
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

STEFAN HEINZ?

WEN-YANG KU??

J. CHRISTOPHER BECK??

Recent improvements using constraint
integer programming for resource

allocation and scheduling

? Supported by the DFG Research Center MATHEON Mathematics for key technologies in Berlin.
?? Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Canada

ZIB-Report 13-05 (January 2013)

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

Recent improvements using constraint integer
programming for resource allocation and

scheduling

Stefan Heinz1,?, Wen-Yang Ku2, and J. Christopher Beck2

1 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
heinz@zib.de

2 Department of Mechanical & Industrial Engineering
University of Toronto, Toronto, Ontario M5S 3G8, Canada

{wku,jcb}@mie.utoronto.ca

Abstract. Recently, we compared the performance of mixed-integer
programming (MIP), constraint programming (CP), and constraint inte-
ger programming (CIP) to a state-of-the-art logic-based Benders manual
decomposition (LBBD) for a resource allocation/scheduling problem. For
a simple linear relaxation, the LBBD and CIP models deliver comparable
performance with MIP also performing well. Here we show that algorith-
mic developments in CIP plus the use of an existing tighter relaxation
substantially improve one of the CIP approaches. Furthermore, the use
of the same relaxation in LBBD and MIP models significantly improves
their performance. While such a result is known for LBBD, to the best of
our knowledge, the other results are novel. Our experiments show that
both CIP and MIP approaches are competitive with LBBD in terms
of the number of problems solved to proven optimality, though MIP is
about three times slower on average. Further, unlike the LBBD and CIP
approaches, the MIP model is able to obtain provably high-quality solu-
tions for all problem instances.

1 Introduction

In previous work, we provided empirical evidence showing that models based
on mixed-integer programming (MIP) and constraint integer program (CIP)
were competitive with logic-based Benders decomposition (LBBD) for a class
of resource allocation and scheduling problems [1]. A weakness in this work was
that we were not able to achieve the same performance with LBBD as in previous
work (e.g., [2,3]), which made our conclusions necessarily conservative. In this
paper we show that equivalent performance of LBBD to that in the literature
can be obtained by using a stronger sub-problem relaxation, strengthening the
Benders cuts, and employing a commercial CP solver for the sub-problems. None
of these results come as a surprise as they already exist in the literature [2], but

? Supported by the DFG Research Center Matheon Mathematics for key technologies
in Berlin.

2 Stefan Heinz, Wen-Yang Ku, and J. Christopher Beck

(re)establishing these results replicates the literature, as well as allowing our
conclusions with respect to other approaches to be placed on a firmer foundation.

More interestingly, we demonstrate that:

– The further integration of global constraint-based reasoning within the CIP
framework, combined with the same stronger relaxation, results in a CIP
model with equivalent performance to the LBBD model.

– The existing MIP model can itself be augmented with the stronger relaxation
and this extension leads to substantially improved performance to the point
MIP is competitive with the improved LBBD and CIP model.

Our experimental investigations show that the instances in one problem set
(with unary resources) are now all easily solved by all models in a few seconds.
For the more challenging set of instances with non-unary resources, LBBD and
one of our CIP models (CIP[CP]) achieve essentially equivalent performance in
terms of solving problems to optimality and finding the best known solutions,
while CIP[CP] is able to find provably high quality solutions on more problem
instances. The extended MIP model and the CIP model based on the MIP
formulation (CIP[MIP]) find slightly fewer optimal solutions and require more
run-time to do so. However, unlike both LBBD and the CIP[CP] model, the
MIP and CIP[MIP] models are able to find solutions with a small optimality
gap for all instances. Furthermore, the time for the MIP model to find a first
feasible solution is twenty times faster than LBBD and twice as fast as CIP[CP]
in geometric mean.

Based on our results, declaring a single winner among these three approaches
is therefore fraught and perhaps not of fundamental interest (see [4]). However,
our results with extended models reinforce our previous conclusions [1]: both
CIP and MIP are competitive with LBBD for these scheduling problems and
should be considered as core technologies for more general scheduling problems.

The rest of the paper is organized as follows. In Section 2, we formally define
our problem. Section 3 presents the necessary background, including a discussion
of logic-based Benders decomposition and a short summary of the results from
our previous paper. In Section 4, we present the models used in this paper and
we discuss detailed results of our experiments in Section 5. Section 6 provides a
discussion of our results and we then conclude in Section 7.

2 Problem definition

We study two scheduling problems referred to as unary and multi [5,3,1],
which are defined by a set of jobs J and a set of resources K. Each job j must
be assigned to a resource k and scheduled to start at or after its release date,
Rj , end at or before its deadline, Dj , and execute for pjk consecutive time units.
Each job also has a resource assignment cost cjk and a resource requirement rjk.
We denote R as the set of all release dates and D as the set of all deadlines. Each
resource k ∈ K has a capacity Ck and a corresponding constraint which states
that the resource capacity must not be exceeded at any time. In the unary

Recent improvements using CIP for resource allocation and scheduling 3

problems, each resource has unary capacity and all jobs require only one unit
of resource. For the multi problems, capacities and requirements may be non-
unary. A feasible solution is an assignment where each job is placed on exactly
one resource and a start time is assigned to each job such that no resource
exceeds its capacity at any time point. The goal is to find an optimal solution,
that is, a feasible solution which minimizes the total resource assignment cost.

3 Background

In this section we give the necessary background w.r.t. the logic-based Benders
decomposition and revisit our previous results.

3.1 Logic-based Benders decomposition

Logic-based Benders decomposition (LBBD) is a problem decomposition tech-
nique that generalizes Benders decomposition [6,7]. Conceptually, some of the
variables and constraints of a global problem model are removed, creating a mas-
ter problem (MP) whose solution (in the case of minimization) forms a lower-
bound on the globally optimal solution. The extracted problem components form
one or more sub-problems (SPs) where each SP is an inference dual [6]. Based
on an MP solution, each sub-problem is solved, deriving the tightest bound on
the MP cost function that can be inferred from the current MP solution and
the constraints and variables of the SP. If a bound produced by an SP is not
satisfied by the MP solution, a Benders cut is introduced to the MP. For global
convergence, the cut must remove the current MP solution from the feasibility
space of the MP without removing any globally optimal solutions.

The standard solution procedure for an LBBD model is to iteratively solve
the MP to optimality, solve each sub-problem, add the Benders cuts, and re-solve
the MP. Iterations continue until all SPs are satisfied by the MP solution, which
has thereby been proved to be globally optimal.

For the resource allocation and scheduling problem, since the MP assigns each
job to a resource and there are no inter-job constraints, the SPs are independent,
single-machine feasibility scheduling problems. If all SPs are feasible, then the
assignment found by the MP is valid for all resources and the corresponding
cost is the global minimum. Otherwise, each infeasible SP generate a Benders
cut involving a set of jobs that cannot be feasibly scheduled.

Experience with LBBD models has shown that two aspects of the formulation
are critical for achieving good performance: the inclusion of a relaxation of each
SP in the MP and a strong, but easily calculated Benders cut [8].

The sub-problem relaxation. For the problem studied here two relaxations
have been proposed. Here we label them as the single relaxation [9] and the
interval relaxation [2]. The former consists of one linear constraint per SP repre-
senting to total area (i.e., time by capacity) available on that resource. Formally,
the relaxation can be formulated as follows:

4 Stefan Heinz, Wen-Yang Ku, and J. Christopher Beck

∑
j∈J

pjkrjk xjk ≤ Ck · (max
j∈J
{Dj} −min

j∈J
{Rj}) ∀k ∈ K (1)

where xjk is the binary resource choice variable equal to 1 if and only if job j is
assigned to resource k.

The interval relaxation consists of O(|J |2) linear constraints per SP repre-
senting the total area of a number of overlapping intervals and sets of jobs. The
interval relaxation is formulated as follows:

∑
j∈J (t1,t2)

pjkrjk xjk ≤ Ck · (t2 − t1) ∀k ∈ K, ∀(t1, t2) ∈ E (2)

where E = {(t1, t2) | t1 ∈ R, t2 ∈ D, t1 < t2}. We denote with J (t1, t2) the set
of jobs that execute between t1 and t2: J (t1, t2) = {j ∈ J | t1 ≤ Rj , t2 ≥ Dj}.

If all jobs have the same time window the interval relaxation collapses to the
single relaxation.

The Benders cut. Given that the SPs are feasibility problems without any
visibility to the global optimization function, the only possible Benders cut is
a no-good constraint preventing the same set of jobs from being assigned to
the resource again. Therefore, the cut will take the form of Constraint (11) in
Model 3. Note that Jhk is a set of jobs that cannot be feasibly scheduled together
on resource k. A strengthened cut can be produced by finding a subset of Jhk
that also cannot be feasibly scheduled on resource k. Hooker [2] suggests a greedy
procedure to find a minimal infeasible set by removing each job, one by one, from
Jhk and resolving the SP. If the SP is still infeasible the corresponding job can
be removed from the infeasible set, otherwise it is replaced in the set and the
greedy procedure continues.

3.2 Previous results

Our previous work compared five models: constraint programming (CP), mixed-
integer programming (MIP), logic-based Benders decomposition (LBBD) and
two constraint integer programming models (CIP[CP] and CIP[MIP]) [1]. The
LBBD model used the single relaxation and the non-strengthened cut. While
the need for a cut is unique to LBBD, it may be possible and useful to include
the problem relaxation in any model that makes use of an linear programming
relaxation. In particular, to be consistent with the LBBD formulation, in our
previous work we used the single relaxation in CIP[CP] tested. The MIP and
CIP[MIP] models were based on a different formulation so it was not obvious
how to incorporate this type of relaxation.3

3 Below we show how to do this.

Recent improvements using CIP for resource allocation and scheduling 5

Table 1a (Section 5) reproduces the summary of our previous results [1],
omitting the CP results as they are not extended here. Based on these results,
we concluded that both CIP and MIP technologies are at the least competitive
with LBBD as a state-of-the-art technique for these problems. One caveat to
this conclusion (noted in Heinz & Beck [1]) was that previous work had achieved
stronger results for LBBD [2,3]. However, even taking into account those stronger
results, both MIP and CIP models found provably high-quality feasible solutions
for all instances while LBBD does not.

4 Model and solver extensions

The primary contributions of this paper are:

– Implementation of new presolving, propagation, and primal heuristics in
the SCIP solver and their application to the resource allocation/scheduling
problems.

– Extension of all models to include the interval relaxation. As noted, this
extension is not new for LBBD.

– Replication of previous results using LBBD with the interval relaxation and
strengthened cuts.

In this section, we present the extensions to the CIP solving techniques and
the mathematical models used in our experiments.

4.1 Constraint integer programming

In our previous work [1], we presented the first integration of the optcumulative
global constraint, a cumulative resource constraint with optional activities, into
the paradigm of CIP [10,11]. We focused mainly on its linear relaxation and
incorporated a straightforward propagation via the cumulative constraints.

Here we continue the integration of the optcumulative global constraint
into a CIP framework, including the addition of presolving techniques, general
purpose primal heuristics focusing in the clique structure, and the interval relax-
ation. All of these techniques have been previously presented in the literature,
separately, and not all in the context of CIP. Therefore the techniques, in them-
selves, do not represent a contribution of this paper. Rather, our contributions
here are the integration of these techniques in CIP and the demonstration that
their combination leads to state-of-the-art performance.

The integration of optcumulative. In this section, we discuss the integra-
tion of the optcumulative into the CIP framework via presolving, propagation,
conflict analysis, linear relaxation, and primal heuristics.

6 Stefan Heinz, Wen-Yang Ku, and J. Christopher Beck

min
∑
k∈K

∑
j∈J

cjk xjk

s. t.
∑
k∈K

xjk = 1 ∀j ∈ J (3)

optcumulative(S·k,x·k,p·k, r·k, Ck) ∀k ∈ K∑
j∈J (t1,t2)

pjkrjk xjk ≤ Ck · (t2 − t1) ∀k ∈ K, ∀(t1, t2) ∈ E (4)

Rj ≤ Sjk ≤ Dj −pjk ∀j ∈ J , ∀k ∈ K
xjk ∈ {0, 1} ∀j ∈ J , ∀k ∈ K
Sjk ∈ Z ∀j ∈ J , ∀k ∈ K

Model 1: A CIP model extending CIP[CP] [1].

Presolving. Before the tree search starts, presolving detects and removes redun-
dant constraints and variables. In case of the optcumulative, one shrink the time
windows of each job and remove irrelevant jobs from the scope of the constraint
since this leads to potentially tighter linear relaxation (see Equation (2)). In
particular, we have developed dual reduction techniques that are able to remove
redundant jobs [12] from the cumulative constraints. We apply these reductions
to the optcumulative constraint by assuming that all potentially scheduled jobs
are assigned to a resource. Due to the monotonicity of the inference performed,
any redundant jobs detected under the all-jobs assumption remain redundant
when a subset of jobs is assigned to a resource. Additionally, we can detect a
redundant optcumulative constraint by assuming all possible jobs are assigned
to the resource and checking if the resultant cumulative constraint has a feasible
solution. If so, the corresponding constraint can be removed from the problem
formulation because a feasible schedule exists with all possible jobs. These infer-
ences are specializations of the existing general dual inference techniques [12].

Propagation. During the tree search, we collect jobs which are assigned to a
resource and apply the cumulative propagator [13,14]. For the remaining jobs,
we run singleton arc consistency to detect jobs which can no longer be feasibly
scheduled and fix the corresponding binary choice variable to zero. The extension
here is that if all resource assignment variables for a given resource are fixed, we
try to solve the remaining individual cumulative constraint by itself, triggering
a backtrack if no such solution exists. The same data structure used in presolv-
ing [12], can be used to perform this detection in a sound and general manner.
In contrast to LBBD, these (indirect) sub-problems do not need to be solved. If
a solution is found or the problem is proved infeasible, the global search space
is reduced. However, if they are not solved, the main search continues.

Conflict analysis. We use the explanation algorithms corresponding to the cu-
mulative propagator [15,16] and extend the generated explanations to include
only the binary resource choice variables for those start time variables which are

Recent improvements using CIP for resource allocation and scheduling 7

min
∑
k∈K

∑
j∈J

cjk xjk

s. t.
∑
k∈K

xjk = 1 ∀j ∈ J (5)

Dj −pjk∑
t=Rj

ykjt = xjk ∀j ∈ J , ∀k ∈ K (6)∑
j∈J

∑
t′∈Tjkt

rjk yjkt′ ≤ Ck ∀k ∈ K, ∀t (7)

Rj +

Dj −pj∑
t=Rj

(t−Rj) · yjkt = Sjk ∀j ∈ J , ∀k ∈ K (8)

optcumulative(S·k,x·k,p·k, r·k, Ck) ∀k ∈ K∑
j∈J (t1,t2)

pjkrjk xjk ≤ Ck · (t2 − t1) ∀k ∈ K, ∀(t1, t2) ∈ E (9)

Rj ≤ Sjk ≤ Dj −pjk ∀j ∈ J , ∀k ∈ K
xjk ∈ {0, 1} ∀j ∈ J , ∀k ∈ K
Sjk ∈ Z ∀j ∈ J , ∀k ∈ K
yjkt ∈ {0, 1} ∀j ∈ J , ∀k ∈ K, ∀t ∈ {Rj , . . . ,Dj −pjk}

Model 2: CIP[MIP]: A CIP model based on the MIP model with channeling
Constraints (8). Tjkt = {t− pjk, . . . , t}

part of the explanation. This is different from our previous implementation where
we included all binary variables in the conflict. Adding only the binary variables
which are part of the cumulative explanation is analogous to the strengthening
techniques of the Benders cuts described above.

Linear relaxation. As discussed above, we use the interval relaxation (Equa-
tion (2)) instead of the single relaxation (Equation (1)) in our CIP models. See
below for the details of the CIP[CP] and CIP[MIP] models. To generate the
relaxation we use the algorithm presented by Hooker [2] to impose only non-
redundant constraints.

Primal heuristic. Inspired by the clique structure of the problem (i.e., each job
has to be assigned to one resource), we implemented a general purpose primal
heuristic that assigns jobs to resources and solves the resulting decomposed
scheduling problems. In MIP and CIP, a clique structure refers to a sets of binary
variables that must sum to at most one. This structure is easily detectable within
a model and can be used within a diving heuristic.

Extended models. In this section, we present the full CIP models, one based
on the CP formulation (CIP[CP]) and the other based on the MIP formulation
(CIP[MIP]). Both are extensions of correspondingly named existing models [1].

8 Stefan Heinz, Wen-Yang Ku, and J. Christopher Beck

(MP) min
∑
k∈K

∑
j∈J

cjk xjk

s. t.
∑
k∈K

xjk = 1 ∀j ∈ J∑
j∈J (t1,t2)

pjkrjk xjk ≤ Ck · (t2 − t1) ∀k ∈ K, ∀(t1, t2) ∈ E (10)∑
j∈Jhk

(1− xjk) ≥ 1 ∀k ∈ K, ∀h ∈ {1, . . . , H − 1} (11)

xkj ∈ {0, 1} ∀j ∈ J , ∀k ∈ K

(SP) cumulative(S,p·k, r·k, Ck)

Rj ≤ Sj ≤ Dj −pjk ∀j ∈ Jk

Sj ∈ Z ∀j ∈ Jk

Model 3: Logic-based Benders decomposition: master problem (MP) on top and
sub-problem (SP) for resource k below.

Model 1 presents the CIP[CP] model with the resource choice variable xjk

equal to 1 if and only if job j is assigned to resource k. The objective function
is defined in terms of the resource choice variables. Constraints (3) ensure that
each job is assigned to exactly one resource, where the resource capacities are
enforced by the global optcumulative constraints. Constraints (4) state the
interval relaxation. This model is equivalent to the existing CIP[CP] model [1]
except for Constraints (4). The interval relaxation is added in the same way as
it is included in the LBBD model (see Hooker [2] and Model 3).

For the CIP model based on the MIP formulation (CIP[MIP]–Model 2),
we incorporate the interval relaxation by Constraint (9). The primary decision
variables of the time-indexed formulation, ykjt, are equal to 1 if and only if
job j starts on resource k at time point t. We add an auxiliary set of binary
decision variables, xjk, which are assigned to 1 if and only if job j is assigned to
resource k.

The objective function is defined with the new set of binary decision vari-
ables. Constraints (5) ensure that each job is assigned to exactly one resource.
The two sets of decision variables are linked via Constraints (6). The resource
capacities are enforced by the knapsack constraints (7) which are given for each
time point. The global optcumulative constraints are added to achieve addi-
tional propagation. Finally, the Constraints (9) state the (redundant) interval
relaxation which potentially strengthens the linear programming relaxation.

4.2 Logic-based Benders decomposition

We use the LBBD model from Hooker [2] which uses both the interval relaxation
and the strengthened cuts. For completeness, we present the model in Model 3.

Recent improvements using CIP for resource allocation and scheduling 9

min
∑
k∈K

∑
j∈J

cjk xjk

s. t.
∑
k∈K

xjk = 1 ∀j ∈ J (12)

Dj −pjk∑
t=Rj

ykjt = xjk ∀j ∈ J , ∀k ∈ K (13)∑
j∈J

∑
t′∈Tjkt

rjk yjkt′ ≤ Ck ∀k ∈ K, ∀t (14)

∑
j∈J (t1,t2)

pjkrjk xjk ≤ Ck · (t2 − t1) ∀k ∈ K, ∀(t1, t2) ∈ E (15)

xjk ∈ {0, 1} ∀j ∈ J , ∀k ∈ K
yjkt ∈ {0, 1} ∀j ∈ J , ∀k ∈ K, ∀t ∈ {Rj , . . . ,Dj −pjk}

Model 4: Mixed integer programming model with Tjkt = {t− pjk, . . . , t}.

4.3 Mixed integer programming

Given the presence of cumulative constraints in the multi version of the problem,
the standard MIP model uses a time-indexed formulation [8,9,1] employing a set
of binary decision variables, yjkt, which are equal to 1 if and only if job j starts
at time t on resource k. As with the CIP[MIP] model above, we extend the MIP
model to include a second set of binary variables, xkj , which are equal to 1 if
and only if job j is assigned to resource k. This second set of variables introduces
the decomposition aspect of the problem into the MIP model since the cost for
an assignment is determined only by this set of variables. In addition, these
variables make it natural to express the interval relaxation.

Our MIP model is stated in Model 4. The constraints are almost identical
to those presented above in the CIP[MIP] model, with the exception that the
start time variables, the global optcumulative constraints, and the necessary
channeling constraints are absent.

Note that the second set of decision variables is redundant. Our preliminary
experiments showed that the solver achieves much higher performance with the
redundant formulation. The interval relaxation itself is also redundant given
Constraints (14). However, they introduce a connection between the capacity
constraints of each resource, strengthening the linear programming relaxation.

5 Computational results

In this section, we compare the performance of the LBBD, the MIP, and the two
CIP models. We use the same test sets and the same computational environment
as our previous work [1] to allow direct comparison of the results.

10 Stefan Heinz, Wen-Yang Ku, and J. Christopher Beck

5.1 Experimental setup

Test sets. The problem instances were introduced by Hooker [5]. Each set
contains 195 problem instances with the number of resources ranging from two
to four and the number of jobs from 10 to 38 in steps of two. The maximum
number of jobs for the instances with three and four resources is 32 while for
two resources the number of maximum number of jobs is 38. In addition, there
are five instances for each problem size. For the multi problems, the resource
capacity is 10 and the job demands are generated with uniform probability on the
integer interval [1, 9]. See Hooker [5] for further details w.r.t. the generation of
instances, and the appendix of [17] for further problem instance characteristics.

Computational environment. All experiments are performed on Intel Xeon
E5420 2.50 GHz computers (in 64 bit mode) with 6 MB cache and 6 GB of main
memory, running Linux. For solving the MIP models we used IBM ILOG CPLEX
12.4 in its default setting. The master problem of the LBBD approach is solved
with SCIP 3.0.0 [11] using SoPlex [18] version 1.7.0.1 as the linear programming
solver. For the sub-problems we used IBM ILOG CP Optimizer 12.4 using the
default settings plus extended filtering and depth first search. For the CIP models
we used the same solver as for the master problem of the LBBD. For each instance
we enforced a time limit of 2 hours and allow for a single thread.

5.2 Previous results

Table 1a presents the summary of the previous results [1], omitting the pure
CP model which we do not extend here. For each test set (unary and multi)
and each model, Table 1a states the number of instances for which (i) a feasible
solution was found, (ii) an optimal solution was found, (iii) an optimal was found
and proved, and (iv) the best known solution was found. Secondly we present
the shifted geometric mean4 for the total running time and the time until the
best solution was found. The time to the best solution is only an upper bound
in case of CPLEX since the output log does not display this time point explicitly.

5.3 Results

In the same fashion as in Table 1a, we summarize the results for the extended
models in Table 1b. Additionally, we included the shifted geometric mean for
the time when the first feasible solution was found.

The unary test set. The results for the unary test set show that all models
improved drastically w.r.t. our previous results. All approaches are able to solve
all instances in a few seconds or less. While this was expected for LBBD and the

4 The shifted geometric mean of values t1, . . . , tn is
(∏

(ti + s)
)1/n − s, with shift

s = 10.

Recent improvements using CIP for resource allocation and scheduling 11

Table 1: Summary of the results presented in Heinz & Beck [1] and the results
for the extended model of this paper.

(a) Results of Heinz & Beck [1], omitting the CP model.

unary

MIP LBBD CIP[CP] CIP[MIP]

feasible 195 175 195 195
optimal found 195 175 194 195
optimal proved 191 175 194 195
best known found 195 175 194 195

total time 12 28 10 19
time to best 7 28 9 17

multi

MIP LBBD CIP[CP] CIP[MIP]

195 119 125 195
148 119 124 142
109 119 123 133
155 119 124 146

442 228 212 395
209 228 200 217

(b) Results for the extended models.

unary

MIP LBBD CIP[CP] CIP[MIP]

feasible 195 195 195 195
optimal found 195 195 195 195
optimal proved 195 195 195 195
best known found 195 195 195 195

total time 1.7 1.0 1.3 10.4
time to best 1.6 1.0 1.3 9.8
time to first 1.3 1.0 1.0 1.8

multi

MIP LBBD CIP[CP] CIP[MIP]

195 174 190 195
167 174 167 142
155 174 163 126
172 174 168 146

159.6 37.8 54.3 383.3
121.5 37.8 6.3 198.4
2.4 37.8 5.0 18.7

CIP models, it comes as a bit of a surprise for the MIP model. Analyzing the
results for LBBD, we see that it needs only one iteration for each instance: the
first optimal master solution is always proved feasible for all sub-problems. This
result indicates that the interval relaxation tightens the master problem signifi-
cantly. Since the MIP and CIP models have basically the same linear relaxation
as LBBD, we believe that the tightness of the interval relaxation explains the
improved results for these models as well.

The multi test set. For the multi test set, we observe a substantial improve-
ment for all models except CIP[MIP]. The MIP models solves 155 instances of
195 compared to 109, the LBBD approach proves optimality for 174 instances
compared to 119, and the CIP[CP] formulation handles 163 instances compared
to 123 before. Similar observations can be made for the running times: LBBD,
MIP, and CIP[CP] are now a factor six, three, and four faster than before, re-
spectively. In terms of relative speed, the close-to-uniform speed-ups results in
basically the same ratios among the different models as in Beck & Heinz. Only
the CIP[MIP] performance remained consistent, while all other models improved
in a similar way.

As in our previous results, the MIP and CIP[MIP] models are able to find
a feasible solution for all instances. The CIP[CP] does that for 190 instances
compared to 125 instances before, while LBBD is only able to find feasible solu-
tions for the problems that it solves to optimality. Comparing the quality of the
solutions among the solvers, we observe that the MIP model finds the optimal or

12 Stefan Heinz, Wen-Yang Ku, and J. Christopher Beck

Table 2: Detailed results for the multi test set. For each resource job combination
consists of 5 instances (for a total of 195) we display on line.

MIP LBBD CIP[CP] CIP[MIP]

|K| |J | opt feas arith geom opt feas arith geom opt feas arith geom opt feas arith geom

2 10 5 5 1.0 1.0 5 5 1.0 1.0 5 5 1.0 1.0 5 5 1.9 1.8
12 5 5 1.1 1.1 5 5 1.0 1.0 5 5 1.0 1.0 5 5 3.7 3.5
14 5 5 1.0 1.0 5 5 1.0 1.0 5 5 1.0 1.0 5 5 4.9 4.7
16 5 5 13.1 8.0 5 5 1.0 1.0 5 5 8.3 4.7 5 5 40.3 29.9
18 5 5 36.2 16.9 5 5 1.3 1.3 5 5 1.8 1.7 5 5 75.4 66.2
20 5 5 89.6 29.0 5 5 4.1 3.7 5 5 1.6 1.5 5 5 120.2 70.4
22 4 5 2983.3 812.4 5 5 796.8 51.4 3 5 3090.8 382.5 4 5 3036.0 1293.9
24 3 5 3026.7 883.0 4 4 1733.8 214.8 2 5 4321.5 573.4 2 5 4399.3 1508.8
26 4 5 3013.5 1069.2 5 5 912.1 209.0 4 4 2122.4 464.9 3 5 3414.9 1746.9
28 4 5 2394.7 378.9 5 5 993.7 536.5 4 5 1444.4 42.0 3 5 3822.6 1910.5
30 3 5 3788.2 861.2 3 3 2930.3 401.2 2 5 4321.8 587.6 1 5 5802.8 3590.5
32 3 5 3054.7 792.1 0 0 – – 2 4 4400.1 1140.5 0 5 – –
34 3 5 3444.0 879.7 2 2 4400.3 1745.1 1 3 5760.4 1995.3 1 5 5843.7 4089.2
36 2 5 4386.6 1534.1 1 1 5942.7 4770.2 3 4 3476.7 548.4 2 5 4709.5 2319.1
38 2 5 5590.6 4980.2 1 1 6268.8 5848.7 2 5 4360.6 1334.0 0 5 – –

3 10 5 5 1.0 1.0 5 5 1.0 1.0 5 5 1.0 1.0 5 5 1.4 1.3
12 5 5 1.0 1.0 5 5 1.0 1.0 5 5 1.0 1.0 5 5 4.5 4.3
14 5 5 1.0 1.0 5 5 1.0 1.0 5 5 1.2 1.2 5 5 11.3 10.3
16 5 5 4.5 4.2 5 5 3.3 3.0 5 5 3.4 3.3 5 5 43.6 33.1
18 5 5 76.4 46.0 5 5 7.1 5.8 5 5 5.0 4.8 5 5 594.9 244.0
20 4 5 1470.9 98.5 5 5 1.5 1.5 5 5 7.8 6.9 4 5 1622.8 355.1
22 4 5 1832.6 554.6 5 5 2.4 2.3 5 5 6.9 6.6 4 5 2543.7 1008.3
24 5 5 1703.2 304.5 5 5 9.3 6.7 5 5 346.6 78.6 4 5 2225.2 967.5
26 3 5 3826.9 1652.8 5 5 31.8 19.8 5 5 98.4 40.2 1 5 5942.0 4766.2
28 3 5 3901.1 987.6 5 5 85.3 35.4 3 5 2885.5 194.9 2 5 4782.6 3030.9
30 3 5 4028.1 3100.2 4 4 1523.6 178.3 4 5 1911.1 520.9 0 5 – –
32 2 5 4840.8 3601.3 4 4 2882.6 1951.8 3 5 2969.5 559.0 1 5 6125.7 5475.9

4 10 5 5 1.0 1.0 5 5 1.0 1.0 5 5 1.0 1.0 5 5 1.0 1.0
12 5 5 1.0 1.0 5 5 1.0 1.0 5 5 1.0 1.0 5 5 2.4 2.3
14 5 5 1.0 1.0 5 5 1.6 1.6 5 5 1.7 1.7 5 5 12.8 11.7
16 5 5 1.2 1.2 5 5 1.0 1.0 5 5 1.7 1.7 5 5 22.3 20.4
18 5 5 3.3 3.1 5 5 2.5 2.5 5 5 4.5 4.4 5 5 96.5 76.6
20 5 5 43.8 25.3 5 5 1.8 1.8 5 5 4.4 4.3 5 5 159.3 116.0
22 5 5 128.2 60.0 5 5 4.3 3.7 5 5 20.7 15.0 5 5 1244.4 482.9
24 4 5 2695.6 1399.0 5 5 16.0 12.1 5 5 59.3 42.9 1 5 6236.7 5773.1
26 3 5 3825.4 2787.8 5 5 15.7 14.9 5 5 293.0 112.7 1 5 6227.4 5750.3
28 3 5 5361.9 2124.2 5 5 9.9 9.6 4 5 1562.9 200.0 2 5 5010.5 3646.9
30 2 5 5035.9 3253.6 5 5 112.6 31.7 4 5 2243.0 581.1 0 5 – –
32 1 5 5927.9 4691.0 5 5 343.6 118.3 2 5 4412.3 1519.1 0 5 – –

155 195 1962.5 159.6 174 174 929.5 37.8 163 190 1286.1 54.3 126 195 2825.3 383.3

best known solutions for 172 instances.5 By the same metric LBBD and CIP[CP]
find best known solutions for 174 and 168 instances, respectively. If the best of
the four models is chosen for each instance (resulting in the virtual best solver),
187 instances can be solved to proven optimality with a total running time in
shifted geometric mean of 19.9 seconds.

For a more detailed indication of the results for the multi test set, Table 2
presents results for each problem size for the CIP, MIP, and LBBD models. The
first two columns define the instance size in terms of the number of resources |K|
and the number of jobs |J |. For each model, we report the number of instances
solved to proven optimality “opt” and the number instances for which a feasible
solution was found, “feas”, including the instances which are solved to optimality.
For the total running time we report the arithmetic mean (“arith”) and the
shifted geometric mean (“geom”) with shift s = 10. All running times that are

5 For the multi test set the optimal solution value is known for 189 instances.

Recent improvements using CIP for resource allocation and scheduling 13

running times in minutes

0 60 120

so
lv

ed
in

st
a
n
ce

s
in

%

40

70

100

primal dual gap in %

0 25 50

so
lv

ed
in

st
a
n
ce

s
in

%

w
.r

.t
.

th
e

p
ri

m
a
l

d
u
a
l

g
a
p

80

90

100

Fig. 5: Performance diagrams for the multi test set. The MIP model is dashed
(), the LBBD model dotted (), the CIP[CP] model solid (), and the
CIP[MIP] model is densely dotted ().

less than 1.0 second are set to 1.0. For each resource-job combination, the best
time is shown in bold. For clarity, when a model did not solve any instances of
a given size, we use ‘–’ instead of 7200 for the running time.

The table indicates that all models appear to scale exponentially with the
number of jobs. The results for LBBD and CIP[CP] show the increase at a lower
rate than for MIP and CIP[MIP]. Nonetheless, LBBD and CIP[CP] both fail to
find and prove optimal solutions on some of the larger instances. It is interesting
to note that for the instances with two resources, all models suddenly start to
struggle with 22 or more jobs: the shifted geometric means of the run-time for
all models increase one or two orders of magnitude in moving from 20 to 22 jobs.
We return to this observation below.

Since the models do not solve or fail to solve exactly the same instances, we
depict two performance diagrams for the multi test set in Figure 5. The left-
hand graph shows the evolution of the number of problems solved to optimality
over time. It can be observed that LBBD and CIP behave very similarly while
MIP performs worse in the beginning but increases its success with more run-
time. CIP[MIP] performs consistently worse than all other models. The right-
hand graph displays the percentage of instances for which a solution with given
optimality gap (primal bound minus dual bound divided by the primal bound)
or better was found. On this basis, both MIP and CIP[MIP] models outperform
the other two models by finding solutions with an optimality gap of less than
5% for all problem instances. CIP finds solutions with a gap of 10% or better
on about 97% of the instances while LBBD finds the optimal solution on 89% of
the instances and is, of course, unable to find any sub-optimal feasible solutions.

6 Discussion

The results of the experiments presented above support and reinforce the con-
clusions of Heinz & Beck [1]: both CIP[CP] and MIP should be considered to

14 Stefan Heinz, Wen-Yang Ku, and J. Christopher Beck

be state-of-art models, along with LBBD, for the tested resource allocation and
scheduling problems. On the basis of the number of problem instances solved
to optimality LBBD has a marginal advantage over CIP[CP] which itself is
marginally better then MIP. However, on other measures of solution quality
(number of instances with feasible solutions and the quality of those solutions),
the ranking is reversed.

An examination of the sub-problems in the two-resource instances that LBBD
and CIP[CP] fail to solve reveals that most of the cumulative constraint/sub-
problems which have to be proven to be feasible or infeasible have a very small
slack and the jobs have a wide and often identical time windows. Slack is the
difference between the rectangular area available on the resource (time by ca-
pacity) and the sum of the areas (processing time by resource requirement) of
the jobs. Alternatively, slack can be understood to be the tightness of the single
relaxation (Equation (1)). The small slack results from the fact that one resource
is consistently less costly than the others and so it appears promising to assign
many jobs as possible within the limits of the interval relaxation.

All approaches suffer from not being able to handle small slack and wide
time window problems efficiently on cumulative resources. This is the underlying
reason for the main disadvantage of LBBD which gets stuck at such a sub-
problems and fails completely to find a feasible solution. All other approaches
have the same issue of not been able to solve these implicit sub-problems, but are
able to provide high quality primal solutions. To overcome this issue, stronger
cumulative inference techniques [19] may be worth consideration.

As we are comparing the CIP approach against a start-of-the-art LBBD
implementation, we should also compare with a state-of-the-art commercial MIP
solver when solving MIP models. It has, however, been standard for the past
few years for commercial MIP solvers to use multiple cores. If we run IBM ILOG
CPLEX with its default settings (using all available cores, eight in our case)
on the multi instances we can solve 171 instances to proven optimality with a
shifted geometric mean of 71.4 seconds. The fact that this performance is only
marginally better than what we observe for CIP and similar to LBBD results,
strengthens their claims to state-of-the-art status.

Finally, the results of the single-core virtual best solver, solving 187 instances
with a shifted geometric mean of 19.9 second, indicate that none of the models is
dominant. One of the arguments for pursuing CIP is that it is a framework that
strives to combine the advantages of the other approaches in order to overcome
the individual disadvantages.

Future work. There are a number of areas of future work both on extending
these approaches to related scheduling problems and in developing the technol-
ogy of CIP for scheduling.

Continued development of CIP. We have demonstrated through the integration
of the optcumulative constraint that global constraint-based presolving, infer-
ences, and relaxations can lead to state-of-the-art performance. We intend to

Recent improvements using CIP for resource allocation and scheduling 15

further pursue the integration of global constraint reasoning into a CIP frame-
work for scheduling and other optimization problems.

Other scheduling problems. Hooker [2] has presented LBBD models for exten-
sions of the problem studied here with a number of different optimization func-
tions. For such problems, LBBD is able to produce feasible sub-optimal solutions
without necessarily finding an optimal solution. Therefore, one of the main ad-
vantage of the MIP and CIP techniques compared to LBBD does not appear.
It will be valuable to understand how adaptations of the MIP and CIP models
presented here perform on such problems. Another important class of schedul-
ing problems has temporal constraints among jobs on different resources. Such
constraints destroy the independent sub-problem structure that LBBD and, to
a lesser extent, the other models exploit. However, exact techniques currently
struggle on such problems including flexible job shop scheduling [20].

Scaling. As shown in Table 2, all models are unable to find optimal solutions
as the number of jobs increases. With even more jobs, the only achievable per-
formance measure will be the quality of feasible solutions that are found. We
expect LBBD to perform poorly given that it cannot find sub-optimal solutions.
However, as the problem size increases the time-indexed formulation on the MIP
model will also fail due to model size. CIP[CP] and the pure CP model [1] would
appear to be the only exact techniques likely to continue to deliver feasible solu-
tions. Confirming this conjecture, as well as comparing the model performance
to incomplete techniques (i.e., heuristics and metaheuristics) is therefore another
area for future work.

7 Conclusions

The primary conclusions of these experiments with more sophisticated prob-
lem models are consistent with and reinforce those of Heinz & Beck [1]: CIP
is a promising scheduling technology that is comparable to the state-of-the-
art manual decomposition approach on resource allocation/scheduling problems
and MIP approaches, though often discounted by constraint programming re-
searchers, deserve consideration as a core technology for scheduling.

In arriving at these conclusions, we used two primary measures of model
performance: the number of problem instances solved to proven optimality and
the proven quality of solutions found, given that not all instances were solved
to optimality. CIP comes second to LBBD by the former measure and to MIP
by the latter. Depending on the importance placed on these measures any of
the three algorithms could be declared the “winner”. For practical purposes,
we believe that the importance of proven solution quality should not be under-
estimated: in an industrial context it is typically better to consistently produce
proven good solutions than to often find optimal solutions but sometimes fail to
find any feasible solution at all.

16 Stefan Heinz, Wen-Yang Ku, and J. Christopher Beck

References

1. Heinz, S., Beck, J.C.: Reconsidering mixed integer programming and MIP-based
hybrids for scheduling. In Beldiceanu, N., Jussien, N., Pinson, E., eds.: Integration
of AI and OR Techniques in Constraint Programming for Combinatorial Opti-
mization Problems (CPAIOR 2012). Volume 7298 of Lectures Notes in Computer
Science., Springer (2012) 211–227

2. Hooker, J.N.: Integrated Methods for Optimization. Springer (2007)
3. Beck, J.C.: Checking-up on branch-and-check. In Cohen, D., ed.: Principles and

Practice of Constraint Programming – CP 2010. Volume 6308 of LNCS., Springer
(2010) 84–98

4. Hooker, J.N.: Testing heuristics: We have it all wrong. Journal of Heuristics 1
(1995) 33–42

5. Hooker, J.N.: Planning and scheduling to minimize tardiness. In van Beek, P.,
ed.: Principles and Practice of Constraint Programming – CP 2005. Volume 3709
of LNCS., Springer (2005) 314–327

6. Hooker, J.N., Ottosson, G.: Logic-based Benders decomposition. Mathematical
Programming 96 (2003) 33–60

7. Benders, J.: Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik 4 (1962) 238–252

8. Hooker, J.N.: Planning and scheduling by logic-based Benders decomposition.
Operations Research 55 (2007) 588–602

9. Yunes, T.H., Aron, I.D., Hooker, J.N.: An integrated solver for optimization prob-
lems. Operations Research 58(2) (2010) 342–356

10. Achterberg, T.: Constraint Integer Programming. PhD thesis, Technische Univer-
sität Berlin (2007)

11. Achterberg, T.: SCIP: Solving Constraint Integer Programs. Mathematical Pro-
gramming Computation 1(1) (2009) 1–41

12. Heinz, S., Schulz, J., Beck, J.C.: Using dual presolving reductions to reformulate
cumulative constraints. ZIB-Report 12-37, Zuse Institute Berlin (2012)

13. Baptiste, P., Pape, C.L., Nuijten, W.: Constraint-based Scheduling. Kluwer Aca-
demic Publishers (2001)

14. Beck, J.C., Fox, M.S.: Constraint directed techniques for scheduling with alterna-
tive activities. Artificial Intelligence 121(1–2) (2000) 211–250

15. Heinz, S., Schulz, J.: Explanations for the cumulative constraint: An experimental
study. In Pardalos, P.M., Rebennack, S., eds.: Experimental Algorithms. Volume
6630 of LNCS., Springer (2011) 400–409

16. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Explaining the cumulative
propagator. Constraints 16(3) (2011) 250–282

17. Heinz, S., Beck, J.C.: Reconsidering mixed integer programming and MIP-based
hybrids for scheduling. ZIB-Report 12-05, Zuse Institute Berlin (2012)

18. Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus. PhD the-
sis, Technische Universität Berlin (1996)

19. Beldiceanu, N., Carlsson, M., Poder, E.: New filtering for the cumulative con-
straint in the context of non-overlapping rectangles. In: Proceedings of the 5th
international conference on Integration of AI and OR techniques in constraint pro-
gramming for combinatorial optimization problems. CPAIOR’08 (2008) 21–35

20. Fattahi, P., Saidi Mehrabad, M., Jolai, F.: Mathematical modeling and heuristic
approaches to flexible job shop scheduling problems. Journal of Intelligent Manu-
facturing 18(3) (2007) 331–342

	Recent improvements using constraint integer programming for resource allocation and scheduling

