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Abstract

We provide a computational study of the performance of a state-of-the-
art solver for nonconvex mixed-integer quadratically constrained programs
(MIQCPs). Since successful general-purpose solvers for large problem classes
necessarily comprise a variety of algorithmic techniques, we focus especially
on the impact of the individual solver components. The solver SCIP used
for the experiments implements a branch-and-cut algorithm based on a linear
relaxation to solve MIQCPs to global optimality. Our analysis is based on a
set of 86 publicly available test instances.

1 Introduction

Recent years have seen a strong interest in algorithms for mixed-integer nonlinear
programming (MINLP). Advances in research are also reflected by the development
and computational progress of several general-purpose solvers for MINLP or spe-
cific sub-classes, such as convex MINLP or mixed-integer quadratically constrained
programming (MIQCP) [4, 5, 9, 10, 11, 13, 28, 17, 19, 22].

State-of-the-art solvers for MINLP comprise a variety of algorithmic techniques
from several related fields such as nonlinear programming, mixed-integer linear pro-
gramming (MILP), global optimization (in case nonconvex functions are present),
and constraint programming (CP). The overall computational performance of a
solver crucially depends on its single constituents and their mutual interplay. The
aim of this paper is to provide a detailed computational study that investigates the
impact of single MINLP solver components.

In our study, we focus on the important subclass of MIQCPs, i.e., optimization
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problems of the form

min dTx

s.t. xTAjx+ bj
Tx+ cj 6 0 for j = 1, . . . ,m,

xLk 6 xk 6 xUk for k = 1, . . . , n,

xk ∈ Z for all k ∈ I,

where I ⊆ {1, . . . , n} is the index set of integer variables, Aj ∈ Rn×n, bj ∈ Rn,
cj ∈ R, and xLk ∈ R ∪ {−∞} and xUk ∈ R ∪ {+∞} are the lower and upper
bounds of variable xk, respectively. Note that we do not require the matrices Ai

to be positive semidefinite, thus we allow for nonconvex constraints. Note that
a quadratic objective function can be reformulated by introducing one additional
variable and constraint. If I = ∅, we have a quadratically constrained programming
problem (QCP).

Recently, the constraint integer programming framework SCIP [1, 3] has been
extended to solve nonconvex MIQCPs to global optimality [9]. Computational
experiments have shown the competitiveness of the solver with the current state of
the art. The plugin-based architecture of SCIP is particularly suited to analyze the
impact of individual components. We use this solver for our computational analysis.

The remainder of this paper is organized as follows: In Section 2, we briefly out-
line the general solution algorithm of SCIP and the specific algorithmic techniques
used for MIQCPs. Sections 3 and 4 describe our selection of publicly available test
problems, our testing methodology, and the results of our experiments. In Section 5,
we summarize and discuss the computational results.

2 Algorithm

SCIP employs a branch-and-bound algorithm to solve MIQCPs to global optimal-
ity. The problem is recursively split into smaller subproblems, thereby creating a
branching tree. At each subproblem, domain propagation is applied to exclude fur-
ther values from the variables’ domains and a linear relaxation is solved to achieve
a local lower bound (assuming minimization problems). The relaxation may be
strengthened by adding further valid inequalities. At infeasible subproblems, con-
flict analysis is performed to learn no-goods, see, e.g., [21]. Primal heuristics are
used as supplementary methods to improve the upper bound. Figure 1 provides a
flowchart of the main solving loop of SCIP. In the following, we present a brief
overview over the SCIP plugins essential for solving MIQCPs. For further details,
see [1, 6, 9, 23, 26].

Presolving

During the presolving phase, a set of reformulations and simplifications are tried.
Further, the domain propagation routines are used to tighten the bounds on the
variables.

MILP presolving. Many MIQCPs contain a large linear and discrete part, for
which SCIP’s default MILP presolving routines [1] are applied.

Products containing binary variables. Products of a binary variable with a
linear term, i.e., x

∑k
i=1 aiyi, where x is a binary variable, yi are variables with finite
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Figure 1: Flowchart of the main solving loop of SCIP.

bounds, and ai ∈ R, are replaced by a new variable z ∈ R and the linear inequalities
MLx 6 z 6 MUx and

∑k
i=1 aiyi −MU (1 − x) 6 z 6

∑k
i=1 aiyi −ML(1 − x),

where ML and MU are lower and upper bounds on
∑k

i=1 aiyi, respectively. These

inequalities guarantee that z = x
∑k

i=1 aiyi for x ∈ {0, 1}.
Second-order cone (SOC) constraints. Constraints of the form γ+

∑k
i=1(αi(xi+

βi))
2 6 (α0(x0 + β0))2 with k > 2, αi, βi ∈ R, γ ∈ R+, and xL0 > −β0 are auto-

matically recognized during presolving and handled as
√
γ +

∑k
i=1(αi(xi + βi))2 6

|α0|(x0 + β0) by a specialized SOC constraint handler (see also below).
Convexity check. After the presolving phase, each quadratic function is checked

for convexity by computing the sign of the minimum eigenvalue of the coefficient
matrix Aj . For instances with bilinear terms, this information is essential for sepa-
ration.

Separation

If the current solution x̃ of the LP relaxation violates a constraint, SCIP may add
valid cutting planes in order to strengthen the formulation.

MILP cutting planes. To cut off fractional LP solutions, SCIP’s standard MILP
separators are used at the root node. They comprise general techniques like Gomory
cuts and problem-specific separation routines like knapsack cover cuts. For an
overview and a computational study, see [26].

QCP cutting planes. If a violated constraint is known to be convex, it is always
possible to linearize the constraint function at x̃. In SCIP, a quadratic constraint
is recognized as convex if it is either a SOC constraint or its coefficient matrix is
positive-semidefinite. For a violated nonconvex quadratic constraint, each term of
a quadratic function

∑
i,j ai,jxixj is individually underestimated by a linearization

for ai,ix
2
i with ai,i > 0, a secant for ai,ix

2
i with ai,i < 0, and a McCormick under-

estimator [18] for a bilinear term, respectively. If a linear inequality generated by
this method does not cut off the current LP solution x̃, the infeasibility is resolved
by branching.
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Domain propagation

In domain propagation, deductions of the variables’ local domains are inferred.
These can yield stronger linear underestimators in the separation procedures, they
may cut off nodes due to empty domains or infeasible constraints, and can result
in further domain deductions on other constraints. For quadratic constraints, we
implemented an interval-arithmetic-based method similar to [14]. The propagation
of general linear constraints, constraints of special type such as knapsack constraints,
and global MILP propagators are described in [1].

Conflict analysis

If domain propagation routines or the LP solver detect infeasibility of a subproblem,
a (preferably small) set of domain reductions proving this infeasibility is determined.
This gives rise to globally valid conflict constraints, which may help to prune the
tree in the remaining search. In the current implementation of SCIP, quadratic
constraints do not take part in conflict analysis. Nevertheless, analyzing solely the
domain reductions that were performed by the linear constraints is often sufficient
to generate short conflict constraints.

Branching

If an integer-infeasible LP relaxation solution x̃ cannot be cut off by separation
or domain propagation, an integer variable with fractional value is selected for
branching. SCIP’s default branching variable selection rule is “hybrid branch-
ing” [2], which combines pseudo-cost-based reliability branching with VSIDS and
inference/impact-based branching.

Only if x̃ is integer feasible but violates a nonconvex quadratic constraint, we
perform a spatial branching operation. To select the branching variable we use
a pseudo-cost-based branching rule as suggested in [5]. Note that feasibility of a
convex quadratic constraint can always be enforced by separation.

Primal heuristics

When solving MIQCPs, we still make use of all default MILP primal heuristics of
SCIP [6]. Even if solutions suggested by MILP heuristics are infeasible for the
quadratic part of the problem, they might serve as starting points for nonlinear
repair and improvement heuristics. Additionally, large neighborhood search (LNS)
heuristics are implemented in SCIP: a QCP-based local search [9], CIP extensions
of standard LNS heuristics for MIPs [8], and the novel Undercover heuristic [7].
The QCP-based local search heuristic employs a solver for finding local optimal
solutions to the QCP subproblems that are obtained from the original MIQCP by
fixing all discrete variables in the problems.

3 Experimental setup

For our experiments, we compiled a test set of 86 publicly available MIQCP in-
stances from different sources: constrained layout problems (clay*) and safety lay-
out problems (SLay*) from [20], Hans Mittelmann’s MIQP benchmark instances
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(i*) [29], portfolio optimization problems (classical*, robust*, shortfall*) from
[24], truss structure design problems (*bar*) from [27], uncapacitated facility loca-
tion problems (uflquad*) from [15], and MIQCP instances from the MINLPLib [12].

From these test sets we removed instances that are trivial to solve for SCIP
and some that are extremely hard, because in both cases changing single solver
components will not produce a significant difference in any performance measure.
Even worse, including many such instances would skew average-based performance
measures. Furthermore, some individual instances had to be excluded because
SCIP 2.1.1 produced an error with one of the parameter settings. Finally, we
reduced subsets of similar instances in order to avoid certain classes being over-
represented. Problem statistics for the instances as stated originally and after de-
fault presolving are given in the Appendix (Table 2).

Initially, we ran all instances with default settings as outlined in Section 2. To
measure the impact of individual components, we compare the default run to the
performance with a feature disabled or switched to a simpler strategy. Since many
MIQCP instances contain a considerable linear and discrete part, we also investigate
the effect of the classical MILP components.

All in all, we compared twelve alternative settings against the SCIP default:
we disabled linear presolving, binary reformulations, the detection of SOC con-
straints, convexity checks, domain propagation, MILP cutting plane separation,
cutting planes from quadratic constraints, conflict analysis, all primal heuristics
and a particular primal heuristic which solves QCPs subproblems via local search;
we further altered the variable selection strategy to random and the node selection
to depth first search.

Obviously, some of the features may only have an effect on a certain subset of
the test set, e.g., disabling upgrading of SOC constraints is only applied if such
constraints are at all present (and detected) in the model. For those tests, we
split the test set in a “relevant” and a “control” group, expecting no change in
performance for the control group.

The results were obtained on a cluster of 64bit Intel Xeon X5672 CPUs at
3.2 GHz with 12 MB cache and 48 GB main memory, running an openSuse 12.1
with a GCC 4.6.2 compiler. Hyperthreading and Turboboost were disabled. In
all experiments, we ran only one job per node to avoid random noise in the mea-
sured running time that might be caused by cache-misses if multiple processes share
common resources. We used SCIP 2.1.1 with CPLEX 12.4.0.0 [28] as LP solver,
Ipopt 3.10.2 [25] as QCP solver for the QCP-based local search heuristic, and
LAPACK 3.4.0 to compute eigenvalues. The optimality tolerance was set to zero,
the relative feasibility tolerance to 10−6. We imposed a time limit of one hour and
a memory limit of 8 GB for SCIP and 8 GB for the underlying solvers.

4 Computational results

With default settings, SCIP could solve 55 of the 86 instances within the time limit
of one hour. For two of the unsolved instances, namely 200bar and space25, no
feasible solution was found. Instance ilaser0 was erroneously reported as infeasible
by SCIP and is therefore not considered in the comparisons1. When disabling the
convexity check or changing the node selection rule to depth first search, SCIP hits

1This issue has been fixed in SCIP 3.0.
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a limit on the maximal branch-and-bound tree depth for one instance each. The
corresponding instance is then excluded from the comparisons for the particular
setting.

Table 1: Impact of implemented MIQCP methods. Column “size” gives the number
of instances in the test group. Performance measures are absolute/relative differ-
ences compared to SCIP with default settings. When a performance measure gets
worse after disabling a certain component, the corresponding numbers are set in a
bold blue font; when it improves they are set in red italics. Very loosely: blue bold
is good, red italics are bad.

better:worse running time

disabled feature size solved primal dual time mean to first to opt nodes

linear presolving 85 +1 3:6 4:10 11:15 +10% +3% +2% +8%

binary var. reform. 85 0 4 :1 1:3 7 :5 +5% −17% −2% −18%
relevant 27 0 4 :1 1:3 7 :5 +14% −37% −5% −46%
control 58 0 0:0 0:0 0:0 0% 0% 0% 0%

SOC upgrades 85 −7 0:2 0:8 0:9 +44% +33% +10% +55%
relevant 12 −7 0:2 0:8 0:9 +1182% +328% +856% +2062%
control 73 0 0:0 0:0 0:0 0% 0% 0% 0%

convexity check 84 −3 1:2 1:4 1:6 +27% −7% −4% +48%
relevant 11 −3 1:2 1:4 1:6 +543% −65% −39% +2065%
control 73 0 0:0 0:0 0:0 0% 0% 0% 0%

domain propagation 85 −1 3:7 0:15 11:19 +28% +41% +9% +102%

MILP cuts 85 −2 6 :2 3:8 9:12 +16% +5% −1% +27%

QCP cuts 85 −12 6:6 1:28 2:24 +100% +13% +43% +504%
relevant 67 −12 6:6 1:28 2:24 +141% +20% +102% +880%
control 18 0 0:0 0:0 0:0 0% 0% 0% 0%

hybrid branching 85 −7 5 :3 2:17 3:26 +97% 0% +75% +149%
relevant 81 −7 5 :3 2:17 3:26 +102% 0% +85% +160%
control 4 0 0:0 0:0 0:0 0% −1% 0% 0%

best est. nodesel. 84 −2 4:10 1:16 12:14 +10% +17% +23% +6%
relevant 80 −2 4:10 1:16 12:14 +11% +18% +25% +7%
control 4 0 0:0 0:0 0:0 0% −1% 0% 0%

primal heuristics 85 −2 1:19 5:8 14 :9 +10% +413% +12% +28%

QCP local search 85 0 0:9 2:4 6 :4 0% +63% −4% +2%

conflict analysis 85 0 1:1 2:5 5:10 +4% +1% +8% +9%
relevant 81 0 1:1 2:5 5:10 +5% +1% +9% +9%
control 4 0 0:0 0:0 0:0 0% +2% 0% 0%

Table 1 shows the impact if a particular component of SCIP is switched off
or changed to a simpler mode. As outlined in Section 3, for some of the features
we split the test set in a “relevant” and a “control” group, expecting no change in
performance for the control group. Column “size” gives the number of instances in
the respective test group.

All performance measures are w.r.t. the default settings of SCIP. As a rough
indicator of the usefulnes of a component, the third column of Table 1 reports how
many instances more or less were solved. The remaining columns provide a more
detailed comparison to the SCIP default.

For instances that could not be solved within the time limit, columns four and
five compare the primal and dual bounds at termination, counting on how many
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instances they were “better” or “worse” by at least 2%. Column six, “time”, states
the number of instances for which a particular setting was more than 10% faster or
slower. Columns seven to ten compare the change of the shifted geometric “mean” of
the overall running time, the time until the “first” solution was found, the time until
an “opt”imal solution was found, and the shifted geometric mean of the number of
branch-and-bound “nodes”.

For each of the eight performance measures we indicate whether it shows an
improvement or a degradation: when the performance measure gets worse after
disabling a certain component, the corresponding numbers are set in a bold blue
font; when it improves they are set in red italics. Loosely speaking, having a row
with more blue bolds than red italics indicates that a certain component is beneficial
on the test set.

Table 1 shows that disabling a certain feature always leads to an increase in
overall computation time and, except for binary variable reformulation, the number
of branch-and-bound nodes. Even more importantly, for eight out of twelve settings,
there is at least one instance which could not be solved after disabling a certain
component. Only for linear presolving, the number of instances that can be solved
within the given time limit increases by one.

We further see that the features specific to the handling of nonlinear constraints,
like cut generation for these constraints, specialized algorithms for SOC constraints,
or convexity detection, have by far the largest impact. Using a sophisticated branch-
ing rule also reduces the computational effort tremendously. MILP specific features
like linear presolving, MILP cuts, and conflict analysis on the linear part are less
successful than in pure MILP, but still reduce the running time and the number of
branch-and-bound nodes.

Domain propagation works on the linear and the nonlinear part, additionally
exploiting global information. It gives a clear benefit w.r.t. the computation time
and even more w.r.t. the number of branch-and-bound nodes and the dual bound
for unsolved instances.

Primal heuristics slightly improve the overall computation time, but very much
help to find a first feasible solution and to obtain a good primal bound if a run
has to be terminated due to a time limit. The impact of using a QCP-based local
search is positive but by far not as big as that of all primal heuristics together.

Altogether, most of the components turned out to be beneficial for the per-
formance, only binary variable reformulation is on the borderline. For the eight
different performance measures that we compared, only two showed an improve-
ment, five showed a degradation when using binary variable reformulation. We
come to the conclusion that, despite of the benefits in mean running time, binary
variable reformulation should not be used by default. These examples show that of-
ten using more than one criterion for measuring performance gives a better picture
of the overall behavior.

5 Conclusion and outlook

In this paper, we gave a brief overview over different algorithmic parts of the branch-
and-cut framework SCIP and discussed their relevance for solving MIQCPs. The
main focus was the last section, which presented and discussed computational results
on the individual impact of those components. Eleven out of twelve features proved
to be beneficial for the overall performance.
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The parts specific to nonlinear optimization clearly made the biggest difference,
even if they often only operate on a smaller subset of instances. The results for the
MILP and CP components suggest that these techniques do not unfold their full
potential for MINLP, yet.

Finally, we wish to point out that our experiments were performed for one spe-
cific solver that employs an LP-based branch-and-cut approach. It would be inter-
esting to see the outcome of similar experiments for other solvers and algorithms.

Appendix

Table 2 presents statistics on the size and structure of the 86 MIQCP instances
in our test set. We show each instance before and after the default presolving of
SCIP. Columns “bin”, “int”, and “vars” give the number of binary variables, gen-
eral integers, and the total number (including continuous) of variables, respectively.
Columns “soc”, “quad”, and “linear” show the number of (recognized) second or-
der cone, general quadratic, and linear constraints, respectively. If all quadratic
constraints of an instance were recognized as convex or concave, a checkmark is set
in column “conv”. Note that this is different from the test set relevant for the con-
vexity check in Table 1, which consists of all instances that have convex constraints
with bilinear terms.
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Table 2: Problem statistics before and after default presolving.

original problem presolved problem

instance vars int bin linear quad soc conv vars int bin linear quad soc conv

108bar 1872 0 1188 1500 216 0 939 0 263 484 216 0
10bar2 176 0 110 56 20 0 154 0 110 34 20 0
200bar 7850 0 6000 4570 600 0 4532 0 2880 1175 600 0
SLay05H 231 0 40 290 1 0 X 231 0 40 290 1 0 X
SLay05M 71 0 40 90 1 0 X 71 0 40 90 1 0 X
SLay07M 141 0 84 189 1 0 X 141 0 84 189 1 0 X
SLay10M 291 0 180 405 1 0 X 291 0 180 405 1 0 X
classical_200_0 601 0 200 403 1 0 X 600 0 200 402 1 0 X
classical_200_1 601 0 200 403 1 0 X 600 0 200 402 1 0 X
classical_20_0 61 0 20 43 1 0 X 60 0 20 42 1 0 X
classical_20_1 61 0 20 43 1 0 X 60 0 20 42 1 0 X
classical_50_0 151 0 50 103 1 0 X 150 0 50 102 1 0 X
classical_50_1 151 0 50 103 1 0 X 150 0 50 102 1 0 X
clay0205m 81 0 50 96 40 0 X 75 0 45 90 40 0 X
clay0305m 86 0 55 96 60 0 X 81 0 51 93 60 0 X
du-opt 21 13 0 9 1 0 X 21 13 0 5 1 0 X
ex1263 93 0 72 52 4 0 91 0 71 47 4 0
ex1264 89 0 68 52 4 0 82 0 62 47 4 0
ex1265 131 0 100 70 5 0 122 0 92 65 5 0
ex1266 181 0 138 90 6 0 168 0 126 81 6 0
fac3 67 0 12 33 1 0 X 67 0 12 33 1 0 X
feedtray2 88 0 36 137 147 0 300 0 12 1001 147 0
iair04 8905 0 8904 823 1 0 12858 0 7363 17483 0 0 X
iair05 7196 0 7195 426 1 0 10571 0 6117 14202 0 0 X
ibc1 1752 0 252 1913 1 0 865 0 252 1436 0 0 X
ibell3a 123 29 31 104 1 0 X 130 29 31 164 1 0 X
ibienst1 506 0 28 576 1 0 X 473 0 28 592 0 0 X
icap6000 6001 0 6000 2171 1 0 X 7301 0 5865 6307 0 0 X
icvxqp1 10001 10000 0 5000 1 0 X 10003 9998 2 5006 1 0 X
ieilD76 1899 0 1898 75 1 0 2686 0 1898 3170 0 0 X
ilaser0 1003 151 0 1000 1 0 X 1003 151 0 1000 1 0 X
imas284 152 0 150 68 1 0 228 0 150 299 0 0 X
imisc07 261 0 259 212 1 0 360 0 238 583 0 0 X
imod011 10958 1 96 4480 1 0 X 8962 1 96 2727 1 0 X
inug08 1633 0 1632 912 1 0 X 2223 0 1632 3096 0 0 X
iportfolio 1201 192 775 201 1 0 X 1201 192 775 201 1 0 X
iqiu 841 0 48 1192 1 0 X 871 0 48 1285 0 0 X
iran13x13 339 0 169 195 1 0 469 0 169 588 0 0 X
iran8x32 513 0 256 296 1 0 649 0 256 707 0 0 X
isqp 1001 50 0 249 1 0 X 1001 50 0 249 1 0 X
iswath2 6405 0 2213 483 1 0 8007 0 2213 5632 0 0 X
itointqor 51 50 0 0 1 0 X 51 50 0 0 1 0 X
ivalues 203 202 0 1 1 0 203 202 0 1 1 0
lop97ic 1754 831 831 52 40 0 5228 708 708 11521 0 0 X
lop97icx 987 831 68 48 40 0 488 68 68 1138 0 0 X
meanvarx 36 0 14 44 1 0 X 30 0 12 36 1 0 X
netmod_dol1 1999 0 462 3137 1 0 X 1993 0 462 3131 1 0 X
netmod_dol2 1999 0 462 3080 1 0 X 1592 0 454 2637 1 0 X
netmod_kar1 457 0 136 666 1 0 X 453 0 136 662 1 0 X
netmod_kar2 457 0 136 666 1 0 X 453 0 136 662 1 0 X
nous1 51 0 2 15 29 0 47 0 2 11 29 0
nous2 51 0 2 15 29 0 47 0 2 11 29 0
nuclear14a 993 0 600 50 584 0 1568 0 600 2377 560 0
nuclear14b 1569 0 600 1226 560 0 1568 0 600 1225 560 0
nvs19 9 8 0 0 9 0 9 8 0 0 9 0
nvs23 10 9 0 0 10 0 10 9 0 0 10 0
pb351535 526 0 525 50 1 0 1049 0 525 1622 0 0 X
product 1554 0 107 1794 132 0 446 0 92 450 82 0
product2 2843 0 128 2598 528 0 480 0 128 338 128 0

continued on next page
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continued from previous page

original problem presolved problem

instance vars int bin linear quad soc conv vars int bin linear quad soc conv

qap 226 0 225 30 1 0 448 0 225 699 0 0 X
qapw 451 0 225 255 1 0 675 0 225 930 0 0 X
robust_100_0 404 0 101 305 2 0 403 0 101 304 1 1 X
robust_100_1 404 0 101 305 2 0 403 0 101 304 1 1 X
robust_200_0 804 0 201 605 2 0 803 0 201 604 1 1 X
robust_20_0 84 0 21 65 2 0 83 0 21 64 1 1 X
robust_50_0 204 0 51 155 2 0 203 0 51 154 1 1 X
robust_50_1 204 0 51 155 2 0 203 0 51 154 1 1 X
sep1 30 0 2 26 6 0 19 0 2 15 6 0
shortfall_100_0 405 0 101 306 2 0 404 0 101 305 0 2 X
shortfall_100_1 405 0 101 306 2 0 404 0 101 305 0 2 X
shortfall_200_0 805 0 201 606 2 0 804 0 201 605 0 2 X
shortfall_20_0 85 0 21 66 2 0 84 0 21 65 0 2 X
shortfall_50_0 205 0 51 156 2 0 204 0 51 155 0 2 X
shortfall_50_1 205 0 51 156 2 0 204 0 51 155 0 2 X
space25 894 0 750 211 25 0 767 0 716 118 25 0
spectra2 70 0 30 65 8 0 68 0 30 30 8 0
tln12 169 156 12 61 12 0 180 144 24 85 11 0
tln5 36 30 5 26 5 0 35 30 5 20 5 0
tln6 49 42 6 31 6 0 48 42 6 24 6 0
tln7 64 56 7 36 7 0 63 56 7 28 7 0
tltr 49 36 12 52 3 0 56 27 20 73 2 0
uflquad-15-60 916 0 15 960 1 0 X 916 0 15 960 1 0 X
uflquad-20-50 1021 0 20 1050 1 0 X 1021 0 20 1050 1 0 X
uflquad-30-100 3031 0 30 3100 1 0 X 3031 0 30 3100 1 0 X
uflquad-40-80 3241 0 40 3280 1 0 X 3241 0 40 3280 1 0 X
waste 2485 0 400 624 1368 0 1238 0 400 516 1230 0
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