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Shift-And-Propagate

Timo Berthold∗ and Gregor Hendel†

Abstract

For mixed integer programming, recent years have seen a growing interest in the design of
general purpose primal heuristics for use inside complete solvers. Many of these heuristics
rely on an optimal LP solution. Finding this may itself take a significant amount of time.

The presented paper addresses this issue by the introduction of the Shift-and-Propagate
heuristic. Shift-and-Propagate is a pre-root primal heuristic that does not require a previously
found LP solution. It applies domain propagation techniques to quickly drive a variable
assignment towards feasibility. Computational experiments indicate that this heuristic is a
powerful supplement of existing rounding and propagation heuristics.

Keywords: primal heuristic, mixed integer programming, domain propagation, rounding

Mathematics Subject Classification: 90C10, 90C11, 90C59

1 Introduction

Considering the increasing number of industrial applications, there is a large commercial in-
terest in solving mixed integer programs (MIPs). It is well-known that, apart from complete
solving methods, general-purpose primal heuristics like the feasibility pump [18] are often able
to find high-quality solutions rapidly. Besides their application as standalone procedures, pri-
mal heuristics have become a substantial component of state-of-the-art solvers for mixed integer
programming [10, 15]. The presented paper introduces a new start heuristic that is designed for
the application inside a MIP solver.

Definition 1. Let m,n ∈ N, I ∪ C = N be a partition of the variable index set N := {1, . . . , n},
and l and u be lower and upper bound vectors on the variables with lj ∈ R ∪ {−∞} and uj ∈
R ∪ {∞} for all j ∈ N , respectively. Let further A ∈ Rm,n be a real matrix, c ∈ Rn and b ∈ Rm
be real vectors. A mixed integer program (MIP) P is defined as follows:

Minimize cTx

s. t. Ax ≤ b
l ≤ x ≤ u
xj ∈ Z for j ∈ I
xj ∈ R for j ∈ C

The special case that C = N is refered to as a linear program (LP). Further, we call a
solution that fulfills all of the linear constraints, but not necessarily all integrality constraints,
LP-feasible. We denote the vector corresponding to the i-th row of matrix A by ai.
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In today’s market, one can find a large variety of both commercial [35, 36, 37] and non-
commercial [34, 38, 40] MIP solving software that is capable of solving many MIPs of practical
relevance to proven optimality. Primal heuristics are algorithms that aim at finding a feasible
solution quickly; however, they are incomplete algorithms that are not guaranteed to succeed.
Primal heuristics can be used as standalone procedures if only a feasible solution needs to be
found within short time. At least as importantly, they are employed as subroutines inside com-
plete solvers. Each of Cplex, Gurobi, SCIP and CBC feature a double-digit quantity of primal
heuristics.

Recent years have seen several publications on general-purpose primal heuristics for MIPs,
including [3, 4, 7, 8, 9, 11, 12, 17, 19, 20, 23, 24, 28, 29, 31, 33]. For an overview, see [10, 21, 22].
When we use the term heuristics in this paper, we always refer to primal heuristics for mixed
integer programming. Further, with a slight abuse of notation, we will use the abbreviation MIP
for mixed integer programming as well as for a MIP being a single mixed integer programming
instance.

Heuristics can be further classified w. r. t. their specific purpose within the solving process
and the techniques they apply, see [10, 25]. In this paper, we focus on rounding and propagation
heuristics that are applied inside a complete solver. While rounding heuristics apply rounding
strategies to make an LP-feasible solution feasible, propagation heuristics, also known as probing
heuristics [1], use domain propagation techniques (see Section 3) to reduce the search space and
drive a partially assigned solution towards feasibility. In contrast to diving heuristics [10, 17],
propagation heuristics do not solve LPs to ensure feasibility of the linear constraints. Note
that, although rounding heuristics are very fast procedures, they can only be applied after the
LP relaxation of a given MIP has been solved, which sometimes can already take a long time,
compare, e. g., the XXL instances from miplib2010 [26].

The goal of this paper is to introduce a new propagation heuristic, called Shift-and-Propagate,
and to compare it against rounding heuristics and two improvement heuristics when used inside
a complete MIP solver. Both improvement heuristics employ a light version of propagation. The
common feature of all these heuristics is that they do not solve LPs (or even sub-MIPs, as, e. g.,
RINS [17]) by themselves.

In the spirit of [33], the primal heuristic presented in this paper is intended to be a component
of a complete solver rather than a standalone procedure, which makes it different from most other
heuristics presented in the literature. For this purpose, it is designed to be a very quick procedure,
which might sacrifice success on some instances to achieve a good trade-off between the number
of found solutions and average running time. It does not require an LP solution as a starting
point and can therefore be applied earlier during the solver’s search than many other heuristics.

The remainder of the paper is organized as follows. We will first recall some rounding and
improvement heuristics known from the literature. All of them are already implemented in
SCIP—the solver that we will use for our computational experiments. Then, we give an overview
of MIP domain propagation techniques. After that, we introduce key ideas and implementation
details of the Shift-and-Propagate heuristic, including individual discussions on two of its main
components: the shifting value selection and the variable ordering. Finally, computational results
are presented.

2 Rounding and improvement heuristics

Primal heuristics, in particular those that only employ computationally inexpensive procedures
such as rounding and logical deductions (propagation), are an important component of state-of-
the-art MIP solvers. In this section, we describe rounding heuristics and two simple improvement
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heuristics that are known from the literature [4, 33] and will serve as a comparison for our newly
proposed heuristic later.

2.1 Rounding heuristics

The goal of rounding heuristics is to convert an LP-feasible solution z∗ into a feasible solution for
the MIP by applying rounding strategies to the set of fractional variables F := {j ∈ I : z∗j /∈ Z}.

Most of the rounding heuristics described in this section use the notion of up- and down-locks.
For a MIP, we call the number of positive coefficients Λj := |{i : aij > 0}| the up-locks of the
variable xj ; the number of negative coefficients is called the down-locks Λj of xj , see, e.g., [10].
This is motivated by the following observation: let z∗ be an LP-feasible solution. If we shift a
variable xj up or down, at most Λj or Λj constraints can be violated, respectively. If a variable

j ∈ F satisfies Λj = 0 or Λj = 0, it can be trivially rounded up or down, respectively: Let z∗ be
an LP-feasible solution and ẑ be the solution obtained by rounding j into the direction of zero
locks. Then it holds for all constraints that aTi ẑ ≤ aTi z∗ ≤ bi and hence ẑ is LP-feasible.

The Simple Rounding heuristic [10] uses this to produce feasible solutions by rounding variables
zj ← dz∗j e if Λj = 0, or zj ← bz∗j c if Λj = 0. It will terminate either with a feasible solution or

after a variable j ∈ F was found with Λj > 0 and Λj > 0.
ZI Round [33] reduces the integer infeasibility of an LP-feasible solution step-by-step by shift-

ing fractional values towards integrality, but not necessarily rounding them. For each fractional
variable j ∈ F , the heuristic calculates bounds for both possible rounding directions of z∗j such
that the obtained solution stays LP-feasible. z∗j is shifted by the corresponding bound into the
direction which reduces the fractionality min{z∗j − bz∗j c, dz∗j e − z∗j } most. The set of fractional
variables might be processed several times by ZI Round. It either terminates with a feasible
solution or aborts if the integer infeasibility could not be decreased anymore or if a predefined
iteration limit has been reached.

In contrast to Simple Rounding and ZI Round, Rounding [10] also performs roundings, which
potentially lead to a violation of some linear constraints, trying to recover from this infeasibility
by further roundings later on. The solutions that can be found by Rounding are a superset of
the ones that can be found by Simple Rounding. Like Simple Rounding, the Rounding heuristic
takes up- and down-locks of an integer variable with fractional LP solution value z∗j into account.
As long as no linear constraint is violated, the algorithm iterates over the fractional variables
and applies a rounding into the direction of fewer locks, updating the activities Az of the LP
rows after each step, with z being the partially rounded LP solution. If there is a violated linear
constraint, hence aTi z > bi for some i, the heuristic will try to find a fractional variable that
can be rounded in a direction such that the violation of the constraint is decreased, using the
number of up- and down-locks as a tie breaker. If no rounding can decrease the violation of the
constraint, the procedure aborts.

2.2 Improvement heuristics

In addition to the described rounding heuristics, we will also employ two “natural” improvement
heuristics, called 1-Opt [2] and 2-Opt [25].

Taking a MIP-solution z as input, 1-Opt determines for every integer variable j ∈ I the shift
δj ∈ Z with maximum |δj | such that cjδj ≤ 0 and aTi x + aijδj ≤ bi for all i, hence feasibility is
preserved for all constraints. Shifting any variable j with |δj | ≥ 1 by δj will give an improved
solution. All found improving shifts are then sorted by increasing value of cjδj and executed one
by one, except a previously executed shift rendered them infeasible. This is a basic version of
constraint propagation: variable values are inferred from constraint activities.
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The 2-Opt heuristic shifts pairs of variables at a time rather than single variables. In the
SCIP implementation of 2-Opt [25], integer variables are sorted lexicographically w. r. t. their
columns and then grouped together into smaller blocks where the variables appear with nonzero
coefficients in at least a predefined ratio of their rows. During its execution, 2-Opt searches
within every such block for variable pairs {j1, j2} ⊆ I which allow a shift δ1, δ2 = ±δ1 improving
the objective (c1δ1 + c2δ2 < 0) and maintaining the feasibility of the solution. Similarly to 1-
Opt, all found improving shifts are sorted w. r. t. to the objective improvement and then applied
starting with the most improving shift. This approach can easily be extended to a k-Opt or
Lin-Kernighan-like [27] heuristic.

Combining either of these improvement heuristics with any of the rounding heuristics from
the previous section yields a greedy algorithm for MIP. Starting from an LP-feasible solution, all
presented rounding algorithms apply strategies that favor feasibility over optimality. If a solution
is found, it can then be driven towards optimality by the improvement heuristics until it cannot
be further improved by switching single variable values or pairs of them.

This combination is a fast and promising approach to find good solutions early during the
solving process, in particular for set covering and packing problems, see also Section 3.2.2. Here,
the described rounding heuristics will always yield a solution where all or at least the vast majority
of variables are set to 1 (for covering) or 0 (for packing). The 1-Opt heuristic greedily flips
variables in the order determined by their objective coefficient until it reaches a local optimum.

There exist, however, MIPs for which even solving the LP relaxation is hard, hence the LP
solver is unable to find the required LP-solution within reasonable time and thus, none of the
above heuristics can be applied in the described way. Examples include the XXL instances from
miplib2010 [26]. Therefore, we propose the Shift-and-Propagate heuristic, which does not depend
on a previously found LP-feasible solution.

Before the presentation of the heuristic, we recall some MIP domain propagation procedures.

3 Domain propagation

Domain propagation (see, e.g., [13]) denotes the process of inferring sequences of local domain
reductions at the current node of the branch-and-bound tree. The goal is to shrink the size of the
current subproblem as much as possible at affordable computational cost. This natural idea is
known under many different names, e. g., node preprocessing, bound tightening, range reduction,
filtering in different communities such as mathematical programming, constraint programming,
satisfiability testing, and artificial intelligence.

In this section, we want to give an overview of existing domain propagation rules for linear
constraints. The domain of a variable j is the set of values within the (local) lower and upper
bounds of j,

Dj := {z ∈M : lj ≤ z ≤ uj}

for M ∈ {R,Z} depending on the variable type of j. In mixed integer programming, domain
reductions typically consist of tightened variable bounds lj , uj , hence holes in the interval [lj ,
uj ] are not considered. Reductions on variable bounds from linear constraint activity were first
established in Brearly et al. [16]. Savelsbergh [32] extended these methods by various probing
techniques on binary variables and constraints, while Andersen and Andersen [6] exploited further
presolving techniques for linear programming.

For the suggested Shift-and-Propagate heuristic, domain propagation is a crucial step. In this
section we review which domain propagation rules are provided by the different constraint types
in SCIP. For more information and implementation details, see [2].
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Note that domain propagation rules are applied at two different stages of the MIP solving
process. First, they are applied during preprocessing before branch-and-bound is started, in
which case the deductions hold globally for the problem. Second, they are used locally at
nodes within the branch-and-bound tree to infer reductions from the branching decisions. In
the following, we focus on local propagation during search, and use l, u for local bounds at a
branch-and-bound node.

3.1 General linear constraints

Taking into account the domains of all variables which are involved in a particular linear con-
straint, its minimum and maximum activity [16] α and α are defined by

α := min
{
aTi x : l ≤ x ≤ u

}
and α := max

{
aTi x : l ≤ x ≤ u

}
.

In the same way, we obtain the minimum and maximum residual activity for variable j,

αj := min
{
aTi x− aijxj : l ≤ x ≤ u

}
and

αj := max
{
aTi x− aijxj : l ≤ x ≤ u

}
resp.,

by excluding the contribution of variable j. By these definitions, it is possible to deduce bounds
on the variables that appear in a certain constraint. For a positive row coefficient aij of variable
j in row i, it holds that

xj ≤
bi − αj
aij

by which the variable bound can be tightened whenever uj >
bi−αj

aij
. If j is an integer variable,

the new upper bound can be rounded down. An analogous inference rule holds for lower bounds
in the case of negative coefficients.

Besides the tightening of variable domains, the notion of minimum and maximum activities
can also be used to detect the local redundancy or infeasibility of a constraint [16].

3.2 Domain propagation for special classes of linear constraints

For linear constraints of special form, there often exist stronger propagation algorithms. In
his thesis [2], Achterberg described special techniques for the following linear constraint classes:
variable bounds, knapsack, set covering, set partitioning, and set packing.

Of course, all of them could be propagated by algorithms for general linear constraints, but
their special structure allows for a more efficient implementation of the propagation routines. In
this section, we briefly describe propagation algorithms for knapsack and set covering constraints.

3.2.1 Knapsack constraints

For knapsack constraints, all involved variables have to be binary variables and all coefficients
aij =: wj and the right hand side b have to be nonnegative integers, called the weights and the
capacity, respectively. In [2], a transformation for a more general class of constraints into this
special type was shown. With the properties of knapsack constraints, the propagation routines
are tuned by the use of integer—instead of floating point—arithmetic. Second to that, the only
reduction to be performed is fixing a variable j to 0 if the weighted sum of the variables fixed to
1 and the weight wj together exceed the right hand side. Let

K∗ := {j ∈ I : wj > 0 ∧ xj fixed to 1}
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denote the set of variables which are already fixed to 1 and w∗ :=
∑
j∈K∗ wj the sum of their

weights. The domain propagation rules then reads

(j unfixed) ∧ (w∗ + wj > b) ⇒ (xj ← 0)

Here, the nonnegativity of the weights and the binary type of all involved variables allows an
improved performance by sorting the variables in nonincreasing order of their weights.

SCIP also features methods to extract (negated) clique-information about the binary variables
of a problem. A (negated) clique is a set of binary variables of which at most one variable can
be assigned the value 1 (0) in a feasible solution.

Let therefore C ⊆ I \K∗∪K0 denote a negated clique of unfixed variables, w(C) be the sum
of weights of variables in C, jmax := argmaxj∈C wj be a clique variable of maximum weight, and
wmin(C) := w(C)−wjmax

be the minimum weight of this negated clique in any feasible solution.
The following reductions are now possible considering negated clique information:

1. (w∗ + wmin(C) > b) ⇒ (the subproblem is infeasible)

2. (j ∈ C \ {jmax}) ∧ (w∗ + wmin(C)− wj + wjmax
> b) ⇒ (xj ← 1)

3.2.2 Set covering constraints

Set covering constraints are another special class of linear constraints. They have the form

xj1 + · · ·+ xjk ≥ 1, for {j1, . . . jk} =: K ⊆ N ,

where K contains only binary variables. The only domain reduction to be inferred from a set
covering constraint is to fix a variable j to 1 if all remaining variables j′ ∈ K \ {j} have already
been fixed to 0. The state-of-the-art algorithm to keep track of the bound changes in this case
was introduced in [30]; it is known as two-watched-literals scheme and provides a significant
speedup in propagation.

4 Shift-And-Propagate

After having reviewed existing inexpensive start heuristics and domain propagation techniques,
we now introduce the Shift-and-Propagate heuristic. Recall that solving the root-LP relaxation of
a MIP can be very time-consuming. As mentioned before, the purpose of this primal heuristic is
finding a feasible MIP solution at the very early stage of the solution process where no information
about the root LP solution is available. In addition, it should be computationally cheap, using
only domain propagation techniques.

The basic idea is as follows: in each iteration, the heuristic selects an unfixed variable j ∈ K
and a fixing value t∗j inside the domain of xj , to which the variable is shifted. Then, domain
propagation routines are called for this fixing. If domain propagation detects that fixing xj ← t∗j
is infeasible, a one-level backtrack-strategy is applied. Otherwise, the heuristic proceeds with the
next unfixed variable. The goal of this heuristic is to find a good start solution, before the root
node processing of a MIP solver starts, in particular prior to the first LP being solved. It might
then serve as a reference point for improvement heuristics (see Section 2.2) and for inferring
further domain reductions (e. g., by propagating the maximum activity of the objective function,
see Section 3.1).

The general algorithm is described in Algorithm 1. The main degrees of freedom are the vari-
able selection in line 3, the choice of a promising fixing value (line 4), and the backtrack-strategy
including an appropriate stopping criterion (line 7): all of which are discussed in the remainder
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of this section. We will first discuss different variable orders, then introduce an algorithm to
select a best shifting value, and finally present a full version of the Shift-and-Propagate algo-
rithm, including considerations on backtracking. Note that bounds can be changed, in particular
variables can be fixed, in line 5 of Algorithm 1.

Algorithm 1: The basic Shift-and-Propagate algorithm

Input : MIP problem P
Output : a feasible solution of P , or NULL if search was not successful
K ← I, z ← 0 ;1

while K 6= ∅ do2

Select j ∈ K ;3

Choose t∗j ∈ Dj ;4

Propagate Dj ← {t∗j} ;5

if propagation detects infeasibility then6

Apply backtrack strategy ;7

else8

zj ← t∗j ;9

K ← K \ {j} ;10

end11

end12

if z is feasible for P then13

return z ;14

return NULL;15

4.1 Implementation details

For the ease of presentation, we assume from now on, w. l. o. g., that all variables have a lower
bound of 0, since otherwise a suitable problem transformation can be applied. Variables with
finite lower bound are shifted, variables with infinite lower bound but finite upper bound are
negated (and shifted), and free variables are decomposed into a negative and a positive part.

Shift-and-Propagate starts with the zero-assignment z ← 0 which respects all variable bounds1.
The row activity of all rows is zero as well. Hence, an assignment is feasible for a row, if and only
if it has a positive right hand side bi ≥ 0. Subsequent fixing steps Dj ← t∗j are then processed
as shifts, which only affect those rows in which the variable j is involved in. Instead of updating
the row activity explicitly after every shift, activities are maintained implicitly by changing the
right hand side.

Continuous variables are not handled directly by the heuristic but treated as row slacks.
For each row, we consider a relaxation by subtracting the minimum activity of the continuous
variables from the right hand side. If the heuristic finds a solution on the integer variables in this
transformed space, a final LP with all integer variables fixed to their heuristic values is solved to
obtain values for the continuous variables. There are two advantages of this final LP compared
to solving an LP relaxation beforehand. First, the final LP will be smaller and often significantly
easier to solve, since all integer variables are fixed and the fixings have been propagated. In

1in principle, Shift-and-Propagate could be started from any solution within the variable bounds. In particular,
a start assignment could be chosen that is promising either w. r. t. feasibility or w. r. t. objective function value.
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particular, for pure IPs, this stage is completely omitted. Second, it is only employed when the
heuristic found a consistent assignment for the integer variables and merely the continuous ones
need to be adopted.

As for the variable order, the heuristic sorts the variables nonincreasingly w. r. t. the initial
number of violated rows they appear in,

|{i : aij 6= 0 and bi < 0}| .

We also tested a different variable order using the importance of a variable column, which we
define as

m∑
i=1

|aij |+ |{i : aij 6= 0}| .

We compare different variable orders in Section 5.
The choice of a fixing value for the selected variable is obtained by a best shift selection which

is based on the feasibility state of the row w. r. t. the current assignment. Therefore, we keep
track of how many violated rows can be made feasible and vice versa by a certain shift.

Definition 4.1. For an LP-row i : aTi x ≤ bi and an unfixed variable j ∈ K, we define

Ψj
i : Dj → {−1, 0, 1}

t 7→


1, bi ≥ 0, and bi − aij · t < 0

−1, bi < 0, and bi − aij · t ≥ 0

0, else

the row violation function of row i. The row violation functions of all rows sum up to

Ψj : Dj → Z

t 7→
m∑
i=1

Ψj
i (t)

the row violation sum function of j. For a particular t ∈ Dj we call Ψj(t) the violation balance
of t.

For every row violation function, it holds that Ψj
i (0) = 0 and that it changes its value at

most once on Dj . The row violation balance Ψj(t) is a measure of how the overall feasibility
of a partial assignment changes by a particular shift t of the variable. A negative value means
that more rows will be made feasible than infeasible by shifting variable j by a value of t ∈ Dj .
The function Ψj is a step function with at most Mj steps, Mj being the number of nonzeros
for variable j. The best shift selection Algorithm 2 searches for a value t∗ which minimizes the
violation balance,

t∗ ← argmin
t∈Dj

Ψj(t).

Since Ψj(0) = 0, the heuristic will prefer a shifting value different from 0 if and only if there is
a value t′ > 0 with Ψj(t′) < 0, i. e., if t′ is able to really reduce the number of currently violated
rows.

In Algorithm 2, the row violation functions are interpreted as tuples

(ti,Ψ
j
i (ti)) ∈ Dj × {−1, 1}
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Algorithm 2: bestShift(P, j,Dj)

Input : MIP P , integer variable j ∈ I with domain Dj

Output : Best shift t∗ for j
Q← ∅ ;1

// collect row violation functions of the variable

foreach row i with aij 6= 0 do2

if bi < 0 and aij < 0 then3

t← d biaij e ; // minimum shift of variable j to make row i feasible4

if t ∈ Dj then Q← Q ∪ (t,−1);5

else if bi ≥ 0 and aij > 0 then6

t← b biaij c+ 1 ; // minimum shift of variable j to violate row i7

if t ∈ Dj then Q← Q ∪ (t, 1);8

end9

end10

if Q = ∅ then return t∗ = 0 ;11

σ ← 0, t∗ ← 0, tbefore ← 0, Ψ∗ ← 0 ;12

// summation in the right order gives the row violation balance

foreach (ti,Ψ
j
i (ti)) ∈ Q in nondecreasing order of ti do13

if ti > tbefore and σ < Ψ∗ then14

Ψ∗ ← σ, t∗ ← tbefore ;15

tbefore ← ti ;16

σ ← σ + Ψj
i (ti) ;17

end18

if σ < Ψ∗ then t∗ ← tbefore ; // takes highest step value into account19

return t∗ ;20

where ti is the smallest (always positive) value for which the row changes its feasibility state, and
Ψj
i (ti) ∈ {−1, 1}, depending on the kind of change in the feasibility state. The ti is called the

step value. An empty tuple means that no value in the variable domain alters the feasibility state
of the row. Algorithm 2 collects the row violation functions for all rows i with nonempty tuples
(ti,Ψ

j
i (ti)) and sorts them in nondecreasing order of the ti. Since different rows i 6= i′ might have

the same step value ti = ti′ the sum of row violation functions processed so far is stored in the
variable σ and yields the row violation balance Ψj(tbefore) when ti  tbefore, i. e., two subsequent
step values are different. The method returns a value t∗ ∈ Dj minimizing Ψj . The best shift
selection could also be used for continuous variables, omitting the rounding in lines 4 and 7 of
Algorithm 2. A different implementation of Shift-and-Propagate might keep continuous variables
as part of the transformed problem instead of relaxing them, and use the best shift selection to
find solution values for all variables.

The complete Shift-and-Propagate procedure is shown in Algorithm 3. It uses the best shift
selection as a subroutine to select a promising fixing value for some variable j from the set
of unfixed variables K. The fixing is then performed and propagated. An empty domain of
some variable after the propagation will cause the algorithm to apply a one-level backtrack. If
the attempted shift value was one of the variable bounds, t∗j ∈ {lj , uj}, the variable domain
is tightened by Dj ← Dj \ {t∗} and repropagated. If the repropagation of the shrunk domain
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also detects an empty domain, the execution method of the heuristic is stopped (line 15). Two
cases remain to be handled: either the original shifting value was in the inner of the variable’s
domain or the propagation of the shrunk domain did not lead to infeasibility. In both cases, the
variable is assigned to the set of suspicious variables S in line 17 and thus removed from the set
of unfixed variables K (line 21). This ensures that the best shift selection is only performed at
most once for every variable. In our implementation, we use a limit on the number of backtracks
performed; if it is exceeded, the heuristic stops.

We conclude this section with a small example MIP, for which we describe the course of the
algorithm in detail.

Example 4.2. Let Pex be the following MIP with three integer variables I = {1, 2, 3} and m = 3
constraints.

Minimize 0

2x1 − x2 − x3 ≤ 1

−x1 − x2 ≤ −2

−3x1 + x3 ≤ −3

x1, x2, x3 ∈ {0, 1, 2}

Pex is a pure feasibility problem. The zero assignment is not feasible, because both the second
and the third row have a negative right hand side.

The heuristic starts with x1, x2, and x3 appearing in two, one and one violated row, respec-
tively, so the sorting will keep the variables in place and select x1 to start with.

The row violation functions and the row violation sum function for variable x1 from the
example Pex are depicted in Figure 1. The first row will be made (temporarily) infeasible by a
shift of 1 or 2, whereas the third will be made feasible by a shift of either 1 or 2. The second row,
however, requires a shift of 2 to be made feasible. Therefore, the algorithm will select t∗1 = 2 as
shifting value for x1 because it minimizes the violation balance Ψ1(2) = −1 < 0 = Ψ1(1). Fixing
the domain of x1 to the single value D1 ← {2} and subtracting the contribution from the right
hand side yields a reduced problem

−x2 − x3 ≤ −3

−x2 ≤ 0

x3 ≤ 3

x2, x3 ∈ {0, 1, 2}

The feasibility state of every row has changed by the shift of variable 1. The second and third
row are trivially satisfied in this reduced problem. The propagation from Section 3 applied to the
first row leads to further reductions: 0 is excluded from the variable domains D2 = D3 = {1, 2}.
Since the heuristic requires lower bounds 0 for every variable, the variables are formally replaced
by x̄{2,3} ← x{2,3} − 1, which leads to a changed right hand side vector. The first row now reads

−x̄2 − x̄3 ≤ −1

x̄2, x̄3 ∈ {0, 1}.

A shift of variable x̄2 by 1 is selected by Algorithm 2 and finally makes the row feasible again.
Since the right hand side b̄ is now nonnegative, the remaining variable x̄3 can be set to 0 without
violating a row. Untransforming all bound changes, the heuristic finds the solution zPex

= (2, 2, 1).
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Figure 1: The row violation functions for variable x1 from Pex for every row (smaller pictures)
and the resulting row violation sum function Ψ1(t)

5 Computational results

In this section, we compare different variable orders and evaluate the performance of the presented
Shift-and-Propagate heuristic. We use SCIP 3.0 with SoPlex 1.7.0 [39] as the underlying LP-
solver. The results were obtained on a cluster of 64bit Intel Xeon X5672 CPUs at 3.20GHz
with 12 MB cache and 48 GB main memory, running an openSuse 12.1 with a gcc 4.6.2 compiler.
Hyperthreading and Turboboost were disabled. In all experiments, we ran only one job per node
to avoid random noise in the measured running time that might be caused by cache-misses if
multiple processes share common resources.

For all benchmarks, we chose a test set containing 168 MIP instances from the three publicly
available libraries miplib3.0 [14], miplib2003 [5], and miplib2010 [26]. We excluded the three
instances ash608gpia-3col, enlight14, and ns1766074 which are infeasible and ex9 which can be
solved to optimality by the root LP.

As a measure for the quality of a solution z for an instance P , we consider a gap function
defined as follows: let zopt be an optimal (or best known) solution for P . The gap is defined as

∆(z) :=


0, if cT z = cT zopt,

min{1, |cT z−cT zopt|
max{|cT z|,|cT zopt|}}, if z 6= ∅,

1, else

By the choice of ∆(·), every solution has a gap ∆(z) ≤ 100%. If no solution was found, the gap
is worst possible, ∆(∅) = 100%.

In Section 4, two variable orders are proposed: The first order based on the importance of
the variables, and the second one based on the initial number of infeasible rows of a variable.
In a first experiment, we compared these two different approaches and a random sorting. The
importance-based and the violation-based sorting are addressed by the symbols |·| and |{b < 0}|,
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Algorithm 3: Shift-and-Propagate

Input : A MIP P with constraint matrix A and right hand side b
Output : a feasible solution z for P , or NULL
Porig ← P ;1

Relax continuous variables s. t. C = ∅;2

K ← I;3

Sort K w. r. t. to the number of initially violated rows ;4

S ← ∅, z ← 0 ; // S contains variables whose fixing led to cutoffs5

while K 6= ∅ and b � 0 do6

Transform P s. t. l = 0 ; // has to be ensured each round7

Select next j ∈ K ;8

t∗j ← bestShift(P, j,Dj) ;9

propagate Dj ← {t∗j} ;10

if ∃k ∈ K : Dk = ∅ then11

backtrack ; // if empty domain, undo propagation, unfix j12

if t∗j ∈ {lj , uj} then13

propagate Dj ← Dj \ {t∗j} ;14

if ∃k ∈ K : Dk = ∅ then return NULL;15

end16

S ← S ∪ {j};17

else18

zj ← t∗j ;19

end20

K ← K \ ({j ∈ I : |Dj | = 1} ∪ S) ;21

end22

if b ≥ 0 then23

foreach j ∈ K ∪ S do24

zj ← 0 ; // all unfixed variables are set to 025

end26

zorig ← retransform z ; // undo all transformation steps from line 727

if Porig contains continuous variables then28

Fix integer variables to zorig and solve the remaining LP ;29

if LP infeasible then return NULL;30

end31

return zorig ;32

end33

return NULL;34

12



Table 1: Overview of the different variable sortings

setting ∆̄ (%) #sols theur (s)

|{b < 0}| ↓ 84.73 88 1.21
|·| ↓ 84.98 84 1.20
random 85.95 84 1.17
|{b < 0}| ↑ 87.66 83 1.17
|·| ↑ 86.85 81 1.20

Best 78.61 102 1.11

respectively, together with an arrow indicating the sense in which the variables are processed:
↓ for nonincreasing and ↑ for nondecreasing. The symbol |{b < 0}| ↓, e. g., stands for “sorting
w. r. t. the number of initially violated rows, nonincreasing”.

For all settings, we disabled cutting plane routines in order to avoid the LP relaxation to
be re-solved and to make sure that the primal solutions were indeed obtained by the Shift-and-
Propagate heuristic.

The performance of the five variable sortings is shown in Table 1 (see Table 3 in the appendix
to see results on particular instances) and compared with respect to three criteria: The average
solution gap ∆̄ , the absolute number of solutions obtained (#sols), and the geometric mean
of the time spent by the heuristic theur (s). The average gap ranges from 84.7% to 87.7% and
the number of found solutions differs by up to 7. The setting |{b < 0}| ↓ scores best regarding
the number of found solutions and also the average gap, but is the slowest setting w. r. t. its
geometric mean time.

A closer look at the results on specific instances shows more variety than the overall results:
A feasible solution for rail507 was found with two of the five settings, namely |·| ↑ and |{b < 0}| ↑,
which took 13.78 s and 14.42 s, respectively. This seems moderate compared to other settings,
which terminate unsuccessfully after up to 3600 s (the time limit) with |{b < 0}| ↓. This is
particularly undesirable knowing that the LP solve only takes 10 s on this instance.

Reasons for long running times on some instances are the propagation itself, combined with
a huge number of backtracking operations due to decisions which lead to cutoffs, and/or the
number of iterations of the internal LP solve, which can take itself a long time if the number of
continuous variables is large.

Table 1 has a sixth setting named Best presenting the union of the five settings, choosing
the quickest setting which reaches the best gap in an instance. The total number of instances
for which Best succeeds is 102, which is 14 more than the best real setting in this respect. Best
reaches a gap of 78.61 which is considerably better compared to the real settings.

Figure 2 presents histograms of how many cutoffs were effectively produced until a feasible
solution was found (blue bar), or until the heuristic terminated without a solution (red bar).
Some instances are not presented in the table for reasons of normalization of the horizontal axis,
those numbers are indicated in the legend. We show these histograms for two different settings:
|{b < 0}| ↓, and random below. These charts present two facts: The number of instances on
which the heuristic finds a solution without or with nearly no backtracking (0 or 1 cutoff, the
leftmost bar) is higher for the |{b < 0}| ↓ than for the random order by almost 10 instances. The
bars for the informed sorting lie underneath those for the random sorting, indicating that the
sorting method produces less cutoffs on the average.

The sorting method |{b < 0}| ↓ has the advantage to produce more feasible solutions directly
or with at most one cutoff on this testset than the other methods. We will use this method for

13



Figure 2: Distribution of the instances over the number of cutoffs Shift-and-Propagate produced
during its search for two different variable sortings: |{b < 0}| ↓ and random

the next comparison experiment. Furthermore, the fact that solutions were only obtained after a
small number of cutoffs suggest that a small absolute limit on the number of cutoffs as, e. g., 10,
will only slightly decrease the number of produced solutions but trigger a quicker termination
on a significant amount of instances for which the heuristic is not successful. In particular, for
the instance rail507, using a cutoff limit of 10 leads to a running time of 8.25 s instead of hitting
the time limit.

The second experimental setup compares the number of found solutions and the average
solution quality obtained with the rounding and improvement heuristics from Section 2 to the
quality of the Shift-and-Propagate heuristic after processing the root node. The first setting
RandI uses only rounding and improvement heuristics from Section 2. The second setting SandP
uses Shift-and-Propagate as only primal heuristic. A third setting Both is a combination of
those heuristics. Neither Shift-and-Propagate nor rounding heuristics take the objective function
into account, but improvement heuristics do. It can therefore not be expected that SandP
outperforms RandI in terms of solution quality. The hope is rather that it is beneficial in terms
of found solutions and that we can observe a combined effect in the Both setting.

All instances are presented in Table 4 in the appendix, together with their optimal or best
known solution. For each setting, the table depicts the achieved primal bound as well as the
solving time (which includes presolving and the processing of the root node) and the time spent
on heuristics.
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Table 2: Results from the root node solve for three different settings

setting ∆̄ (%) #sols t (s)

SandP 85.05 85 2.40
RandI 81.40 60 2.36
Both 70.27 96 2.41

In Table 2, we present the results obtained for these different settings. The column ∆̄ shows
the average gap for all instances from the test set. In the column #sols, the total number of
instances is shown for which a solution was found. The last column shows the geometric mean
of the overall solving time. The table shows that the use of Shift-and-Propagate leads to a primal
feasible solution on 85 instances, whereas rounding and improvement heuristics alone can only
contribute solutions to 60 instances of the problem set. Both settings combined find a solution
on 96 instances or 60 % more than without Shift-and-Propagate. The average gap obtained by
SandP was 85.05%, compared to an average gap of 81.40% when using RandI. Here, instances
for which no solution could be found are accounted for by a gap of 100%. The best result w. r. t.
the average gap is the combined setting, Both, which finishes the root node with an average gap
of 70.27%. The increase of the overall geometric mean solving time is 0.05 s or 2.1%, from 2.36 s
with RandI heuristics alone, to 2.41 for the setting Both.

Figure 3 shows the distribution of solution qualities over all instances from 0 to 100 in steps
of 20. The “none” bar gives the number of instances for which the corresponding setting did
not provide any solution. One can see that the solution quality on individual instances is often
worse than for rounding and improvement heuristics which produce more solutions with a gap
between 0 and 40 than Shift-and-Propagate. The third setting combines both the higher number
of solutions found with Shift-and-Propagate and the better gap obtained with rounding and
improvement heuristics.

The experiment reveals that Shift-and-Propagate outperforms the existing rounding and im-
provement heuristics in terms of the number of found solutions, but is inferior w. r. t. the objective
quality. For both measures, the best performance was achieved by a combined setting, which
increased the number of found solutions by 60%, decreased the average gap by 14% and took
only 2% more time, compared to a setting that uses only rounding and improvement heuristics.
As a motivation for Shift-and-Propagate, we mentioned the XXL instances from miplib2010.
Nine of these instances could be loaded into SCIP given the limitation of 48 GB RAM. Using a
time limit of 24 hours, Shift-and-Propagate found a solution for five instances, the rounding and
improvement heuristics only for three. Given the small size of the test set, this result is of course
of limited conclusiveness.

We conclude that Shift-and-Propagate is a valuable extension of the primal heuristic portfolio
of SCIP. It is by now employed by default in SCIP; the complete source code can be obtained at
http://scip.zib.de.

6 Conclusions

In this paper, we have introduced Shift-and-Propagate, a pre-root primal heuristic for mixed
integer programming that alternately shifts variables to promising fixing values in order to make
linear constraints feasible, and propagates the variables fixings to get tighter domains for choosing
the fixing values. It differs from other recently proposed MIP heuristics in that it is does not
require a feasible LP solution as a starting point and that it is specifically designed as a quick
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Figure 3: Distribution of solution quality after root node processing

start heuristic inside a complete solver. The main contributions are the presentation of a quick
and reliable procedure to select a shifting variable and an analysis of different variable orders,
which cover the two main degrees of freedom in the heuristic.

We conducted two experiments, which revealed that Shift-and-Propagate alone can find so-
lutions on more instances than three rounding heuristics and two combinatorial improvement
heuristics together. Combining the existing rounding and improvement heuristics with Shift-
and-Propagate increases the number of instances on which a feasible solution is found during the
root node by 60 %. Furthermore, the average gap to the optimal or best known solution could
be significantly reduced.

The computational results indicate, that the pre-root heuristic Shift-and-Propagate nicely
complements existing LP-based root node heuristics; it is now one of the default heuristics
applied in SCIP.
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Appendix

Table 3: Results of different variable sortings w. r. t. to the primal
bound and the heuristic time. Bold face indicates better solutions values,
hence the setting chosen for the oracle setting Best in Table 1 which
prefers lower gaps and uses the time as a tie-breaker.

|{b < 0}| ↓ |·| ↓ random |{b < 0}| ↑ |·| ↑
Problem Name cT z t (s) cT z t (s) cT z t (s) cT z t (s) cT z t (s)

10teams – 0.02 – 0.02 – 0.01 – 0.01 – 0.02
30n20b8 – 0.04 – 0.19 – 0.09 – 0.11 – 0.03
a1c1s1 – 0.03 – 0.05 – 0.04 – 0.03 – 0.02
acc-tight5 – 0.00 – 0.01 – 0.01 – 0.01 – 0.01
aflow30a 4606.0 0.01 4280.0 0.01 – 0.01 4606.0 0.01 4606.0 0.01
aflow40b 8300.0 0.04 7672.0 0.02 – 0.02 8300.0 0.04 8300.0 0.04
air03 6.2e+05 0.04 6.6e+05 0.04 7.2e+05 0.04 1.2e+06 0.07 1.2e+06 0.07
air04 – 0.03 – 0.03 – 0.03 – 0.03 – 0.04
air05 – 0.03 – 0.03 – 0.08 – 0.04 – 0.04
app1-2 – 9.69 – 10.44 – 9.98 – 9.69 – 10.48
arki001 – 0.01 – 0.04 – 0.01 – 0.01 – 0.03
atlanta-ip – 0.10 – 0.13 – 0.11 – 0.11 – 0.11
beasleyC3 – 0.01 – 0.01 – 0.02 – 0.01 – 0.01
bell3a – 0.00 – 0.00 – 0.00 – 0.00 – 0.01
bell5 – 0.00 – 0.00 9.1e+06 0.00 – 0.01 – 0.00
bab5 – 2.06 – 2.18 – 1.82 – 0.59 – 0.48
biella1 9.5e+07 1.23 1.2e+08 1.24 3.2e+08 0.37 – 0.13 – 0.18
bienst2 – 0.00 – 0.01 66 0.01 – 0.00 – 0.00
binkar10 1 11244.2 0.01 11596.1 0.02 11505.7 0.01 11244.2 0.02 1e+04 0.02
blend2 – 0.00 – 0.00 – 0.00 – 0.00 – 0.00
bley xl1 515.0 0.03 575.0 0.05 465.0 0.03 480.0 0.05 – 0.03
bnatt350 – 0.01 – 0.01 – 0.02 – 0.01 – 0.01
cap6000 -87646.0 0.06 -2e+05 0.11 -2.3e+05 0.09 -1.8e+05 0.05 -77813.0 0.06
core2536-691 – 197.52 – 194.44 12280.0 0.66 2e+04 39.20 – 293.35
cov1075 56 0.01 56 0.01 63 0.01 56 0.01 56 0.01
csched010 – 0.01 – 0.01 – 0.03 – 0.02 – 0.02
dano3mip – 0.53 807.6 0.34 974.3 0.20 – 0.53 847.8 0.23
danoint – 0.01 66 0.01 – 0.02 – 0.01 – 0.02
dcmulti – 0.01 – 0.01 – 0.00 – 0.00 – 0.01
dfn-gwin-UUM – 0.01 – 0.00 – 0.01 – 0.01 – 0.00
disctom – 0.09 – 0.09 – 0.15 – 0.09 – 0.08
ds 1308.2 0.48 1308.2 0.50 2090.6 0.49 5418.6 0.49 5418.6 0.49
dsbmip – 0.35 – 0.33 – 0.33 – 0.28 – 0.33
egout 667.1 0.00 663.5 0.00 624.9 0.00 667.1 0.00 626.6 0.00
eil33-2 1321.7 0.04 1321.7 0.04 2736.8 0.04 5050.2 0.03 5050.2 0.03
eilB101 2427.3 0.02 2427.3 0.02 3196.7 0.02 5e+03 0.02 5e+03 0.01
enigma – 0.00 – 0.00 – 0.00 – 0.00 – 0.00
enlight13 – 0.00 – 0.00 – 0.00 – 0.00 – 0.00
fast0507 1.2e+05 0.47 1.2e+05 0.47 69159.0 0.48 8276.0 0.45 8276.0 0.43
fiber – 0.00 – 0.01 – 0.01 – 0.00 – 0.01
fixnet6 – 0.01 – 0.01 – 0.01 – 0.01 – 0.02
flugpl – 0.00 – 0.00 – 0.00 – 0.00 – 0.00
gen 1.1e+05 0.00 1.1e+05 0.01 1.2e+05 0.01 1.1e+05 0.01 – 0.01
gesa2-o – 0.03 – 0.02 1.3e+08 0.02 1.3e+08 0.02 – 0.02
gesa2 4.7e+07 0.02 9.2e+07 0.02 – 0.02 1.5e+08 0.02 1.5e+08 0.02
gesa3 5.9e+07 0.02 – 0.02 – 0.03 1.5e+08 0.02 1.5e+08 0.02
gesa3 o – 0.02 – 0.01 – 0.01 – 0.01 – 0.01
glass4 – 0.01 – 0.00 – 0.01 – 0.01 – 0.01
gmu-35-40 -5e+04 0.02 -5e+04 0.01 -5e+04 0.02 -5e+04 0.02 -5e+04 0.01
gt2 – 0.00 – 0.01 3e+05 0.00 – 0.00 – 0.00
harp2 -5.2e+07 0.01 – 0.01 – 0.00 -5.2e+07 0.00 – 0.01
iis-100-0-cov 46 0.02 46 0.01 64 0.01 88 0.02 88 0.02
iis-bupa-cov 98 0.03 98 0.02 224.0 0.02 315.0 0.02 315.0 0.02
iis-pima-cov 92 0.05 92 0.05 398.0 0.04 700.0 0.04 700.0 0.04
khb05250 1.6e+08 0.01 1.6e+08 0.01 1.4e+08 0.01 1.6e+08 0.01 1.6e+08 0.01
lectsched-4-obj 277.0 0.03 – 0.02 – 0.02 – 0.03 – 0.03
liu 6450.0 0.02 6450.0 0.02 6450.0 0.03 6450.0 0.03 6450.0 0.03
l152lav – 0.02 – 0.01 – 0.02 – 0.03 – 0.04
lseu – 0.00 – 0.00 – 0.00 – 0.00 – 0.00
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Table 3 continued

|{b < 0}| ↓ |·| ↓ random |{b < 0}| ↑ |·| ↑
Problem Name cT z t (s) cT z t (s) cT z t (s) cT z t (s) cT z t (s)

m100n500k4r1 0 0.00 0 0.00 0 0.00 0 0.00 0 0.01
macrophage 1409.0 0.02 1e+03 0.02 1562.0 0.03 1582.0 0.02 1581.0 0.02
manna81 0 0.05 0 0.04 0 0.04 0 0.04 0 0.05
map18 0 0.19 0 0.19 0 0.19 0 0.19 0 0.18
map20 0 0.19 0 0.19 0 0.19 0 0.19 0 0.18
markshare1 7286.0 0.00 7286.0 0.00 7286.0 0.00 7286.0 0.01 7286.0 0.00
markshare2 10512.0 0.00 10512.0 0.00 10512.0 0.00 10512.0 0.01 10512.0 0.00
mas74 1.5e+05 0.00 1.5e+05 0.01 1.5e+05 0.01 1.5e+05 0.01 1.5e+05 0.01
mas76 1.5e+05 0.01 1.5e+05 0.01 1.5e+05 0.00 1.5e+05 0.01 1.5e+05 0.01
mcsched 4.8e+05 0.06 4.8e+05 0.07 4.3e+05 0.07 4.8e+05 0.10 4.8e+05 0.05
mik-250-1-100-1 0 0.02 0 0.01 0 0.01 0 0.01 0 0.01
mine-166-5 0 0.03 0 0.03 0 0.01 0 0.02 0 0.02
mine-90-10 0 0.03 0 0.01 0 0.01 0 0.03 0 0.01
misc03 – 0.00 – 0.00 – 0.01 – 0.00 – 0.00
misc06 13951.9 0.01 13951.9 0.02 13951.9 0.02 13951.9 0.03 13951.9 0.01
misc07 – 0.00 – 0.00 – 0.01 – 0.00 – 0.01
mitre 1.6e+05 0.03 1.3e+05 0.03 1.4e+05 0.04 1.5e+05 0.02 1.2e+05 0.02
mkc 0 0.21 0 0.19 0 0.12 0 0.21 0 0.04
mod008 1452.0 0.00 783.0 0.00 839.0 0.00 498.0 0.01 536.0 0.00
mod010 – 0.02 – 0.02 – 0.02 – 0.03 – 0.02
mod011 0 0.05 0 0.06 0 0.06 0 0.06 0 0.05
modglob 3.6e+07 0.01 3.6e+07 0.00 3.6e+07 0.00 3.6e+07 0.00 3.6e+07 0.00
momentum1 3.6e+05 0.11 – 0.13 – 0.06 – 0.08 4.8e+05 0.11
momentum2 – 0.13 – 0.16 – 0.20 – 0.24 – 0.12
momentum3 – 2.91 – 3.91 – 2.16 – 2.59 – 2.18
msc98-ip – 0.06 – 0.06 – 0.11 – 0.05 – 0.09
mspp16 – 40.05 – 44.84 – 20.68 – 16.58 385.0 40.61
mzzv11 0 0.14 0 0.15 0 0.14 0 0.08 0 0.08
mzzv42z 0 0.19 0 0.38 0 0.27 0 0.16 0 0.14
n3div36 2.5e+06 0.69 3.6e+06 0.75 1.8e+06 0.80 2.9e+06 0.65 5.5e+06 0.74
n3seq24 9.7e+07 7.87 1.4e+08 8.45 7.8e+07 2.44 – 29.05 – 43.57
n4-3 – 0.06 3e+07 0.05 – 0.06 3e+07 0.06 – 0.04
neos-1109824 – 0.02 – 0.02 – 0.03 – 0.01 – 0.02
neos-1337307 – 0.03 – 0.13 – 0.31 – 0.06 – 0.06
neos-1396125 – 0.01 – 0.01 – 0.01 – 0.01 – 0.01
neos13 -28 0.96 -28 0.95 -28 0.96 -28 0.95 -28 0.95
neos-1601936 – 0.09 – 0.08 – 0.07 – 0.06 – 0.07
neos18 19 0.01 18 0.02 61 0.02 62 0.04 62 0.03
neos-476283 – 21.46 411.9 11.31 509.7 13.22 411.9 11.04 411.9 11.30
neos-686190 – 0.08 – 0.05 – 0.06 – 0.07 – 0.06
neos-849702 – 0.01 – 0.02 – 0.01 – 0.02 – 0.02
neos-916792 – 0.17 – 0.18 – 0.34 – 0.17 – 0.44
neos-934278 4.7e+05 0.41 1.8e+05 0.15 3.4e+05 0.11 3.6e+05 0.20 4.7e+05 0.48
net12 – 0.04 296.0 0.09 – 0.05 – 0.05 – 0.04
netdiversion 4.9e+06 20.10 – 6.83 – 16.27 – 48.24 – 9.32
newdano – 0.00 – 0.01 80 0.01 – 0.01 – 0.00
noswot -5 0.00 -5 0.00 -5 0.00 – 0.01 – 0.00
ns1208400 – 0.06 – 0.06 – 0.05 – 0.04 – 0.04
ns1688347 – 0.02 – 0.04 – 0.01 – 0.03 – 0.01
ns1758913 -236.8 2.09 -102.3 2.11 -226.7 2.84 -236.8 2.04 -460.5 6.03
ns1830653 – 0.02 – 0.03 – 0.03 – 0.03 – 0.03
nsrand-ipx 1.3e+06 0.05 2.7e+06 0.05 7.2e+05 0.05 8.5e+05 0.05 1.6e+05 0.06
nw04 29430.0 0.25 29430.0 0.24 57134.0 7.72 1.4e+05 19.05 1.4e+05 16.94
opm2-z7-s2 0 0.22 0 0.12 0 0.06 0 0.23 0 0.09
opt1217 0 0.01 0 0.00 0 0.00 0 0.00 0 0.01
p0033 – 0.00 – 0.00 – 0.00 – 0.00 – 0.00
p0201 12855.0 0.01 13210.0 0.00 10815.0 0.01 – 0.01 11260.0 0.01
p0282 9.1e+05 0.00 1.1e+06 0.00 6.5e+05 0.01 8.8e+05 0.01 6.5e+05 0.01
p0548 – 0.01 – 0.00 – 0.01 – 0.01 – 0.01
p2756 6595.0 0.06 1.3e+05 0.03 51211.0 0.06 1.5e+05 0.05 19419.0 0.08
pg5 34 0 0.02 0 0.02 0 0.01 0 0.02 0 0.02
pigeon-10 0 0.01 0 0.01 0 0.01 0 0.00 0 0.00
pk1 731.0 0.01 731.0 0.00 731.0 0.00 731.0 0.00 731.0 0.00
pp08a – 0.00 – 0.00 – 0.00 – 0.00 – 0.00
pp08aCUTS – 0.00 – 0.00 – 0.01 – 0.00 – 0.00
protfold -11 0.04 – 0.03 – 0.03 – 0.03 – 0.03
pw-myciel4 22 0.01 22 0.01 19 0.01 – 0.02 – 0.01
qiu – 0.01 – 0.02 – 0.01 – 0.02 – 0.02
qnet1 2.2e+05 0.01 2.3e+05 0.01 4e+05 0.02 1.7e+05 0.02 4.3e+05 0.02

continued on next page

21



Table 3 continued

|{b < 0}| ↓ |·| ↓ random |{b < 0}| ↑ |·| ↑
Problem Name cT z t (s) cT z t (s) cT z t (s) cT z t (s) cT z t (s)

qnet1 o 78355.2 0.01 2.6e+05 0.02 3.8e+05 0.02 4.1e+05 0.01 4.1e+05 0.02
rail507 – 3599.02 – 3599.54 – 2209.66 8276.0 1.86 7674.0 1.42
ran16x16 6e+03 0.01 6e+03 0.01 6712.0 0.01 6e+03 0.00 6e+03 0.01
reblock67 0 0.01 0 0.01 0 0.01 0 0.01 0 0.00
rd-rplusc-21 – 1.52 – 0.25 – 0.28 – 1.10 – 0.40
rentacar – 0.39 – 0.56 – 0.45 – 0.51 – 0.44
rgn 445.0 0.00 445.0 0.01 445.0 0.00 445.0 0.00 445.0 0.00
rmatr100-p10 817.0 0.07 763.0 0.07 772.0 0.07 817.0 0.07 975.0 0.07
rmatr100-p5 1414.0 0.14 1374.0 0.13 1555.0 0.14 1414.0 0.14 2e+03 0.17
rmine6 0 0.05 0 0.01 0 0.02 0 0.06 0 0.01
rocII-4-11 – 0.03 – 0.03 – 0.03 – 0.02 – 0.02
rococoC10-001000 2.1e+05 0.03 – 0.01 34348.0 0.03 5e+04 0.03 54116.0 0.03
roll3000 – 0.04 – 0.06 – 0.02 – 0.02 – 0.04
rout 2375.2 0.01 2375.2 0.01 2375.2 0.01 2375.2 0.02 2375.2 0.00
satellites1-25 97 0.11 79 0.10 – 0.12 80 0.14 – 0.10
set1ch 1e+05 0.01 1e+05 0.01 1.1e+05 0.00 1e+05 0.01 1e+05 0.01
seymour 1269.0 0.02 1269.0 0.03 1204.0 0.03 1276.0 0.04 1276.0 0.03
sp97ar 2.6e+10 0.19 4.6e+10 0.19 2.3e+10 0.18 2.7e+10 0.20 7.8e+09 0.22
sp98ic 1.1e+10 0.20 1.6e+10 0.20 6.2e+09 0.22 8.2e+09 0.18 5.2e+09 0.21
sp98ir 5.2e+08 0.03 4.4e+08 0.03 – 0.03 – 0.05 4.4e+08 0.03
stein27 23 0.01 23 0.00 21 0.00 23 0.00 23 0.00
stein45 38 0.00 38 0.00 37 0.00 39 0.00 39 0.01
stp3d – 0.90 – 1.17 – 1.93 – 0.89 – 12.95
swath 713.2 0.06 – 0.11 – 0.13 928.6 0.10 1e+03 0.08
t1717 – 0.13 – 0.12 – 0.09 – 0.09 – 0.10
tanglegram1 33625.0 0.25 33564.0 0.24 32825.0 0.30 33807.0 0.24 33807.0 0.24
tanglegram2 4172.0 0.06 4158.0 0.05 4241.0 0.05 4269.0 0.05 4267.0 0.05
timtab1 – 0.01 – 0.00 – 0.01 – 0.01 – 0.00
timtab2 – 0.00 – 0.00 – 0.01 – 0.01 – 0.00
tr12-30 – 0.02 – 0.02 – 0.03 – 0.02 – 0.02
triptim1 – 0.17 – 0.18 – 0.23 – 0.24 – 0.61
unitcal 7 – 0.12 – 0.11 – 0.12 – 0.10 – 1.04
vpm1 23 0.01 – 0.00 – 0.00 23 0.01 24 0.00
vpm2 – 0.00 – 0.00 – 0.01 – 0.00 – 0.00
vpphard – 0.37 – 0.21 2e+04 5.39 – 7.41 – 4.71
zib54-UUE – 0.02 – 0.02 – 0.04 – 0.02 – 0.02

Table 4: Results of the root experiment for all three settings in terms
of heuristic/root solving time and objective value for all 163 instances.
Bold face indicates better primal solutions values.

SandP RandI Both
Problem Name cT zopt cT z t (s) cT z t (s) cT z t (s)
10teams 924.0 – 0.00/0.18 – 0.00/0.32 – 0.02/0.33
30n20b8 302.0 – 0.02/9.60 – 0.01/9.59 – 0.04/9.55
a1c1s1 11503.4 – 0.02/0.27 – 0.02/0.28 – 0.03/0.29
acc-tight5 0 – 0.00/2.14 – 0.01/2.00 – 0.01/2.15
aflow30a 1158.0 4606.0 0.01/0.19 – 0.00/0.09 4606.0 0.03/0.21
aflow40b 1168.0 8300.0 0.03/0.81 – 0.00/0.78 8300.0 0.07/0.84
air03 3.4e+05 6.2e+05 0.04/5.08 – 0.02/5.05 6.2e+05 0.06/5.32
air04 56137.0 – 0.02/3.63 – 0.00/3.51 – 0.05/3.55
air05 26374.0 – 0.04/1.22 – 0.00/1.11 – 0.04/1.20
app1-2 -41 – 9.70/24.08 -23 0.07/13.82 – 9.86/24.23
arki001 7.6e+06 – 0.01/0.38 – 0.00/0.39 – 0.01/0.38
atlanta-ip 90 – 0.10/18.18 – 0.06/18.06 – 0.15/18.27
beasleyC3 754.0 – 0.00/0.07 951.0 0.05/0.19 951.0 0.05/0.17
bell3a 8.8e+05 – 0.00/0.01 9.2e+05 0.00/0.00 9.2e+05 0.01/0.02
bell5 9e+06 – 0.00/0.01 – 0.00/0.03 – 0.00/0.03
bab5 -1.1e+05 – 2.05/18.84 – 0.03/16.92 – 2.13/19.19
biella1 3.1e+06 9.5e+07 1.23/5.70 – 0.00/4.50 9.5e+07 1.86/6.30
bienst2 55 – 0.01/0.02 – 0.00/0.01 – 0.01/0.05
binkar10 1 6742.2 11244.2 0.02/0.13 – 0.00/0.12 11244.2 0.01/0.13
blend2 7.6 – 0.01/0.04 – 0.00/0.04 – 0.01/0.04
bley xl1 190.0 515.0 0.05/351.94 – 0.00/310.20 275.0 0.05/311.14
bnatt350 0 – 0.01/0.75 – 0.00/0.74 – 0.02/0.75
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Table 4 continued

SandP RandI Both
Problem Name cT zopt cT z t (s) cT z t (s) cT z t (s)

cap6000 -2.5e+06 -87646.0 0.06/0.73 -2.5e+06 0.16/0.83 -2.5e+06 0.20/0.98
core2536-691 689.0 – 1.56/13.46 795.0 0.09/12.15 795.0 1.65/13.68
cov1075 20 56 0.01/0.30 26 0.00/0.31 26 0.02/0.31
csched010 408.0 – 0.01/0.27 – 0.00/0.27 – 0.01/0.27
dano3mip 687.7 – 0.53/22.28 – 0.03/21.43 – 0.55/22.10
danoint 66 – 0.01/0.60 – 0.00/0.51 – 0.01/0.60
dcmulti 1.9e+05 – 0.01/0.03 – 0.01/0.04 – 0.01/0.03
dfn-gwin-UUM 38752.0 – 0.01/0.03 2.3e+05 0.00/0.03 2.3e+05 0.00/0.03
disctom -5e+03 – 0.05/1.81 – 0.01/1.57 – 0.06/1.75
ds 94 1308.2 0.51/21.53 – 0.08/21.30 1308.2 1.10/22.18
dsbmip -305.2 – 0.16/0.42 – 0.01/0.37 – 0.35/0.59
egout 568.1 667.1 0.00/0.01 625.3 0.00/0.01 625.3 0.00/0.00
eil33-2 934.0 1321.7 0.03/0.50 – 0.01/0.46 1321.7 0.09/0.55
eilB101 1216.9 2427.3 0.02/0.41 – 0.00/0.41 2427.3 0.04/0.43
enigma 0 – 0.00/0.01 – 0.00/0.01 – 0.00/0.01
enlight13 71 – 0.00/0.02 – 0.00/0.02 – 0.01/0.02
fast0507 174.0 1.2e+05 0.48/13.71 240.0 0.57/13.87 257.0 0.94/14.22
fiber 4.1e+05 – 0.01/0.04 – 0.00/0.04 – 0.02/0.04
fixnet6 4e+03 – 0.01/0.04 4536.0 0.02/0.05 4536.0 0.03/0.07
flugpl 1.2e+06 – 0.00/0.01 – 0.00/0.00 – 0.00/0.01
gen 1.1e+05 1.1e+05 0.01/0.06 – 0.00/0.05 1.1e+05 0.02/0.07
gesa2-o 2.6e+07 – 0.00/0.05 – 0.00/0.10 – 0.02/0.12
gesa2 2.6e+07 4.7e+07 0.02/0.16 1.9e+08 0.01/0.13 4.6e+07 0.05/0.18
gesa3 2.8e+07 5.9e+07 0.02/0.14 1.9e+08 0.00/0.12 5.9e+07 0.02/0.14
gesa3 o 2.8e+07 – 0.02/0.11 – 0.00/0.09 – 0.02/0.10
glass4 1.2e+09 – 0.01/0.04 – 0.00/0.04 – 0.01/0.04
gmu-35-40 -2.4e+06 -5e+04 0.01/0.22 -1.5e+06 0.00/0.21 -1.5e+06 0.01/0.20
gt2 21166.0 – 0.00/0.01 – 0.00/0.01 – 0.00/0.01
harp2 -7.4e+07 -5.2e+07 0.01/0.18 – 0.01/0.18 -5.6e+07 0.06/0.24
iis-100-0-cov 29 46 0.02/0.57 35 0.01/0.49 36 0.02/0.57
iis-bupa-cov 36 98 0.01/1.13 48 0.01/1.30 47 0.03/1.30
iis-pima-cov 33 92 0.05/1.26 44 0.03/1.50 42 0.05/1.39
khb05250 1.1e+08 1.6e+08 0.01/0.03 1.3e+08 0.00/0.01 1.3e+08 0.01/0.03
lectsched-4-obj 4 – 0.02/1.13 – 0.01/1.29 – 0.02/1.14
liu 1132.0 6450.0 0.04/0.10 – 0.00/0.05 6450.0 0.05/0.12
l152lav 4722.0 – 0.02/0.15 – 0.00/0.15 – 0.02/0.17
lseu 1120.0 – 0.00/0.01 – 0.00/0.01 – 0.00/0.01
m100n500k4r1 -25 0 0.01/0.03 -18 0.00/0.03 -18 0.02/0.04
macrophage 374.0 1409.0 0.03/0.13 609.0 0.02/0.13 458.0 0.03/0.15
manna81 -13164.0 0 0.04/0.26 -13162.0 0.07/0.19 -13162.0 0.11/0.31
map18 -847.0 0 0.19/7.88 0 0.17/7.11 0 0.30/8.00
map20 -922.0 0 0.19/7.37 0 0.18/6.51 0 0.32/7.62
markshare1 1 7286.0 0.00/0.01 125.0 0.00/0.01 125.0 0.00/0.01
markshare2 1 10512.0 0.00/0.00 161.0 0.00/0.00 161.0 0.00/0.01
mas74 11801.2 1.5e+05 0.01/0.02 – 0.00/0.01 1.5e+05 0.02/0.02
mas76 4e+04 1.5e+05 0.01/0.02 – 0.00/0.01 1.5e+05 0.01/0.01
mcsched 2.1e+05 4.8e+05 0.06/0.79 – 0.01/0.80 4.8e+05 0.08/0.81
mik-250-1-100-1 -66729.0 0 0.01/0.04 0 0.01/0.02 0 0.01/0.04
mine-166-5 -5.7e+08 0 0.03/1.66 -7.3e+06 0.02/1.79 -7.3e+06 0.03/1.75
mine-90-10 -7.8e+08 0 0.04/1.14 -1.6e+07 0.02/1.13 -1.6e+07 0.03/1.24
misc03 3360.0 – 0.00/0.04 – 0.00/0.04 – 0.00/0.05
misc06 12850.9 13951.9 0.02/0.13 – 0.00/0.13 13951.9 0.03/0.13
misc07 2810.0 – 0.00/0.09 – 0.00/0.11 – 0.01/0.11
mitre 1.2e+05 1.6e+05 0.03/4.94 – 0.00/5.03 1.4e+05 0.04/4.97
mkc -563.8 0 0.21/0.49 0 0.11/0.40 0 0.25/0.53
mod008 307.0 1452.0 0.00/0.01 308.0 0.00/0.02 308.0 0.01/0.02
mod010 6548.0 – 0.02/0.12 – 0.01/0.20 – 0.02/0.21
mod011 -5.5e+07 0 0.05/0.50 -4.3e+07 0.04/0.48 -4.3e+07 0.07/0.53
modglob 2.1e+07 3.6e+07 0.00/0.02 2.1e+07 0.00/0.01 2.1e+07 0.00/0.02
momentum1 1.1e+05 3.6e+05 0.11/5.42 – 0.02/5.47 3.6e+05 0.12/5.47
momentum2 12314.2 – 0.13/11.70 – 0.01/11.43 – 0.13/11.07
momentum3 2.4e+05 – 1.82/387.71 – 0.05/375.27 – 1.76/379.42
msc98-ip 2e+07 – 0.07/6.41 – 0.01/6.35 – 0.08/6.24
mspp16 363.0 – 40.01/758.94 – 0.83/737.06 – 40.85/764.70
mzzv11 -21718.0 0 0.13/41.75 0 0.02/41.60 0 0.15/41.85
mzzv42z -20540.0 0 0.19/9.44 0 0.10/9.39 0 0.24/9.42
n3div36 1.3e+05 2.5e+06 0.67/3.96 1.8e+05 0.38/3.70 1.6e+05 1.09/4.40
n3seq24 52200.0 9.7e+07 8.09/46.82 – 0.22/40.31 1.6e+05 8.96/48.01
n4-3 9e+03 – 0.06/0.34 14275.0 0.00/0.06 14275.0 0.06/0.19
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Table 4 continued

SandP RandI Both
Problem Name cT zopt cT z t (s) cT z t (s) cT z t (s)

neos-1109824 378.0 – 0.02/0.86 – 0.00/0.86 – 0.01/0.98
neos-1337307 -2e+05 – 0.03/2.50 – 0.00/2.49 – 0.04/2.48
neos-1396125 3e+03 – 0.01/1.39 – 0.00/1.47 – 0.01/1.34
neos13 -95 -28 0.95/3.15 – 0.03/2.31 -28 0.99/3.17
neos-1601936 3 – 0.08/4.98 – 0.00/5.05 – 0.08/4.85
neos18 16 19 0.01/0.16 57 0.01/0.26 19 0.03/0.26
neos-476283 406.4 – 21.91/84.89 – 0.02/63.30 – 21.51/84.03
neos-686190 6730.0 – 0.09/0.33 – 0.01/0.26 – 0.08/0.33
neos-849702 0 – 0.01/1.10 – 0.01/1.16 – 0.02/1.15
neos-916792 32 – 0.17/0.87 – 0.00/0.80 – 0.17/0.92
neos-934278 260.0 4.7e+05 0.40/19.17 3.4e+10 0.04/18.93 4.7e+05 0.47/19.32
net12 214.0 – 0.04/3.94 – 0.02/3.96 – 0.05/4.05
netdiversion 242.0 4.9e+06 22.09/675.36 – 0.13/648.13 4.9e+06 28.70/674.29
newdano 66 – 0.01/0.03 – 0.00/0.02 – 0.00/0.04
noswot -41 -5 0.00/0.01 – 0.00/0.01 -6 0.00/0.02
ns1208400 2 – 0.07/2.30 – 0.00/2.33 – 0.06/2.23
ns1688347 27 – 0.02/5.13 – 0.01/5.23 – 0.02/5.27
ns1758913 -1454.7 – 1.36/131.32 – 0.04/130.64 – 1.47/134.89
ns1830653 20622.0 – 0.01/0.66 – 0.00/0.58 – 0.02/0.82
nsrand-ipx 51200.0 1.3e+06 0.05/1.50 – 0.01/1.27 70720.0 0.09/1.42
nw04 16862.0 29430.0 0.26/11.70 – 0.08/11.61 29430.0 0.93/12.37
opm2-z7-s2 -1e+04 0 0.23/13.68 -3685.0 0.14/13.61 -3685.0 0.33/13.88
opt1217 -16 0 0.00/0.02 – 0.00/0.03 0 0.01/0.04
p0033 3089.0 – 0.00/0.01 – 0.00/0.00 – 0.00/0.01
p0201 7615.0 12855.0 0.00/0.06 – 0.00/0.06 11295.0 0.02/0.06
p0282 2.6e+05 9.1e+05 0.01/0.03 2.7e+05 0.00/0.02 2.7e+05 0.00/0.03
p0548 8691.0 – 0.01/0.04 – 0.00/0.04 – 0.02/0.05
p2756 3124.0 6595.0 0.05/0.34 – 0.01/0.29 5e+03 0.07/0.34
pg5 34 -14339.4 0 0.02/0.17 0 0.01/0.16 0 0.02/0.19
pigeon-10 -9e+03 0 0.01/0.05 0 0.01/0.04 0 0.01/0.05
pk1 11 731.0 0.00/0.01 – 0.00/0.01 731.0 0.00/0.01
pp08a 7350.0 – 0.01/0.01 14600.0 0.00/0.01 14600.0 0.00/0.01
pp08aCUTS 7350.0 – 0.00/0.02 16630.4 0.00/0.01 16630.4 0.02/0.02
protfold -31 – 0.02/1.44 – 0.00/1.49 – 0.03/1.43
pw-myciel4 10 22 0.01/1.02 – 0.00/1.07 22 0.01/0.98
qiu -132.9 – 0.00/0.10 1805.2 0.00/0.10 1805.2 0.01/0.11
qnet1 16029.7 2.2e+05 0.01/0.24 – 0.01/0.24 26659.3 0.04/0.26
qnet1 o 16029.7 78355.2 0.02/0.06 28462.1 0.01/0.05 17842.7 0.01/0.06
rail507 174.0 – 8.25/20.69 216.0 0.43/13.02 216.0 8.98/21.27
ran16x16 3823.0 6e+03 0.01/0.02 4333.0 0.01/0.02 4333.0 0.03/0.04
reblock67 -3.5e+07 0 0.02/0.91 -2.6e+06 0.01/0.84 -2.6e+06 0.03/0.85
rd-rplusc-21 1.7e+05 – 1.49/58.94 – 0.00/57.58 – 1.47/58.81
rentacar 3e+07 – 0.58/1.13 – 0.02/1.16 – 0.39/0.96
rgn 82 445.0 0.01/0.02 – 0.00/0.00 445.0 0.01/0.02
rmatr100-p10 423.0 817.0 0.07/2.52 – 0.01/2.59 817.0 0.08/2.50
rmatr100-p5 976.0 1414.0 0.14/4.17 – 0.01/4.16 1414.0 0.15/4.23
rmine6 -457.2 0 0.05/1.54 -90 0.01/1.35 -90 0.07/1.53
rocII-4-11 -6.7 – 0.02/6.18 – 0.01/6.17 – 0.04/6.15
rococoC10-001000 11460.0 2.1e+05 0.03/0.31 27042.0 0.03/0.33 24044.0 0.05/0.34
roll3000 12890.0 – 0.03/0.61 – 0.01/0.62 – 0.04/0.60
rout 1077.6 2375.2 0.01/0.09 2375.2 0.00/0.08 2375.2 0.01/0.09
satellites1-25 -5 97 0.10/39.36 – 0.00/37.12 97 0.12/39.79
set1ch 54537.8 1e+05 0.01/0.03 1.1e+05 0.02/0.04 1e+05 0.02/0.05
seymour 423.0 1269.0 0.03/1.19 496.0 0.03/1.04 500.0 0.06/1.18
sp97ar 6.6e+08 2.6e+10 0.18/5.67 – 0.05/5.57 9.7e+08 0.39/5.66
sp98ic 4.5e+08 1.1e+10 0.19/3.80 5.4e+08 0.22/3.94 8.3e+08 0.42/3.93
sp98ir 2.2e+08 5.2e+08 0.03/1.19 – 0.00/1.18 3.1e+08 0.04/1.38
stein27 18 23 0.00/0.01 19 0.00/0.00 19 0.01/0.01
stein45 30 38 0.01/0.02 33 0.00/0.01 32 0.00/0.02
stp3d 493.7 – 0.81/2215.49 – 0.21/2206.18 – 1.19/2239.59
swath 467.4 713.2 0.06/0.24 – 0.02/0.20 713.2 0.33/0.52
t1717 1.7e+05 – 0.08/6.82 – 0.06/6.86 – 0.14/6.77
tanglegram1 5182.0 33625.0 0.25/2.27 7798.0 0.72/2.76 5406.0 0.85/2.79
tanglegram2 443.0 4172.0 0.05/0.36 2122.0 0.15/0.38 535.0 0.16/0.49
timtab1 7.6e+05 – 0.00/0.03 – 0.00/0.02 – 0.00/0.02
timtab2 1.1e+06 – 0.00/0.06 – 0.00/0.05 – 0.01/0.05
tr12-30 1.3e+05 – 0.02/0.12 – 0.00/0.10 – 0.02/0.12
triptim1 23 – 0.17/111.54 – 0.03/112.41 – 0.21/132.15
unitcal 7 2e+07 – 0.10/17.19 – 0.03/17.86 – 0.14/17.25

continued on next page
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Table 4 continued

SandP RandI Both
Problem Name cT zopt cT z t (s) cT z t (s) cT z t (s)

vpm1 20 23 0.00/0.00 24 0.01/0.02 23 0.01/0.01
vpm2 14 – 0.00/0.03 – 0.00/0.03 – 0.00/0.02
vpphard 5 – 0.27/11.66 – 0.05/11.54 – 0.34/11.67
zib54-UUE 1e+07 – 0.02/0.21 1.8e+07 0.00/0.21 1.8e+07 0.02/0.21
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