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Improving strong branching by propagation ∗

Gerald Gamrath†

Abstract

Strong branching is an important component of most variable selection rules in branch-
and-bound based mixed-integer linear programming solvers. It predicts the dual bounds
of potential child nodes by solving auxiliary LPs and thereby helps to keep the branch-
and-bound tree small. In this paper, we describe how these dual bound predictions can be
improved by including domain propagation into strong branching. Computational experi-
ments on standard MIP instances indicate that this is beneficial in three aspects: It helps
to reduce the average number of LP iterations per strong branching call, the number of
branch-and-bound nodes, and the overall solving time.

Keywords: mixed-integer programming, branch-and-bound, branching rule, strong branch-
ing, domain propagation

Mathematics Subject Classification: 90C10, 90C11, 90C57

1 Introduction

Since the invention of the linear programming (LP) based branch-and-bound method for solving
mixed-integer linear programs (MIPs) in the 1960s [1, 2], branching rules have been an important
field of research in that context, being one of the core parts of the method (for surveys, see [3,
4, 5]). Their task is to split the current node’s problem into two or more disjoint subproblems
if the solution to the current LP relaxation does not fulfill the integrality restrictions, thereby
excluding the LP solution from all subproblems while keeping at least one optimal solution.

The most common way to split the problem is to branch on trivial inequalities, which split the
domain of a single variable into two parts (called variable branching). Alternatively, branching
can be performed on general linear constraints (see [6, 7, 8, 9, 10]) or can create more than
two subproblems, cf. [11, 12]. In case of variable branching, the variable to actually branch
on is typically chosen with the goal of improving the local dual bound of both created child
nodes. This helps to tighten the global dual bound and prune nodes early (for recent research on
alternative criteria, see, e.g., [13, 14, 15, 16]). A very popular branching rule called pseudo-cost
branching [17] uses history information about the change of the dual bound caused by previous
branchings. More accurate, but also more expensive, is strong branching [18, 19, 4], which
explicitly computes dual bounds of potential child nodes by solving an auxiliary LP with the
branching bound change temporarily added. The full strong branching rule does this at every
node for each integer variable with fractional LP value which empirically leads to very small
branch-and-bound trees [5]. Modern branching rules typically combine these two approaches and
use strong branching in the case of uninitialized or unreliable pseudo cost values (see [5, 20]).

∗This article is to appear in the Proceedings of the 10th International Conference on Integration of Artificial
Intelligence and Operations Research Techniques in Constraint Programming (CPAIOR 2013) held May 18-22,
2013, in Yorktown Heights, NY, USA.
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In practice, one can often observe a difference between the dual bound that strong branching
computes for a node and the actual dual bound obtained later during node processing. This
restrains the effectiveness of strong branching, which should predict the actual dual bound of the
node and not just compute some valid dual bound. There are various reasons for the difference,
most prominently domain propagation and global domain changes found in the meantime. The
task of domain propagation (or node preprocessing) is to tighten the local domains of variables
by inspecting the constraints and current domains of other variables at the local subproblem. It
is the integral part of each constraint programming solver [21] and has also proven to improve
MIP solvers significantly by tightening the LP relaxation, resulting in better dual bounds and
detecting infeasibilities earlier [22, 23, 24].

While strong branching cannot do anything about the difference in the dual bounds caused by
global domain changes, it should react upon the continuous improvement in domain propagation
techniques. In this paper, we examine how strong branching can be improved by combining it
with domain propagation in order to compute better dual bound predictions. This means that
we perform the same domain propagation steps that are already performed at each node of the
branch-and-bound tree also during strong branching, prior to solving the strong branching LP
of a potential child node.

The general idea and an evaluation of the direct effects are presented in the next section.
Based on that, we discuss additional improvements in Section 3 and provide benchmark results
on a collection of MIPLIB [25, 26, 27] instances showing a reduction of both number of nodes
and solving time when propagation is applied within a full strong branching rule.

2 Strong branching with domain propagation

In the following, we regard mixed-integer linear programs of the form:

min{cTx | Ax ≥ b, x ≥ 0, xi ∈ Z ∀i ∈ I}. (1)

The basic implementation of strong branching with domain propagation (SBDP) works as
follows: Given the current problem P of form (1) and an integer variable xi, i ∈ I with fractional
LP solution value x̂i, it computes dual bounds of the two potential child nodes that would be
created by branching on xi. Therefore, it creates two temporary subproblems Pd (the down child)
and Pu (the up child) by adding to P the bound changes xi ≤ bx̂ic and xi ≥ dx̂ie, respectively.
After that, the variable domains of Pd are tightened by domain propagation. If propagation
detects infeasibility, a dual bound of +∞ is returned for Pd, otherwise the LP relaxation of Pd

is solved and its optimal value provides the strong branching dual bound. The dual bound of Pu

is computed analoguously.
The only difference to “standard” strong branching is that domain propagation is performed

before solving the LP. Since this tightens the LP relaxation, the dual bounds obtained by solving
the strong branching LP are always greater than or equal to the ones computed by standard
strong branching.1 The questions to be considered in this paper are: Is this worth the additional
effort? In particular, how big is the propagation time and how does the number of LP iterations
change? The simplex warmstart normally allows to solve the strong branching LPs with just a
few iterations as there is only one bound changed, but additional changes performed by domain
propagation might change this.

1In this paper, we assume that the strong branching LPs are solved to optimality and no iteration limit is
applied. This is also the case for the implementation of the full strong branching rule used in our computational
experiments.
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For answering these questions, we performed computational experiments using an imple-
mentation of SBDP based on the MIP solver SCIP 3.0 [22, 28] with underlying LP solver
SoPlex 1.7 [29]. They were performed on Intel Xeon E5420 2.5 GHz computers, with 6 MB
cache and 16 GB RAM, running Linux (in 64 bit mode). A time limit of two hours per instance
was imposed. We use full strong branching to measure the impact of our changes for each candi-
date variable at each node and concentrate on the branch-and-bound performance by providing
the optimal objective value as objective cutoff and disabling primal heuristics and cutting plane
separation as well as the components presolver2 of SCIP. As test set, we used the MMM test set
consisting of all instances from MIPLIB 3 [25], MIPLIB 2003 [26], and the benchmark set of
MIPLIB 2010 [27]. We excluded all instances for which no significant amout of strong branch-
ing was performed (less than ten strong branching calls on single variables)—either because the
instance was solved in presolving or at the root node prior to branching or because the time limit
of two hours was hit. Additionally, we excluded the three infeasible instances from MIPLIB
2010 in order to be able to compute the additional gap closed by SBDP, which left us with a
total number of 147 instances.

The experiments were then conducted as follows: After each standard strong branching call,
we additionally performed a call of SBDP on the same variable, running the same domain
propagation techniques as SCIP does on any node of the branch and bound tree (cf. [22]). We
collected statistics about the differences, but did not use any of the information produced by
SBDP within the branch-and-bound search. We chose this approach instead of running twice,
one time with each variant, to exclude the difference in the branch-and-bound tree created by
different branching methods and isolate the impact of the new method on each single strong
branching call.

For analyzing the impact of SBDP, we divide the strong branching calls into three categories:
cutoff if at least one of the two potential child nodes was detected to be infeasible, better bound
if no infeasibility was detected and SBDP computed a better dual bound for at least one of the
potential child nodes, and same bound if both strong branching variants computed the same
(finite) bounds for both potential child nodes.

The results for each of these categories are presented in one line in Table 1, with an additional
line that summarizes these results for all strong branching calls. Besides the number of strong
branching calls (column calls), we show for both strong branching variants the number of potential
subproblems detected infeasible (column cutoffs), the number of LP iterations for solving the LPs
of the two subproblems (column LP iters), and the strong branching time in milliseconds (column
time). Furthermore, we present the number of domain changes performed by SBDP (column dom.
chgs.) and the percentage of the gap between primal bound and strong branching dual bound
closed by using SBDP instead of standard strong branching (column gap closed). For each of the
numbers listed, we compute the arithmetic mean over all strong branching calls for the single
instances and average over the instances by taking a shifted geometric mean3. We use a shift of
100 for the number of strong branching calls, 10 for time, iteration number and domain changes,
and 1 for the number of child nodes declared infeasible per call. Only for the gap closed, having
only values between 0 and 100, do we average over the instances by arithmetic mean.

As expected, the better bound case—which happens only rarely—is typically caused by a
high number of domain changes during propagation and leads to an increase in both the average
number of LP iterations and time per strong branching call, thereby closing the gap by more than
20% on average. In the most common case, the same bound category, a smaller, but still relevant
number of domains are changed by propagation. But instead of slowing down the simplex warm

2The components presolver solves small independent subproblems in advance, excluding them from the main
branch-and-bound search.

3For a definition and discussion of the shifted geometric mean, see Achterberg [22, Appendix A3].
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Table 1: Impact of SBDP on the strong branching calls.
standard strong branching strong branching with domain propagation

category calls cutoffs LP iters time dom. chgs. cutoffs gap closed LP iters time

better bound 376.02 – 44.00 19.5 38.85 – 20.73% 57.19 23.1
same bound 23801.96 – 82.33 39.7 23.74 – – 78.99 40.6
cutoff 3342.63 0.92 56.81 27.3 35.70 1.11 8.50% 46.74 25.6

all 30469.42 0.14 81.03 40.2 26.26 0.17 2.66% 77.52 40.5

start, these bound changes even reduce the average number of LP iterations, e.g., by fixing
variables that would otherwise need to be rendered feasible by some simplex pivots. Last, in
the cutoff case, SBDP detects infeasibility of more potential child nodes—on average 1.11 of the
two children regarded per call are declared infeasible compared to 0.92 otherwise. In about 15%
of the cases, infeasibility is detected already during propagation, leading to a reduction of the
average number of LP iterations and strong branching time. On average over all strong branching
calls, SBDP can declare every twelfth instead of nearly every fourteenth strong branching child
node infeasible and closes the gap by 2.66%. The average number of LP iterations is slightly
decreased, while the time per strong branching call increases marginally. This demonstrates that
the domain propagation time is relatively small compared to the total strong branching time; on
average, it was less than 5%.

To summarize, SBDP exhibits benefits in all three categories. In the majority of strong
branchings, where it yields no bound improvement, it reduces the number of LP iterations. In
the remaining cases, significantly more child nodes can be cut off and about 20% additional gap
is closed.

3 Further improvements and computational results

In this section we describe further improvements motivated by the results of our first computa-
tional experiments and present the effect of SBDP on the overall performance when it is used
within the full strong branching rule.

The first improvement treats the case of an infeasible strong branching subproblem, which
traditionally leads to simply tightening the domain of the candidate variable at the current node
(or cutting off the current node if both subproblems are infeasible). While normally, strong
branching methods always regard both subproblems, we interrupt a strong branching call when
the first potential child is found infeasible, saving the effort we would spend for the second child
node. As usual, the domain change of the other subproblem is then applied at the current node,
causing a reoptimization of its LP, after which branching is started again, if needed.

In our computational experiments presented in Section 2, about 69% of the infeasible sub-
problems were up children. This is not surprising since problems are often modeled in a way
such that changing a variable’s lower bound—in particular, fixing a binary variable to one—has
more impact than changing its upper bound (fixing a binary variable to zero). In order to profit
from infeasible child nodes more often, we decided to investigate the potential up child first.

As in probing preprocessing (see [23]), we can often identify valid local bounds for some
variables even if neither of the two potential child nodes is infeasible. If any variable’s domain
in the two potential child nodes was tightened to [lbd, ubd] and [lbu, ubu], respectively, we can
change the domain of the variable in the local problem to [min{lbd, lbu},max{ubd, ubu}]. For 94
of the 147 instances regarded in Section 2, this technique was able to identify tighter bounds,
identifying on average 3.15 bounds that could have been tightened per strong branching call with
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Table 2: Comparison of full strong branching with and without SBDP.
full strong branching full strong with SBDP

test set size solved nodes time solved nodes time

MMM: complete 168 97 814 633.1 100 645 582.2
MMM: all optimal 94 94 321 86.3 94 253 78.9

both subproblems feasible. With this improvement, probing preprocessing is performed as a side
product of SBDP.

Using these improvements, we performed computational experiments to compare the perfor-
mance of SBDP against standard strong branching. We used the same computing environment as
described in Section 2 and also the MMM testset described there, this time without excluding any
instances. Within SCIP, we exchanged the strong branching calls in the full strong branching
rule for SBDP and again provided the optimum as cutoff bound, disabled primal heuristics, cut-
ting plane separation, and the components presolver in order to focus on the branch-and-bound
search and to reduce random performance changes (see [27]).

The results are summarized in Table 2. We regard both the complete MMM test set (row
MMM: complete) as well as the subset of instances that both variants solved to optimality (row
MMM: all optimal), and present—besides the size of the sets—aggregated results for both sets.
More specifically, we list the number of solved instances and the shifted geometric mean (with
a shift of 10) of the number of processed branch-and-bound nodes and the solving time. The
results are promising: with the improved strong branching method, SCIP is able to solve 100
out of the 168 instances of the MMM test set within the time limit of two hours, three instances
more than with standard strong branching. For the subset of instances that both versions solved
to optimality, the average number of nodes and the solution time are reduced by 21% and 9%,
respectively. Detailed instance-wise results of the computational experiments are provided in
Table 3 in the Appendix.

4 Conclusions and outlook

In this paper, we improved strong branching by applying domain propagation to compute more
accurate dual bound predictions. First computational experiments on general MIP instances
show that this comes with relatively small cost and, used in a full strong branching rule, can speed
up the solution process while reducing the branch-and-bound tree size. For “structured” or more
general problems classes like MINLP or CIP [22] where typically the LP misses more information
which can be exploited by domain propagation, we expect an even larger improvement by the
new method.

Our preliminary results show the potential of the approach. An integration into state-of-the-
art branching rules like reliability branching [5] and a possible combination with other recent
strong branching improvements like cloud branching [31] or nonchimerical branching [32] are
fields for future research.

Already the improved full strong branching might prove useful when the branch-and-bound
tree should be kept small, e.g., under tight memory restrictions or for massive parallel MIP
solvers (see, e.g., [33, 34]), where reducing the tree size has the added advantage of reducing the
message passing overhead.

5



5 Acknowledgements

The author would like to thank Tobias Achterberg and Michael Winkler for fruitful discussions
and Timo Berthold, Ambros Gleixner, and four anonymous reviewers for helpful comments on
the paper.

References

[1] Land, A.H., Doig, A.G.: An automatic method of solving discrete programming problems.
Econometrica 28(3) (1960) 497–520

[2] Dakin, R.J.: A tree-search algorithm for mixed integer programming problems. The Com-
puter Journal 8(3) (1965) 250–255

[3] Mitra, G.: Investigation of some branch and bound strategies for the solution of mixed
integer linear programs. Mathematical Programming 4 (1973) 155–170

[4] Linderoth, J.T., Savelsbergh, M.W.P.: A computational study of search strategies in mixed-
integer programming. INFORMS Journal on Computing 11(2) (1999) 173–187

[5] Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Operations Research
Letters 33 (2005) 42–54

[6] Ryan, D.M., A.Foster, B.: An integer programming approach to scheduling. In Wren, A.,
ed.: Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew Schedul-
ing. North Holland, Amsterdam (1981) 269–280

[7] Owen, J.H., Mehrotra, S.: Experimental results on using general disjunctions in branch-and-
bound for general-integer linear programs. Computational Optimization and Applications
20 (2001) 159–170

[8] Mahajan, A., Ralphs, T.K.: Experiments with branching using general disjunctions. In
Chinneck, J.W., Kristjansson, B., Saltzman, M.J., eds.: Operations Research and Cyber-
Infrastructure. Volume 47 of Operations Research/Computer Science Interfaces Series.
Springer US (2009) 101–118
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A Detailed Computational Results

Table 3 lists detailed results for the computational experiments described in Section 3. For
each if the instances from MIPLIB 3, MIPLIB 2003, and MIPLIB 2010, we list the solving
time (where 7200 means that the time limit was reached), the number of processed branch-and-
bound nodes, and the optimality gap at termination. According to [27], the gap is defined as
gap = pb−db

inf{|z|,z∈[db,pb]} , where pb and db are primal bound and dual bound, respectively. Since

the test set contains only minization problems, pb ≥ db holds for all instances. Additionally, we
present the number of solved instances as well as the shifted geometric mean of the number of
nodes and the solving time both for all instances and for only the subset of instances that both
variants solved to optimality.

full strong branching full strong with SBDP
instance nodes gap time nodes gap time

10teams 2 0.0 10.2 2 0.0 8.9
30n20b8 55 100.0 7200.0 117 100.0 7200.0
a1c1s1 13.2k 193.9 7200.0 14.0k 171.4 7200.0
acc-tight5 1 — 0.1 1 — 0.1
aflow30a 4.2k 0.0 107.9 2.4k 0.0 83.9
aflow40b 33.8k 6.4 7200.0 24.6k 6.3 7200.0
air03 1 0.0 12.9 1 0.4 13.0
air04 11 0.0 61.4 7 0.0 54.3
air05 9 0.0 188.7 9 0.0 171.2
app1-2 35 0.0 4210.1 13 0.0 1554.4
arki001 190.8k 0.0 7200.0 163.1k 0.0 7200.0
ash608gpia-3col 1 — 7200.0 1 — 7200.0
atlanta-ip 2 10.1 7200.0 2 10.1 7200.0
beasleyC3 18.5k 180.1 7200.0 12.9k 136.5 7200.0
bell3a 14.3k 0.0 3.8 14.3k 0.0 4.3
bell5 921.0k 0.0 423.2 239.8k 0.0 150.0
bab5 194 6.1 7200.0 238 6.6 7200.0
biella1 11 0.0 690.1 14 0.0 635.5
bienst2 21.1k 0.0 1264.2 21.1k 0.0 1152.3
binkar10 1 281.8k 0.5 7200.0 221.3k 0.5 7200.0
blend2 111 0.0 0.2 136 0.0 0.3
bley xl1 12 13.6 7200.0 11 0.0 7175.8
bnatt350 1 — 0.2 1 — 0.2
cap6000 609 0.0 1.0 624 0.0 1.2
core2536-691 1 0.0 18.1 1 0.0 18.0
cov1075 3.9k 12.7 7200.0 4.4k 13.2 7200.0
csched010 14.7k 11.5 7200.0 15.5k 12.4 7200.0
dano3mip 20 19.3 7200.0 20 19.3 7200.0
danoint 21.3k 3.6 7200.0 24.3k 3.6 7200.0
dcmulti 296 0.0 1.0 288 0.0 1.2
dfn-gwin-UUM 71.2k 0.0 1002.0 66.4k 0.0 1292.7
disctom 1 — 0.1 1 — 0.1
ds 1 63.3 7200.0 1 63.2 7200.0
dsbmip 1 0.0 0.2 1 0.0 0.2
egout 27 0.0 0.0 15 0.0 0.0

cont’d next page

9



full strong branching full strong with SBDP
instance nodes gap time nodes gap time

eil33-2 242 0.0 225.2 250 0.0 133.8
eilB101 164 0.0 1483.5 160 0.0 1007.5
enigma 1 — 0.0 1 — 0.0
enlight13 656.6k 82.1 7200.0 6.0k 0.0 123.0
enlight14 656.3k — 7200.0 24.9k — 1031.7
ex9 1 — 1.5 1 — 1.4
fast0507 13 1.0 7200.0 12 1.0 7200.0
fiber 1.2k 0.0 22.6 1.0k 0.0 26.8
fixnet6 81 0.0 0.6 79 0.0 0.8
flugpl 341 0.0 0.1 74 0.0 0.0
gen 5 0.0 0.1 5 0.0 0.1
gesa2-o 8.1k 0.0 210.0 6.8k 0.0 241.5
gesa2 7.7k 0.0 131.9 4.9k 0.0 137.7
gesa3 58 0.0 2.1 36 0.0 2.2
gesa3 o 56 0.0 3.2 42 0.0 3.7
glass4 165.2k 0.0 2484.9 5.1k 0.0 182.4
gmu-35-40 1.3M 0.0 6548.8 1.1M 0.0 7200.0
gt2 2 0.0 0.0 2 0.0 0.0
harp2 71.7k 0.0 486.1 42.6k 0.0 373.0
iis-100-0-cov 1.9k 24.5 7200.0 2.0k 26.1 7200.0
iis-bupa-cov 484 24.0 7200.0 603 21.7 7200.0
iis-pima-cov 437 13.8 7200.0 451 12.9 7200.0
khb05250 421 0.0 2.6 403 0.0 3.4
lectsched-4-obj 1 — 0.2 1 — 0.2
liu 9.2k 102.1 7200.0 7.7k 102.1 7200.0
l152lav 17 0.0 1.6 17 0.0 1.7
lseu 699 0.0 0.4 466 0.0 0.5
m100n500k4r1 1 0.0 0.0 1 0.0 0.0
macrophage 2.0k 356.1 7200.0 1.4k 475.4 7200.0
manna81 2.9k 1.0 7200.0 1.7k 1.0 7200.0
map18 153 0.0 5713.0 147 0.0 5716.7
map20 143 0.0 4708.4 153 0.0 4791.0
markshare1 9.5M — 7200.0 6.5M — 7200.0
markshare2 7.1M — 7200.0 4.8M — 7200.0
mas74 544.9k 0.0 1545.4 523.2k 0.0 1888.2
mas76 75.6k 0.0 139.8 72.4k 0.0 174.8
mcsched 246 7.1 7200.0 282 7.2 7200.0
mik-250-1-100-1 1.3M 3.5 7200.0 946.9k 4.2 7200.0
mine-166-5 153 0.0 26.4 135 0.0 25.0
mine-90-10 52.6k 0.0 1664.8 16.9k 0.0 901.9
misc03 103 0.0 1.0 103 0.0 1.1
misc06 12 0.0 0.5 16 0.0 0.5
misc07 2.0k 0.0 67.8 2.1k 0.0 68.7
mitre 1 0.0 8.3 1 0.0 8.2
mkc 191.3k 1.4 7200.0 113.8k 1.4 7200.0
mod008 504 0.0 0.5 490 0.0 0.5

cont’d next page
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mod010 6 0.0 0.4 5 0.0 0.3
mod011 3.0k 0.0 905.1 2.7k 0.0 878.3
modglob 1.1M 0.0 5748.5 1.0M 0.2 7200.0
momentum1 247 24.4 7200.0 228 18.6 7200.0
momentum2 95 13.8 7200.0 118 14.3 7200.0
momentum3 1 151.0 7200.0 1 151.0 7200.0
msc98-ip 33 0.7 7200.0 8 0.9 7200.0
mspp16 29 5.4 7200.0 27 0.0 6714.8
mzzv11 43 0.8 7200.0 36 1.0 7200.0
mzzv42z 3 0.0 4626.2 3 0.0 4531.6
n3div36 1.5k 13.6 7200.0 1.4k 13.8 7200.0
n3seq24 3 0.4 7200.0 3 0.4 7200.0
n4-3 42.6k 32.0 7200.0 32.4k 36.4 7200.0
neos-1109824 7.4k 0.0 1887.9 7.0k 0.0 2628.8
neos-1337307 6.6k 0.6 7200.0 1.2k 0.6 7200.0
neos-1396125 2.8k 0.0 4457.7 1.4k 0.0 2272.1
neos13 6 0.0 762.8 6 0.0 950.9
neos-1601936 1 0.0 523.5 1 0.0 528.1
neos18 10.6k 0.0 2183.2 1.9k 0.0 846.8
neos-476283 19 0.0 189.3 18 0.0 215.0
neos-686190 262 0.0 226.3 250 0.0 228.4
neos-849702 1 — 0.1 1 — 0.1
neos-916792 49.6k 12.2 7200.0 28.7k 12.7 7200.0
neos-934278 1 0.0 27.9 1 0.0 27.8
net12 33 154.7 7200.0 17 154.7 7200.0
netdiversion 1 4.9 7200.0 1 4.9 7200.0
newdano 113.6k 20.3 7200.0 125.4k 23.9 7200.0
noswot 555.5k 0.0 1797.2 105.1k 0.0 811.8
ns1208400 1 0.0 511.4 1 0.0 447.7
ns1688347 64 0.0 46.3 63 0.0 65.9
ns1758913 1 2.2 7200.0 1 0.0 4777.1
ns1766074 248.7k — 529.1 220.4k — 790.4
ns1830653 1.8k 0.0 6253.3 1.4k 0.0 4170.4
nsrand-ipx 25.0k 1.6 7200.0 18.1k 1.6 7200.0
nw04 15 0.0 22.5 14 0.1 22.4
opm2-z7-s2 70 0.0 1807.6 60 0.0 1784.1
opt1217 941.4k 18.8 7200.0 522.6k 21.9 7200.0
p0033 35 0.0 0.0 7 0.0 0.0
p0201 19 0.0 0.5 17 0.0 0.6
p0282 14 0.0 0.1 10 0.0 0.1
p0548 302 0.0 1.0 157 0.0 0.8
p2756 16.4k 0.0 279.2 12.6k 0.0 293.4
pg5 34 39.6k 12.3 7200.0 39.8k 12.4 7200.0
pigeon-10 1.2M 11.1 7200.0 599.5k 11.1 7200.0
pk1 55.7k 0.0 262.0 50.4k 0.0 292.1
pp08a 1.3M 26.8 7200.0 1.1M 31.7 7200.0

cont’d next page
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pp08aCUTS 249.3k 0.0 2588.3 238.1k 0.0 2989.9
protfold 9 34.2 7200.0 11 34.2 7200.0
pw-myciel4 1.8k 150.0 7200.0 1.9k 150.0 7200.0
qiu 15.7k 0.0 2591.4 15.9k 0.0 2696.0
qnet1 8 0.0 1.4 6 0.0 1.6
qnet1 o 25 0.0 0.9 23 0.0 0.9
rail507 18 0.9 7200.0 12 1.0 7200.0
ran16x16 726.2k 6.3 7200.0 585.4k 7.2 7200.0
reblock67 20.9k 0.0 1066.4 9.2k 0.0 702.0
rd-rplusc-21 88 > 10000 7200.0 87 > 10000 7200.0
rentacar 2 0.0 1.6 2 0.0 1.6
rgn 250 0.0 0.4 252 0.0 0.5
rmatr100-p10 93 0.0 960.2 89 0.0 988.2
rmatr100-p5 33 0.0 1906.5 33 0.0 1998.1
rmine6 37.6k 0.0 2825.2 34.9k 0.0 2901.5
rocII-4-11 1.7k 47.2 7200.0 1.4k 0.0 5408.1
rococoC10-001000 29.6k 4.3 7200.0 29.6k 3.7 7200.0
roll3000 6.2k 9.2 7200.0 7.9k 10.6 7200.0
rout 2.8k 0.0 161.2 1.7k 0.0 114.0
satellites1-25 1 300.0 7200.0 1 290.0 7200.0
set1ch 120.7k 34.6 7200.0 270.2k 33.8 7200.0
seymour 125 4.3 7200.0 130 3.9 7200.0
sp97ar 2.4k 1.2 7200.0 1.7k 1086.0 7200.0
sp98ic 3.0k 0.0 6669.7 2.4k 0.5 7200.0
sp98ir 108 0.0 112.5 102 0.0 164.8
stein27 881 0.0 2.0 863 0.0 2.6
stein45 7.8k 0.0 92.5 7.8k 0.0 108.0
stp3d 1 2.5 7200.0 1 2.5 7200.0
swath 34.2k 35.0 7200.0 29.4k 35.8 7200.0
t1717 4 25.3 7200.0 5 25.3 7200.0
tanglegram1 2 77.5 7200.0 2 77.5 7200.0
tanglegram2 1 0.0 2.3 1 0.0 2.3
timtab1 445.4k 43.6 7200.0 331.4k 39.3 7200.0
timtab2 103.1k 130.9 7200.0 113.9k 109.0 7200.0
tr12-30 30.3k 339.0 7200.0 30.0k 349.4 7200.0
triptim1 1 0.0 265.2 1 0.0 263.0
unitcal 7 171 0.6 7200.0 80 0.6 7200.0
vpm1 11.8k 0.0 18.6 3.7k 0.0 11.1
vpm2 7.6k 0.0 22.4 4.6k 0.0 20.6
vpphard 6 — 7200.0 8 — 7200.0
zib54-UUE 19.8k 42.6 7200.0 25.9k 33.7 7200.0

solved 97/168 100/168
sh. geom. mean 814 633.1 645 582.2

solved by both 94/94 94/94
sh. geom. mean 321 86.3 253 78.9

Table 3. Detailed computational results for the comparision of full strong branching with and without domain

propagation as described and summarized in Section 3.
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