For these computations we
enforced a time limit of 1 hour for each instance. For each test set and setting, we report
several results for the case the dual reductions were omitted (“without dual reductions”)
and the dual reductions were applied (“with dual reductions”). First we state, in column
“Inst”, the percentage of instances where at least one of the dual reductions was applied.
Second we print in column “Solved” the number of instances that were solved and proved
optimal within the time limit. The next two columns “Pres” and “Root” show the number
of instances that were solved in the presolving phase and in the root node process of the
search tree: the number of instances solved within the presolving phase is included in the
root node number. Finally, we state the number of instances that are solved after 1 second,
1 minute, 5 minutes, and 10 minutes. We do not report any aggregated run-time measures
since the number of instances that are solved quickly and the ones that are not solved at
all dominate the results. Instead we show performance diagrams w.r.t. the running times
(logarithmic scale). We only depict a result if at least one algorithm took longer than one
second to solve the instance and at least one algorithm solved the instance within the given
time limit. The corresponding number of instances is stated in the title of figures. Hence,
we omitted easy and unsolvable instances.
RCPSP.. Table 4 shows the results for the 2095 instance of the RCPSP test set. It is notable
that the dual reductions provide enough information that, in case of no primal solution
(NOPRIMAL) is available, 360 instances are solved directly in the presolving phase. The
performance figures are slightly in favor for the dual reductions. The numbers in the table
show the same picture: using the dual settings solves a few instances more at each time
step. Overall, 2 and 4 additional instances are solved within the time limit in case of the
NOPRIMAL setting and BOUNDED setting. For the DEFAULT setting the dual setting fails to
solve 3 instances that are solved when the dual reductions are omitted. From these results,
it is not possible to conclude that either condition dominates.
RCPSP/max. The results for the overall impact of the dual reductions for this test set are
given in Table 5. Here we get the same picture as for the RCPSP instances: the perfor-
mance figures and numbers in the table are slightly in favor for the dual reductions. With
respect to the number of solved instances, there is one more solved instance in case of the
NOPRIMAL and DEFAULT settings.

20 STEFAN HEINZ, JENS SCHULZ, AND J. CHRISTOPHER BECK

TABLE 4. Impact of the dual reductions on the overall performance for
the 2095 instances of RCPSP. The performance diagrams compare the
running time for using the dual reductions (with dual) and omitting them
(without dual) for the three different settings.

without dual reductions with dual reductions

Setting Inst Solved Pres Root 1 sec 1 min 5 min 10 min Solved Pres Root 1 sec 1 min 5 min 10 min

NOPRIMAL 85.1% 1415 0 0 142 1055 1313 1372 1417 360 360 477 1186 1360 1393
DEFAULT 85.7% 1428 426 438 1199 1384 1408 1412 1425 428 441 1241 1385 1405 1412
BOUNDED 86.5% 1450 1192 1192 1374 1418 1430 1443 1454 1192 1192 1382 1420 1439 1444

1
60

1 5 15 60

1
60

1

5
15
60

running times in minutes

without dual reductions

w
ith

du
al

re
du

ct
io

ns

NOPRIMAL (1343 Instances)

1
60

1 5 15 60

1
60

1

5
15

60
running times in minutes

without dual reductions

w
ith

du
al

re
du

ct
io

ns
DEFAULT (238 Instances)

1
60

1 5 15 60

1
60

1

5
15

60
running times in minutes

without dual reductions

w
ith

du
al

re
du

ct
io

ns

BOUNDED (82 Instances)

TABLE 5. Impact of the dual reductions on the overall performance for
the 2520 instances of RCPSP/max. The performance diagrams compare
the running time for using the dual reductions (with dual) and omitting
them (without dual) for the three setting NOPRIMAL, DEFAULT, and
BOUNDED.

without dual reductions with dual reductions

Setting Inst Solved Pres Root 1 sec 1 min 5 min 10 min Solved Pres Root 1 sec 1 min 5 min 10 min

NOPRIMAL 21.5% 539 1 63 95 261 478 524 540 1 63 101 307 503 529
DEFAULT 21.5% 540 1 66 94 261 479 525 541 1 66 102 308 503 528
BOUNDED 37.0% 930 577 577 868 913 926 929 930 579 579 876 914 925 927

1
60

1 5 15 60

1
60

1

5
15
60

running times in minutes

without dual reductions

w
ith

du
al

re
du

ct
io

ns

NOPRIMAL (454 Instances)

1
60

1 5 15 60

1
60

1

5
15

60
running times in minutes

without dual reductions

w
ith

du
al

re
du

ct
io

ns

DEFAULT (453 Instances)

1
60

1 5 15 60

1
60

1

5
15

60
running times in minutes

without dual reductions

w
ith

du
al

re
du

ct
io

ns

BOUNDED (65 Instances)

Summary. Overall, a few instances are additionally solved within the time limit using the
dual reductions. This number of instances, however, is meaningless compared to the size
of the test sets. Overall, the impact of the dual reductions w.r.t. running time can be seen
as slightly favorable, independent of the setting. This result is consistent with the fact that
only few jobs (between 1 and 6) are additional fixed using the DEFAULT setting. On the
positive side, given that we have removed feasible (or even optimal) solutions from the
solution space due to the dual reductions, the overall results show that the solver is still
able to solve most of the instances as before.

Without a primal solution during the presolving phase (NOPRIMAL), the dual reductions
allow for solving 360 instances in the presolving phase that could not be solved in the
presolving phase before.

USING DUAL PRESOLVING REDUCTIONS TO REFORMULATE CUMULATIVE CONSTRAINTS 21

6. DISCUSSION

Variable locks and the effective horizon are two related concepts that can be exploited
to create dual reduction techniques for cumulative constraints. Our first experiment shows
that these reductions arise often for the analyzed RCPSP instances and less frequently
for the RCPSP/max problems. The results further show that our approach is able to find
additional variable fixings during the presolving phase (Tables 2 and 3). In particular, for
RCPSP instances with 30, 60, and 90 jobs about 33% of the variables are additionally fixed,
in contrast to not performing the proposed dual reductions. For the RCPSP instances from
PSPLIB, between 20% and 30% of the variables per cumulative constraint are irrelevant
and can be removed from the scope of the constraint (Table 6). This provides a theoretical
speed-up as the worst-case complexity of standard propagation algorithms depends heavily
on the number of jobs.

However, removing feasible solutions from the solution space can have negative conse-
quences as it may be more difficult for the solver to find any feasible solutions at all. This
effect is well-known in CP where it has been shown that symmetry breaking constraints
can conflict with variable ordering heuristics [36]. Similarly, Borrett and Tsang [37] ob-
serve that reformulating a model can have a negative impact depending on the algorithms
used. The results in Tables 4 and 5, however, indicate that we are not seeing an overall
increase in solving time for the investigated instances. Actually, a slight improvement can
be observed.

Our results show that several instances of the RCPSP test set are easily solvable even
without the presence of a primal solution. For these instances, our dual reduction tech-
niques safely (w.r.t. completeness) fix start time variables to their lower bound. For highly
cumulative instances, such as the PACK instances these techniques do not apply since many
jobs can be executed in parallel and exceed the capacity when running together: the effec-
tive time horizon cannot be tightened. Our dual reduction techniques, therefore, provide a
better understanding of easy and hard instances. These techniques are able to remove, in
some sense, the easy part from a cumulative constraint.

From a broader perspective and despite the significant work in CP on symmetry break-
ing, the use of presolving and dual reductions is not yet a standard component of constraint
solvers. In contrast, for MIP solvers, presolving techniques are critical to state-of-the-art
performance. Our experimental results show that between 28% and 85% (depending on
the settings) of the RCPSP instances could be additionally reformulated during presolving
and sometimes to the point of solving the problem to optimality without search. For the
RCPSP/max test set between 5% and 21% are further reformulated. We believe that these
numbers alone indicate that presolving and dual techniques are an exciting direction and
opportunity for constraint solving research.

7. CONCLUSIONS AND OUTLOOK

Summary. Dual reductions are a form of problem reformulation that remove problem com-
ponents (e.g. variables and/or values) and perhaps feasible and optimal solutions while
guaranteeing that at least a single optimal solution remains in the transformed search space
(if the problem is feasible at all). While there has been work in CP on techniques that
can be understood to be dual reductions, notably in the form of symmetry breaking, nei-
ther dual reductions nor their common implementation in presolving for MIP solvers has
received much attention in the CP community. We believe that both presolving and dual
reductions are promising general concepts for implementation in a generic CP solver.

To concretize our approach, we build on the idea of variable locks, introduced by
Achterberg [5] to allow the implementation of dual reductions for mixed integer programs
within a constraint-based system. We formalize variable locks by defining constraints that
are monotone decreasing or increasing in a variable (see Section 3).

22 STEFAN HEINZ, JENS SCHULZ, AND J. CHRISTOPHER BECK

Our main contribution (Section 4) is the proposal and analysis of the use of variable
locks for dual reductions as part of the cumulative constraint. For that purpose, we defined
the effective horizon which encapsulates the relevant time steps for a particular cumulative
constraint. Based on variable locks and the effective horizon, we proved several conditions
where a cumulative constraint can omit variable locks and, hence, provide dual information
for the remaining constraints. We further presented results where these locks are used
together with the structure of the cumulative constraint to (dual) fix decision variables.

In Section 5, we presented computational results using a well-known benchmark set
of resource-constrained project scheduling problems. Our results demonstrated that the
proposed reductions arise within these problem types. Furthermore, the dual reductions are
capable of fixing variables that were not fixed by standard propagation algorithms during
the presolving phase. However, for our test instances we did not observe any meaningful
speed-up, though a slight improvement is observed in the overall performance.
Perspectives. One essential condition for the variable locks is that the variable domain
is totally ordered. For problems without such an ordering, one could introduce such an
order and apply the concepts of variable locks. Consider for example the all-different
constraint [38, 39]. For a given set of variables, it enforces that each variable takes a
different value and, as a consequence, the domain of the variables need not be totally
ordered. Introducing an order, however, can lead to dual fixings for even these types of
variables. Consider the following example.

Example 7.1. Consider the variables x1 with domain {1, 2, 4} and x2 with a domain
of {1, 3, 4}. Using the natural ordering of the numbers, an all-different constraint over
these two variables could not omit any lock. Changing these orders to {2, 1, 4} for x1
and {1, 4, 3} for x2, an all-different constraint over these two variables could omit the
down-lock on variable x1 and the up-lock on variable x2.

The question arising from this observation is, which order on the domain values is the
best one w.r.t. fixing variables. Or more generally, is it worthwhile to introduce value-based
locks.

It is worth noting that the combination of variable locks and global constraints is a novel
aspect of this work. Our development and analysis of valid dual reductions relies directly
on the semantics of the cumulative constraint whereas dual reasoning in MIP is based on
the comparatively limited structure embodied by a linear constraint. We believe therefore
that, just as standard constraint inference relies on the meaning of a global constraint, there
is a rich vein of reasoning that can be done by deriving and combining dual information
based on the semantics of a global constraint.

Variable locks are one way for a constraint-based system to collect dual information.
We showed how such information can be used for the cumulative constraint. A next step is
to analyze other global constraints and develop other concepts that provide similar infor-
mation for a constraint-based system.
Conclusion. From the perspective of our thesis as stated in Section 1, we have demon-
strated that the use of dual reductions in a presolving phase can lead to substantial problem
reformulation and, furthermore, that variable locks provide an inexpensive mechanism to
gather global dual information. Our experimental results indicate that we did not achieve
a meaningful decrease in the mean time to solve the benchmark problem instances. Nev-
ertheless, we believe that the novel use of presolving for CP opens promising research
directions that will lead to stronger solver performance.

8. ACKNOWLEDGEMENT

We thank the anonymous referees for their extensive and valuable comments. We also
thank Brahim Hnich for a discussion of monotone constraints.

USING DUAL PRESOLVING REDUCTIONS TO REFORMULATE CUMULATIVE CONSTRAINTS 23

REFERENCES

[1] Karwan, M.H., Lotfi, V., Telgen, J., Zionts, S.: Redundancy in mathematical programming. A state-of-the-
art survey. Volume 206 of Lecture Notes in Economics and Mathematical Systems. Springer (1983)

[2] Bixby, R.E., Wagner, D.K.: A note on detecting simple redundancies in linear systems. Operation Research
Letters 6(1) (1987) 15–17

[3] Imbert, J.L., Hentenryck, P.V.: Redundancy elimination with a lexicographic solved form. Annals of Math-
ematics and Artificial Intelligence 17(1–2) (1996) 85–106

[4] Savelsbergh, M.W.P.: Preprocessing and probing techniques for mixed integer programming problems.
ORSA Journal on Computing 6 (1994) 445–454

[5] Achterberg, T.: Constraint Integer Programming. PhD thesis, Technische Universität Berlin (2007)
[6] Guzelsoy, M.: Dual Methods in Mixed Integer Linear Programming. PhD thesis, Lehigh Univer-

sity,Industrial and Systems Engineering (2010)
[7] Mahajan, A.: Presolving mixed-integer linear programs. Preprint ANL/MCS-P1752-0510, Mathematics and

Computer Science Division (2010)
[8] Achterberg, T.: Scip: Solving constraint integer programs. Mathematical Programming Computation 1(1)

(2009) 1–41
[9] Gent, I.P., Miguel, I., Rendl, A.: Tailoring solver-independent constraint models: a case study with essence’

and minion. In Miguel, I., Ruml, W., eds.: Abstraction, Reformulation, and Approximation. Volume 4612
of Lecture Notes in Computer Science. (2007) 184–199

[10] Frisch, A.M., Harvey, W., Jefferson, C., Martı́nez-Hernández, B., Miguel, I.: Essence: A constraint lan-
guage for specifying combinatorial problems. Constraints 13 (2008) 268–306

[11] Rendl, A.: Effective Compilation of Constraint Models. PhD thesis, University of St Andrews (2010)
[12] Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Minizinc: Towards a standard

cp modelling language. In Bessiere, C., ed.: Principles and Practice of Constraint Programming - CP 2007.
Volume 4741 of Lecture Notes in Computer Science., Springer (2007) 529–543

[13] de la Banda, M.J.G., Marriott, K., Rafeh, R., Wallace, M.: The modelling language zinc. In Benhamou, F.,
ed.: Principles and Practice of Constraint Programming - CP 2006, 12th International Conference, CP 2006,
Nantes, France, September 25-29, 2006, Proceedings. Volume 4204 of Lecture Notes in Computer Science.
(2006) 700–705

[14] Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P.J., de la Banda, M.G., Wallace, M.: The design of the
zinc modelling language. Constraints 13(3) (2008) 229–267

[15] Pesant, G., Quimper, C., Zanarini, A.: Counting-based search: Branching heuristics for constraint satisfac-
tion problems. Journal of Artificial Intelligence Research 43 (2012) 173–210

[16] Dantzig, G.B., Thapa, M.N.: Linear Programming 2. Springer Series in Operations Research. Springer
(2003)

[17] Gent, I.P., Petrie, K.E., Puget, J.F.: Symmetry in Constraint Programming. In: Handbooks of Constraint
Programming. Elsevier (2006)

[18] Prestwich, S.D., Beck, J.C.: Exploiting dominance in three symmetric problems. In: Proceedings of the
Fourth International Workshop on Symmetry and Constraint Satisfaction Problems. (2004)

[19] Puget, J.F.: Automatic detection of variable and value symmetries. In van Beek, P., ed.: Principles and
Practice of Constraint Programming - CP 2005. Volume 3709 of Lecture Notes in Computer Science. (2005)
475–489

[20] Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E., Gamrath, G.,
Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Steffy, D.E., Wolter, K.:
MIPLIB 2010. Mathematical Programming Computation 3(2) (2011) 103–163

[21] Bordeaux, L., Cadoli, M., Mancini, T.: A unifying framework for structural properties of csps: definitions,
complexity, tractabilit. J. Artif. Int. Res. 32(1) (June 2008) 607–629

[22] Dechter, R.: Constraint processing. Elsevier Morgan Kaufmann (2003)
[23] Aggoun, A., Beldiceanu, N.: Extending chip in order to solve complex scheduling and placement problems.

Mathematical and Computer Modelling 17(7) (1993) 57–73
[24] Baptiste, P., Pape, C.L., Nuijten, W.: Constraint-based Scheduling. Kluwer Academic Publishers (2001)
[25] Baptiste, P., Pape, C.L.: Scheduling a single machine to minimize a regular objective function under setup

constraints. Discrete Optimization 2(1) (2005) 83–99
[26] PSPLib: Project Scheduling Problem LIBrary. http://129.187.106.231/psplib/
[27] Baptiste, P., Pape, C.L.: Constraint propagation and decomposition techniques for highly disjunctive and

highly cumulative project scheduling problems. Constraints 5(1/2) (2000) 119–139
[28] Artigues, C., Demassey, S., Néron, E., eds.: Resource-Constrained Project Scheduling: Models, Algorithms,

Extensions and Applications. iSTE (2008)
[29] Heinz, S., Schulz, J.: Explanations for the cumulative constraint: An experimental study. In Pardalos,

P.M., Rebennack, S., eds.: Experimental Algorithms. Volume 6630 of Lecture Notes in Computer Science.,
Springer (2011) 400–409

http://129.187.106.231/psplib/

24 STEFAN HEINZ, JENS SCHULZ, AND J. CHRISTOPHER BECK

[30] Yunes, T., Aron, I.D., Hooker, J.N.: An integrated solver for optimization problems. Operations Research
58(2) (2010) 342–356

[31] Berthold, T., Heinz, S., Lübbecke, M.E., Möhring, R.H., Schulz, J.: A constraint integer programming
approach for resource-constrained project scheduling. In Lodi, A., Milano, M., Toth, P., eds.: Integration
of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. Volume
6140 of Lecture Notes in Computer Science., Springer (2010) 313–317

[32] Berthold, T., Heinz, S., Schulz, J.: An approximative criterion for the potential of energetic reasoning. In
Marchetti-Spaccamela, A., Segal, M., eds.: Theory and Practice of Algorithms in (Computer) Systems.
Volume 6595 of Lecture Notes in Computer Science., Springer (2011) 229–239

[33] Klein, R., Scholl, A.: Computing lower bounds by destructive improvement: An application to resource-
constrained project scheduling. European Journal of Operational Research 112(2) (1999) 322–346

[34] Vilı́m, P.: Max energy filtering algorithm for discrete cumulative resources. In van Hoeve, W.J., Hooker,
J.N., eds.: Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems. Volume 5547 of Lecture Notes in Computer Science. (2009) 294–308

[35] Möhring, R.H., Schulz, A.S., Stork, F., Uetz, M.: Solving project scheduling problems by minimum cut
computations. Management Science 49(3) (2003) 330–350

[36] Kiziltan, Z.: Symmetry breaking ordering constraints: Thesis. AI Communications 17 (August 2004) 167–
169

[37] Borrett, J.E., Tsang, E.P.K.: A context for constraint satisfaction problem formulation selection. Constraints
6(4) (2001) 299–327

[38] Laurière, J.L.: A language and a program for stating and solving combinatorial problems. Artificial Intelli-
gence 10(1) (1978) 29–127

[39] van Hoeve, W.J.: The alldifferent constraint: A survey. CoRR cs.PL/0105015 (2001)

USING DUAL PRESOLVING REDUCTIONS TO REFORMULATE CUMULATIVE CONSTRAINTS 25

APPENDIX A. DETAILED COMPUTATIONAL RESULTS

In this section, we present detailed computational results that are helpful to justify our
claims in Section 5. For each summary line in Table 1 we have included one table that
shows how certain results arose within a particular test set. Table 6 presents the results
for the test set of the RCPSP instances and Table 7, the results for the RCPSP/max test
sets. The columns have the same meaning as in the summary table. The first column “Test
set” states the name of test sub-set. The remaining columns display for each setting, that
is NOPRIMAL, DEFAULT, and BOUNDED (see Section 5.2), the following information. The
first column “Inst” shows the percentage of instances where at least one reduction was
detected in the considered presolving step. The second column prints the “Total” number
of times the presolving reduction was applied. The remaining columns display, for those
instances were the reduction was applied at least once, the maximum (“Max”) number of
times it was applied for a single instance, the average (“Avg”) number of times, and the
standard deviation (“Var”). When no reduction was found for the whole test set we print
“–”. If this is the case for all three settings we omit the whole results line. Since no primal
solution is available during the presolving phase for the RCPSP/max instances, the results
of NOPRIMAL and DEFAULT are the same. Therefore, we omit the corresponding columns
for the NOPRIMAL condition.

APPENDIX B. RE-RUNNING THE EXPERIMENTS

The results we presented w.r.t. the impact of the introduced dual reductions (Tables 1,
2, 3, 6, and 7) can be reproduced with the scheduler example of SCIP version 3.0.1
release. For getting the statistics of the different dual reductions, you need to define
SCIP STATISTIC in the source code of the cumulative constraint handler

src/scip/cons cumulative.c

The dual reductionscan be turned off and on (default) via the Boolean parameter
constraints/cumulative/dualpresolve

ADDRESSES

STEFAN HEINZ, ZUSE INSTITUTE BERLIN, TAKUSTR. 7, 14195 BERLIN, GERMANY

E-mail address: heinz@zib.de

JENS SCHULZ, TECHNISCHE UNIVERSITÄT BERLIN, INSTITUT FÜR MATHEMATIK, STRASSE DES 17.
JUNI 136, 10623 BERLIN, GERMANY

E-mail address: jschulz@math.tu-berlin.de

J. CHRISTOPHER BECK, DEPARTMENT OF MECHANICAL & INDUSTRIAL ENGINEERING, UNIVERSITY

OF TORONTO, TORONTO, ONTARIO M5S 3G8, CANADA

E-mail address: jcb@mie.utoronto.ca

26 STEFAN HEINZ, JENS SCHULZ, AND J. CHRISTOPHER BECK

TABLE 6. This table summarizes the appearance of the different pre-
solving reductions for each test sub-set of the RCPSP instances sepa-
rately. For the PACK test set none of the dual reductions was applicable
there we omit these rows.

NOPRIMAL DEFAULT BOUNDED

Test set Inst Total Max Avg Var Inst Total Max Avg Var Inst Total Max Avg Var

Constraint decompositions (Lemma 4.3)

30 jobs 0.0% – – – – 14.8% 186 14 2.6 2.1 23.1% 355 16 3.2 3.0
60 jobs 0.0% – – – – 11.2% 131 11 2.4 2.0 10.4% 153 10 3.1 2.3
90 jobs 0.0% – – – – 7.5% 56 5 1.6 0.9 5.2% 77 11 3.1 2.5
120 jobs 0.0% – – – – 1.3% 11 2 1.4 0.5 6.8% 121 15 3.0 3.0

RCPSP 0.0% – – – – 8.1% 384 14 2.3 1.9 10.8% 706 16 3.1 2.8

Irrelevant variables due to no overlap with the effective horizon (Lemma 4.4)

30 jobs 50.2% 6578 96 27.3 29.0 61.7% 7930 151 26.8 27.7 63.8% 10573 313 34.6 38.4
60 jobs 64.0% 14468 200 47.1 61.0 71.5% 16749 306 48.8 61.1 71.5% 16899 272 49.3 60.8
90 jobs 69.0% 22298 308 67.4 93.4 74.8% 23407 308 65.2 90.6 73.3% 23926 308 68.0 91.7
120 jobs 62.5% 4162 76 11.1 9.6 64.3% 4435 116 11.5 11.7 68.3% 7999 486 19.5 44.5

RCPSP 59.9% 47506 308 37.9 62.4 66.1% 52521 308 37.9 60.8 67.4% 59397 486 42.1 65.1

Irrelevant variables due to an overlap with the effective horizon (Lemma 4.5)

30 jobs 0.0% – – – – 2.9% 21 3 1.5 0.6 8.8% 119 14 2.8 3.0
60 jobs 0.0% – – – – 2.5% 32 6 2.7 2.0 4.2% 51 19 2.5 3.9
90 jobs 0.0% – – – – 1.0% 5 1 1.0 0.0 2.3% 28 8 2.5 2.1
120 jobs 0.0% – – – – 0.0% – – – – 2.2% 39 13 3.0 3.4

RCPSP 0.0% – – – – 1.5% 58 6 1.9 1.5 4.1% 237 19 2.8 3.2

Variable lock adjustments (Lemma 4.6)

30 jobs 0.0% – – – – 11.7% 169 13 3.0 2.7 24.6% 873 68 7.4 9.3
60 jobs 0.0% – – – – 10.8% 228 18 4.4 4.7 12.3% 385 57 6.5 8.1
90 jobs 0.0% – – – – 10.0% 166 14 3.5 2.9 6.0% 183 19 6.3 4.9
120 jobs 0.0% – – – – 1.5% 15 4 1.7 1.1 11.0% 337 24 5.1 5.3

RCPSP 0.0% – – – – 7.9% 578 18 3.5 3.5 13.0% 1778 68 6.5 7.9

Dual fixings due to a single constraint (Lemma 4.7)

30 jobs 47.1% 1465 25 6.5 6.5 47.7% 1549 25 6.8 6.6 49.2% 1490 25 6.3 6.5
60 jobs 53.3% 2805 52 11.0 14.1 53.3% 2836 52 11.1 14.1 53.8% 2845 52 11.0 14.1
90 jobs 57.1% 4193 80 15.3 21.8 57.1% 4290 80 15.7 22.0 57.1% 4216 80 15.4 21.8
120 jobs 43.8% 1491 23 5.7 5.3 43.8% 1493 23 5.7 5.4 44.0% 1559 35 5.9 5.8

RCPSP 48.6% 9954 80 9.8 14.5 48.8% 10168 80 9.9 14.6 49.3% 10110 80 9.8 14.5

Dual fixings due to a set of constraints (Corollary 4.9)

30 jobs 56.5% 2716 30 10.0 10.5 59.2% 2768 30 9.7 10.4 59.0% 2755 30 9.7 10.4
60 jobs 70.0% 5333 59 15.9 20.3 71.5% 5361 59 15.6 20.2 72.5% 5371 59 15.4 20.1
90 jobs 75.2% 8018 87 22.2 30.1 76.5% 8045 87 21.9 29.9 76.2% 8029 87 21.9 30.0
120 jobs 62.5% 1310 20 3.5 2.8 62.7% 1313 21 3.5 2.8 64.5% 1348 20 3.5 2.8

RCPSP 64.1% 17377 87 12.9 20.6 65.4% 17487 87 12.8 20.4 66.1% 17503 87 12.6 20.3

All dual reductions
30 jobs 76.5% 10759 0 29.3 35.9 79.0% 12623 0 33.3 35.5 81.5% 16165 0 41.3 47.2
60 jobs 89.4% 22606 0 52.7 74.1 89.4% 25337 0 59.1 75.5 90.0% 25704 0 59.5 75.4
90 jobs 95.0% 34509 0 75.7 112.6 95.0% 35969 0 78.9 111.9 95.6% 36459 0 79.4 112.3
120 jobs 88.3% 6963 0 13.1 11.4 88.5% 7267 0 13.7 13.4 88.5% 11403 0 21.5 44.1

RCPSP 85.1% 74837 393 42.0 74.0 85.7% 81196 393 45.2 74.3 86.5% 89731 538 49.5 78.1

USING DUAL PRESOLVING REDUCTIONS TO REFORMULATE CUMULATIVE CONSTRAINTS 27

TABLE 7. This table summarizes the appearance of the different pre-
solving reductions for each test sub-set of the RCPSP/max instances sep-
arately. If for a test sub-set a particular dual reductions did not arose we
omit the corresponding row in the table.

NOPRIMAL DEFAULT BOUNDED

Test set Inst Total Max Avg Var Inst Total Max Avg Var Inst Total Max Avg Var

Constraint decompositions (Lemma 4.3)

TESTSETC 0.0% – – – – 0.0% – – – – 7.4% 623 107 15.6 20.9
TESTSETD 0.0% – – – – 0.0% – – – – 10.2% 1260 185 22.9 32.5
J10 0.0% – – – – 0.0% – – – – 28.9% 400 29 5.1 5.0
J20 0.0% – – – – 0.0% – – – – 25.9% 549 37 7.8 7.2
J30 0.0% – – – – 0.0% – – – – 19.3% 512 50 9.8 9.7
UBO10 0.0% – – – – 0.0% – – – – 44.4% 265 15 6.6 3.9
UBO100 0.0% – – – – 0.0% – – – – 18.9% 284 59 16.7 16.3
UBO20 0.0% – – – – 0.0% – – – – 33.3% 285 40 9.5 8.8
UBO200 0.0% – – – – 0.0% – – – – 11.1% 124 41 12.4 12.1
UBO50 0.0% – – – – 0.0% – – – – 26.7% 259 56 10.8 12.6
UBO500 0.0% – – – – 0.0% – – – – 3.3% 72 69 24.0 31.8

RCPSP/max 0.0% – – – – 0.0% – – – – 16.6% 4633 185 11.1 16.6

Irrelevant variables due to no overlap with the effective horizon (Lemma 4.4)

TESTSETC 44.4% 5144 174 21.4 27.9 44.6% 5146 174 21.4 27.9 49.8% 28113 3581 104.5 350.6
TESTSETD 35.2% 3414 181 18.0 25.9 35.2% 3414 181 18.0 25.9 42.4% 53362 10894 233.0 852.8
J10 5.2% 74 14 5.3 3.2 5.2% 74 14 5.3 3.2 35.6% 2402 236 25.0 33.8
J20 3.7% 33 5 3.3 1.2 3.7% 33 5 3.3 1.2 28.9% 5536 443 71.0 85.6
J30 3.7% 37 5 3.7 1.2 3.7% 37 5 3.7 1.2 23.3% 7951 974 126.2 167.8
UBO10 8.9% 39 12 4.9 2.8 8.9% 39 12 4.9 2.8 52.2% 1521 87 32.4 25.4
UBO100 1.1% 2 2 2.0 0.0 1.1% 2 2 2.0 0.0 21.1% 13481 3146 709.5 788.5
UBO20 8.9% 45 10 5.6 2.3 8.9% 45 10 5.6 2.3 38.9% 2943 422 84.1 94.6
UBO200 2.2% 7 5 3.5 1.5 2.2% 7 5 3.5 1.5 12.2% 13294 4393 1208.5 1187.9
UBO50 1.1% 3 3 3.0 0.0 1.1% 3 3 3.0 0.0 28.9% 5908 1155 227.2 270.4
UBO500 0.0% – – – – 0.0% – – – – 3.3% 24912 23802 8304.0 10959.9

RCPSP/max 19.2% 8798 181 18.2 26.0 19.2% 8800 181 18.1 26.0 34.8% 159423 23802 182.0 963.9

Irrelevant variables due to an overlap with the effective horizon (Lemma 4.5)

TESTSETC 0.0% – – – – 0.0% – – – – 3.0% 281 131 17.6 33.9
TESTSETD 0.0% – – – – 0.0% – – – – 4.3% 280 91 12.2 22.1
J10 0.0% – – – – 0.0% – – – – 6.7% 56 13 3.1 2.9
J20 0.0% – – – – 0.0% – – – – 4.4% 60 25 5.0 6.9
J30 0.0% – – – – 0.0% – – – – 4.1% 78 20 7.1 5.6
UBO10 0.0% – – – – 0.0% – – – – 10.0% 20 4 2.2 1.0
UBO100 0.0% – – – – 0.0% – – – – 3.3% 9 6 3.0 2.2
UBO20 0.0% – – – – 0.0% – – – – 6.7% 43 21 7.2 6.7
UBO200 0.0% – – – – 0.0% – – – – 2.2% 4 2 2.0 0.0
UBO50 0.0% – – – – 0.0% – – – – 6.7% 25 8 4.2 2.5
UBO500 0.0% – – – – 0.0% – – – – 2.2% 21 20 10.5 9.5

RCPSP/max 0.0% – – – – 0.0% – – – – 4.3% 877 131 8.1 17.8

Variable lock adjustments (Lemma 4.6)

TESTSETC 0.0% – – – – 0.0% – – – – 5.6% 948 348 31.6 67.6
TESTSETD 0.0% – – – – 0.0% – – – – 7.6% 1196 297 29.2 54.1
J10 0.0% – – – – 0.0% – – – – 19.3% 238 27 4.6 5.1
J20 0.0% – – – – 0.0% – – – – 14.8% 293 67 7.3 11.5
J30 0.0% – – – – 0.0% – – – – 12.2% 369 58 11.2 13.8
UBO10 0.0% – – – – 0.0% – – – – 27.8% 103 16 4.1 3.7
UBO100 0.0% – – – – 0.0% – – – – 8.9% 61 24 7.6 8.9
UBO20 0.0% – – – – 0.0% – – – – 16.7% 131 44 8.7 10.9
UBO200 0.0% – – – – 0.0% – – – – 4.4% 31 12 7.8 3.2
UBO50 0.0% – – – – 0.0% – – – – 15.6% 164 52 11.7 14.0
UBO500 0.0% – – – – 0.0% – – – – 3.3% 78 63 26.0 26.4

RCPSP/max 0.0% – – – – 0.0% – – – – 10.5% 3612 348 13.6 34.0

28 STEFAN HEINZ, JENS SCHULZ, AND J. CHRISTOPHER BECK

Table 7 – Continued

Dual fixings due to a single constraint (Lemma 4.7)

TESTSETC 19.6% 234 14 2.2 2.1 19.6% 234 14 2.2 2.1 19.8% 236 14 2.2 2.1
TESTSETD 19.3% 236 15 2.3 2.2 19.3% 236 15 2.3 2.2 19.8% 243 15 2.3 2.2
J10 5.6% 16 2 1.1 0.2 5.6% 16 2 1.1 0.2 6.3% 19 2 1.1 0.3
J20 2.6% 7 1 1.0 0.0 2.6% 7 1 1.0 0.0 3.7% 10 1 1.0 0.0
J30 3.0% 9 2 1.1 0.3 3.0% 9 2 1.1 0.3 4.1% 13 2 1.2 0.4
UBO100 0.0% – – – – 0.0% – – – – 2.2% 2 1 1.0 0.0
UBO20 1.1% 1 1 1.0 0.0 1.1% 1 1 1.0 0.0 2.2% 3 2 1.5 0.5
UBO50 0.0% – – – – 0.0% – – – – 1.1% 1 1 1.0 0.0

RCPSP/max 9.6% 503 15 2.1 2.0 9.6% 503 15 2.1 2.0 10.2% 527 15 2.1 2.0

Dual fixings due to a set of constraints (Corollary 4.9)

TESTSETC 44.4% 1555 45 6.5 7.8 44.6% 1556 45 6.5 7.8 44.6% 1561 46 6.5 7.9
TESTSETD 35.2% 1100 45 5.8 7.6 35.2% 1100 45 5.8 7.6 35.9% 1129 45 5.8 7.6
J10 5.2% 20 3 1.4 0.6 5.2% 20 3 1.4 0.6 6.7% 27 3 1.5 0.7
J20 3.7% 11 2 1.1 0.3 3.7% 11 2 1.1 0.3 5.9% 18 2 1.1 0.3
J30 3.7% 10 1 1.0 0.0 3.7% 10 1 1.0 0.0 4.1% 12 2 1.1 0.3
UBO10 8.9% 10 3 1.2 0.7 8.9% 10 3 1.2 0.7 13.3% 16 3 1.3 0.7
UBO100 1.1% 1 1 1.0 0.0 1.1% 1 1 1.0 0.0 7.8% 10 3 1.4 0.7
UBO20 8.9% 11 2 1.4 0.5 8.9% 11 2 1.4 0.5 10.0% 17 4 1.9 1.0
UBO200 2.2% 2 1 1.0 0.0 2.2% 2 1 1.0 0.0 4.4% 10 6 2.5 2.1
UBO50 1.1% 1 1 1.0 0.0 1.1% 1 1 1.0 0.0 3.3% 6 3 2.0 0.8

RCPSP/max 19.2% 2721 45 5.6 7.5 19.2% 2722 45 5.6 7.5 20.4% 2806 46 5.4 7.3

All dual reductions
TESTSETC 46.7% 6933 0 27.5 35.8 46.9% 6936 0 27.4 35.8 52.0% 31762 0 113.0 382.7
TESTSETD 39.8% 4750 0 22.1 33.0 39.8% 4750 0 22.1 33.0 46.5% 57470 0 229.0 863.8
J10 9.6% 110 0 4.2 4.0 9.6% 110 0 4.2 4.0 38.1% 3142 0 30.5 40.7
J20 5.2% 51 0 3.6 2.0 5.2% 51 0 3.6 2.0 30.4% 6466 0 78.9 97.8
J30 5.6% 56 0 3.7 2.2 5.6% 56 0 3.7 2.2 25.9% 8935 0 127.6 182.2
UBO10 8.9% 49 0 6.1 3.5 8.9% 49 0 6.1 3.5 53.3% 1925 0 40.1 31.2
UBO100 1.1% 3 0 3.0 0.0 1.1% 3 0 3.0 0.0 22.2% 13847 0 692.4 801.7
UBO20 8.9% 57 0 7.1 2.5 8.9% 57 0 7.1 2.5 40.0% 3422 0 95.1 109.3
UBO200 2.2% 9 0 4.5 1.5 2.2% 9 0 4.5 1.5 12.2% 13463 0 1223.9 1199.9
UBO50 1.1% 4 0 4.0 0.0 1.1% 4 0 4.0 0.0 28.9% 6363 0 244.7 290.3
UBO500 0.0% – – – – 0.0% – – – – 4.4% 25083 0 6270.8 10213.0

RCPSP/max 21.5% 12022 225 22.2 33.0 21.5% 12025 225 22.1 32.9 37.0% 171878 23954 184.4 956.4

	1. Introduction
	2. Background
	2.1. Presolving
	2.2. Primal vs. dual information
	2.3. Symmetry breaking and dominance rules
	2.4. Variable locks

	3. Collecting dual information for constraint programs
	4. The cumulative constraint
	4.1. Effective horizon
	4.2. Exploiting variable locks in the cumulative constraint
	4.3. Dual reductions via variable locks
	4.4. Summary

	5. Computational results
	5.1. Test sets
	5.2. Experimental setup
	5.3. Computational environment
	5.4. Results

	6. Discussion
	7. Conclusions and outlook
	8. Acknowledgement
	References
	Appendix A. Detailed computational results
	Appendix B. Re-running the experiments
	Addresses

