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Zusammenfassung

Lagrangian Coherent Structures (LCS) have become a widespread and power-
ful method to describe dynamic motion patterns in time-dependent flow fields.
The standard way to extract LCS is to compute height ridges in the Finite Time
Lyapunov Exponent (FTLE) field. In this work, we present an alternative method
to approximate Lagrangian features for 2D unsteady flow fields that achieves sub-
grid accuracy without additional particle sampling. We obtain this by a geometric
reconstruction of the flow map using additional material constraints for the availa-
ble samples. In comparison to the standard method, this allows for a more accurate
global approximation of LCS on sparse grids and for long integration intervals.
The proposed algorithm works directly on a set of given particle trajectories and
without additional flow map derivatives. We demonstrate its application for a set
of computational fluid dynamic examples, as well as trajectories acquired by Lag-
rangian methods, and discuss its benefits and limitations.

1 Introduction

Lagrangian flow measures based on particle integration play an important role when
analyzing time-dependent flow fields that are obtained from measurements or simulati-
on. Those measures can be used to identify Lagrangian Coherent Structures (LCS) that
efficiently encode features, such as flow transport barriers, and delineate regions of si-
milar flow behavior [PD10]. One of the most prominent ways to extract LCS is via the
finite-time Lyapunov exponents (FTLE) field as described by Haller [Hal01a,Hal01b].
LCS have been shown to be closely related to height ridges in the FTLE field, which is
usually derived by approximating the local flow map gradient using finite-differencing
schemes [Hal10]. The gradient of the flow map is known to contain strong variations,
especially in areas where separation takes place. Hence, algorithms for its extraction
rely heavily on a suitable density of sampled particle trajectories. A ’suitable density’
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usually has to be ensured by a dense grid for particle advection or by adaptive refi-
nement strategies. In general, adequate values strongly depend on the intrinsic flow
dynamics, such as amount of turbulence, as well as integration time. However, suffi-
cient sampling rates are not always guaranteed (e.g., for very long integration intervals)
or even possible (e.g., for Lagrangian acquisition methods, see Section 6). In this work
we present a novel concept to approximate LCS via a geometric reconstruction of the
flow map. Our work makes the following contributions:

• We introduce a method that works exclusively on a finite number of input tra-
jectories. No additional sampling, field reconstruction, or refinement strategy is
required.

• The produced features have subgrid accuracy, i.e., higher resolution than the ori-
ginal grid. They are guaranteed to be material structures w.r.t. the given discrete
trajectory sampling.

To achieve this, our method maintains discrete, adaptive material lines within the ad-
vected grid structure. Those lines are used to reconstruct the flow map and estima-
te LCS more accurately on low resolutions compared to methods based on finite-
differencing. We show that our approach works directly on different grid types and does
not require an evaluation of additional flow map derivatives in Section 3. This makes it
especially suited for (irregular) low spatial resolution grids and for applications where
additional trajectory samples are either not possible, or not feasible. In addition, we
provide a detailed outline on its efficient, memory friendly implementation (Section 4)
and demonstrate its practical benefits and limitations (Section 6).

2 Related Work

To describe Lagrangian Coherent Structures (LCS), we typically observe properties of
particles moving within the flow. This has been done for a broad variety of applicati-
ons (see Peacock and Dabiri [PD10]). The extraction of LCS, based on the finite-time
Lyapunov exponent (FTLE), has been popularized by Haller [Hal01a]. The computati-
on of FTLE typically relies on an approximation of the spatial gradient ∇φ of the flow
map φ(x, t0,τ). LCS are then derived as height ridges [Ebe96] in the resulting scalar
field. We refer to Schindler et al. [SPFT11] for a comprehensive review of different
ridge extraction techniques. Pobitzer et al. [PPF∗10] further provide an overview of
techniques for feature-oriented, time-dependent flow analysis. The classical FTLE me-
thod [Hal01a] approximates the flow map gradient in terms of finite differences. On
regular uniform grids, this can be evaluated efficiently, while accuracy depends mainly
on integration time τ and grid resolution. For this, a number of variations and extensi-
ons to this method have been presented: For fixed grids, better approximation quality
may be achieved by using an auxiliary grid or additional samples. However, even on
fine grid resolutions, neighboring particles in the vicinity of LCS can diverge rapid-
ly, and reduce the quality of derivative estimates. Kasten et al. [KPH∗09] propose a
localized FTLE (L-FTLE) method that considers an infinitesimally small region by ac-
cumulating Jacobian matrices along one path line. Germer et al. [GOPT11] present an
explicit and continuous reconstruction of binary level-sets that guarantee certain mate-
rial properties. Üffinger et al. [USK∗12] use higher order approximations for the flow
map gradient. Their approach uses super-sampled elliptic circles (e.g., by using eight
additional tracing samples per particle) to approximate the local deformation more ac-
curately and to achieve better ridge quality.
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a) grid with LCS b) AMR grid c) material grid

Abbildung 1: Representation of material flow structures a) in different grids: b) an
AMR uses additional samples [SP07], c) our method creates intersecting edges.
FTLE Grid modification techniques. In order to obtain higher resolutions of Lag-
rangian structures while avoiding unnecessary samples, the initial grid structure has to
be adapted or refined. One approach based on grid adaption is presented by Sadlo et
al. [SP09]. They exploit spatio-temporal coherence by aligning the initial grid with the
underlying LCS structures that are extracted from previous FTLE calculations. Sadlo
and Peikert [SP07] present an adaptive mesh refinement (AMR) approach, based on
separation rates obtained with coarse resolutions. It is stated that on sparse resolutions,
LCS features can be missed, hence refinement is necessary in an offset area around
identified features. While adaptive methods provide accurate computation of LCS for
high resolutions [USK∗12], they typically require additional samples on demand, as
illustrated in Figure 1 b). To further reduce the number of samples, Agranovsky et
al. [AGJ11] advocate the use of moving least squares (MLS) fitting. A variant for com-
putations in adaptive, irregular manifolds is proposed by Lekien et al. [LR10].

FTLE acceleration techniques. The high spatio-temporal coherence of LCS structu-
res can be used to speed up the computation of FTLE sequences. Garth et al. [GGTH07]
and Brunton and Rowley [BR10] focus on avoiding redundant computations in this
case. Lipinski and Mohseni [LM10] present an algorithm to extract and track FTLE
ridges in sequential FTLE computations. Their method can be used to predict the be-
havior of LCS structures over time, if previous FTLE fields are available in adequate
resolution. Hlawatsch et al. [HSW11] present a method to directly interpolate new
hierarchical path line segments, based on a finite set of available path line segments.
Trajectory interpolation can be used in cases of sparse sampling rates, but can also lead
to displacement or distortion of Lagrangian quantities which may be hard to predict a
priori [SFBP09].

Alternative LCS extraction approaches. More recent work by Haller [Hal10] has
shown that LCS and FTLE ridges are not necessarily correlated. Based on this, Faraz-
mand and Haller [FH12] present the concept of strain lines to directly describe LCS
without evaluating FTLE. This concept has the advantage of obtaining well parametri-
zed LCS curves with a significantly reduced number of samples. Still, initial grid reso-
lution and flow map derivative approximation require thorough consideration to avoid
missing or distorting features. Besides, flow map gradients are especially sensitive clo-
se to LCS structures, as shown by Olcay et al. [OPK10] and Kuhn et al. [KRWT12].
Another alternative is presented by Sadlo and Weiskopf [SW10], who showed how to
derive topological features for 2D unsteady flows by replacing the role of stream lines
by streak lines. This concept has been extended to 3D unsteady attracting and repelling
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a) initial grid b) advection c) unrefined grid d) material grid

Abbildung 2: Illustration of material edges in a discrete grid to approximate the be-
havior of continuous time lines. The refinement of the initial grid introduces split and
merge events.
manifolds by Üffinger et al. [USE12].

All previous methods take a flow as input, and may thus not apply to applications,
where there is no flow field available. For instance, Thiffeault [Thi10] analyze ocea-
nographic flow data based on a finite number of measured trajectory data. It is stated
as a fact that especially for measured particle-based phenomena hardly any dense flow
field data is available. Furthermore, sparse optical flow methods, such as presented by
Senst et al. [SES10, SEHS11], avoid the expensive computation of a dense flow field,
and only store a finite set of trajectories around relevant features.

3 Material Line Advection in 2D Flow Fields

The flow map φ(x, t0,τ) describes the time-dependent motion and reorganization of
particles in the flow over time. Typically, the flow map is represented as a regular
grid that is advected with the flow field. The approximation of derivatives by finite-
differencing assumes straight lines as connections between neighboring particles in the
initial grid. More advanced concepts, introduce additional samples to improve deri-
vative approximation (e.g., advection grids [SRP11], AMR [SP07]) or perform local
reseeding if separation exceeds a certain threshold (e.g., localized FTLE [KPH∗09]).
However, all of the above mentioned methods assume straight lines as connections,
which is only a rough approximation of the actual flow behavior as shown by Üffin-
ger et al. [USK∗12] (examples see Figure 3 b) and Figure 8). In fact, in a continuous
view, a line between two particle trajectories behaves like a time line during advecti-
on. Time lines require frequent refinement to be adequately resolved (similar to streak
lines [USE12, WT10, WWSS10]) and act as material boundaries over time, i.e., no
particles can cross them. The core aspect of our approach is to maintain this material
condition of initial edges between neighboring particles based on the available trajec-
tories. The resulting grid approximates the geometry of time lines, and hence the flow
map, more accurately than previous schemes. Further, split and merge events (Figu-
re 2) give more detailed structural information about material lines without additional
samples.

3.1 Time Lines and Lagrangian Features

In literature the relation of streak lines (and streak surfaces) to LCS has been discussed
in detail by Sadlo et al. [SW10] and Üffinger et al. [USE12]. Similarly, time lines are
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a) initial grid configuration b) unprocessed grid c) grid with material condition

Abbildung 3: Double gyre: Figure a) shows the initial quad grid with 64× 32 cells
at τ = 0 in, b) the unprocessed advected grid at τ = 10, and c) with tracked material
condition at τ = 10.
suitable indicators to Lagrangian features in unsteady flow fields as shown by Wein-
kauf and Theisel [WT12]. More specifically, they can be shown to be closely related
to LCS structures in the flow field: Time lines are material structures by definition,
while LCS are special time lines maximizing Lagrangian properties, such as separati-
on [Hal01a], repulsion [FH12], or hyperbolicity [SW10]. In areas of low separation, ti-
me lines roughly maintain their sampling density and orthogonality with respect to their
original neighborhood. In contrast, time lines crossing forward LCS and integrated in
forward direction are subject to strong deformation (due to separation and/or shear). At
the same time, Sadlo and Weiskopf [SW10] have shown that time lines seeded exactly
on a saddle-type LCS collapse to a single point. For the same reason, backward time
lines have to align with dominant forward LCS structures in this case: If the (collapsed)
saddle line is enclosed by time lines at time step t0, the same time lines have to enclose
this structure at any other time step t0− τ, since both structures are guaranteed to be
material structures, i.e., cannot cross each other. This effect is illustrated in Figure 4
for the double gyre example [SLM05]. Hence, one option to identify such LCS, is to
identify time lines that collapse to a single point under forward advection. However,
this is a non-trivial task, since it requires a dense time line seeding across the complete
domain, while sufficiently dense sampled time lines cannot intersect at all.

3.2 Flow Map Approximation using Time Lines

To still be able to find such ’collapsing’ time lines, one has to define a discrete re-
presentation of the flow map, in which such events can occur, and hence allow for an
approximate view on LCS. For this, we explicitly define the initial connections between
particles as neighborhoods in a sampling grid: we assume that the domain is partitio-
ned into a cell complex G = {N,E,C}, which consists nodes N, edges E, and cells C
(see Figure 2). Nodes refer to single particles in space-time domain that are advected
within the flow, capturing the geometric behavior of the flow field. The trajectory of
each node forms a path line. Edges connect nodes within the initial grid and express
spatial relations between nodes. In a continuous view, their advected instances act as
time lines, which require local refinement with ongoing advection (i.e., see Figure 4 a)
and b)). Also in this setting, every time line is a material line over the complete time
interval, hence nodes cannot cross it. Cells are bounded by a set of adjacent edges. The
complexity of their shape increases significantly with ongoing integration and usually
requires additional refinement (especially in the vicinity of LCS). In incompressible
continuous flows, cells further don’t change their initial volume, but undergo a poten-
tially significant stretching and shearing [FH12].
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a) forward time lines & FTLE b) backward time lines & FTLE

c) backward FTLE (t0 = 6) d) forward FTLE (t0 = 0)

Abbildung 4: Time lines and FTLE in the double gyre flow [Sha05]: Regular time line
grid advected in a) forward and b) backward direction for τ = 6; c) shows the forward
grid together with the backward FTLE (t0 = 6); d) backward grid and forward FTLE
(t0 = 0) with emphasized ridges.
3.3 Material Constraints for Discrete Time Lines
In order to maintain the discrete time line material constraint using this cell complex,
we have to identify events where this constraint is violated, i.e., identify particles that
cross edges. This corresponds to intersections of linear edge segments with particles
moving within the flow (see Figure 2). By preserving this material constraint, based on
the available samples during integration, one can derive additional geometric informa-
tion w.r.t. to the initial grid:

• Nodes intersecting edges generate two types of events:
First, a split event creates two new edges. This increases the geometric comple-
xity of the initial edge segment: an edge becomes a polyline
Second, a merge event collapses two existing edges that share the same nodes
into one edge.

• The sequential order (w.r.t. to τ) of split and merge events determines the tem-
poral evolution of the grid edges, i.e., discrete time lines. Although an error is
induced by the assumption of linear edge segments, the reconstructed cells cap-
ture the real, continuous behavior more accurately than unrefined grids (see Sec-
tion 3.5).

• Edge crossings generate additional connectivity information within the initial
grid cells: If an intersection has been determined at a time step τi, we can easily
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a) grid advection process b) edge reconstruction

Abbildung 5: Conceptual representation of the splitting procedure: Moving edges form
bilinear surface patches that are tested for intersections with moving particles (i.e., lines
or rays). If an intersection occurs, the original edge is split into two edges and surface
patches and creates a virtual edge.

identify the corresponding initial edge in the grid configuration at t0. Sorting
all intersection events for one node, and connecting them in the initial grid at
t0, results in a set of additional edges: We denote those edges as virtual edges.
They are directly associated with an intersecting node and an advection time τi.
The set of all virtual edges for one node forms a polyline crossing cells and is
denoted as virtual path. By construction, the polyline formed by a virtual path is
guaranteed to collapse to a single node after the considered integration interval.
More details are given in Section 3.6.

In order to detect split and merge events and reconstruct the resulting topological in-
formation, we split the computation into an advection stage and a reconstruction stage.

3.4 Discrete Grid Advection

In the advection stage, all nodes are integrated in the given 2D time-dependent vector
field to generate particle trajectories, i.e., path lines. Let (x, t) ∈ IR2× IR be a domain
point in space-time, and let v(x, t) denote the time-dependent flow field. Then a path
line p(x, t,τ) is defined as the solution to

∂

∂τ
p(x, t,τ) = v(p(x, t,τ), t + τ) with p(x, t,0) = (x, t) .

We assume discrete path lines that are represented as piecewise linear curves with
point samples p(x, t,k ∆τ) for non-negative integers k and a sampling interval ∆τ. Let
xi denote the position of node i ∈ N in the initial grid at integration time τ = 0. We
write pi(τ) := p(xi, t,τ). Then the discrete path lines consist of linear segments

pik(ξ) = (1−ξ)pi
(
k ∆τ

)
+ ξpi

(
(k+1)∆τ

)
, ξ ∈ [0,1] .

In practice, the continuous path line p(x, t) is computed as a piecewise polynomial
curve, whose order and smoothness depends on the numerical integration scheme. The
discrete path line with linear segments pi j is obtained by a uniform resampling of this
curve w.r.t. τ. Figure 3 shows an example for an advected rectangular grid in the double
gyre [SLM05] for τ = 10, with and without the given material condition.

3.5 Edge Intersection Reconstruction

In order to detect violations of the material constraint, we have to check edges of the
advected grid for intersections: Let Ek be the set of edges at integration time τk = k ∆τ
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with E0 = E. We iterate over discrete time steps ∆τ. At every time, we can process each
edge (i, j) ∈ Ek individually, which is spanned by the linear segment

ei jk(η) = (1−η)pi(τk) + ηp j(τk) , η ∈ [0,1] .

Here, indices i, j ∈ N denote nodes, k refers to a time step. Then moving the edge (i, j)
within the interval [τk,τk+1], along its spanning trajectories results in a bilinear surface
patch

s(η,ξ) = (1−ξ)ei jk(η) + ξei j(k+1)(η)

= (1−η)pik(ξ) + ηp j(k+1)(ξ) .

Here, η ∈ [0,1] is the parameter position on the edge (i, j) and refers to the spati-
al domain, and ξ ∈ [0,1] provides a reparametrization of the time interval [τk,τk+1].
Checking for a node ` ∈ N crossing the edge (i, j) refers to testing for an intersection
of s with the discrete path line segment p`k(ν),ν∈ [0,1]. For the 2D case, this operation
has been studied intensively for ray tracing, and there are efficient numerical algorithms
for computing this intersection [RPH04]. At each time step, we apply intersection tests
for every edge and every node before advancing to the next time step. Edge intersecti-
ons create split events (and possibly merge events if duplicate edges occur), which lead
to a local refinement of the set of edges Ek+1 and hence of the cell complex (see Figure
5). This refinement is based purely on the given trajectories and our material condition,
its is thus different from standard adaptive mesh refinement strategies (see Figure 1).

3.6 Cell Reconstruction

The initial (intersection-free) grid cells C are bounded by edges in E. Every detec-
ted intersection, indicates that a particle is entering or leaving a cell at a certain time.
Connecting both events, entering and leaving, forms a new edge (virtual edge) across
the cell and divides the cell into two parts. Due to the fact, that virtual paths approxi-
mate collapsing time lines, we assume that they are suitable estimates of the position
and shape of crossing LCS w.r.t. to the available trajectories. However, due to the fi-
nite number of samples and the discrete nature of our scheme, only a subset of those
structures is relevant. The most dominant virtual paths can be identified by their length
(i.e., sum of corresponding virtual edge lengths at t0), since those have been subject to
the locally strongest deformation. This is similar to the filtering of FLTE ridges, e.g.,
by separation strength [SPFT11]. Note that the particular topology of G at τ = 0 can
be chosen arbitrarily, e.g., a regular grid or a Delaunay triangulation. In the followi-
ng, we use convex quads and triangles similar to existing methods (such as Lekien et
al. [LR10]).

4 Implementation

The algorithm to conduct the described procedure can be summarized as follows: The
advection part takes a set of trajectories pi and an initial cell complex G as input. In
case we are given a flow field and seed points, particle advection is performed in a
preprocess. In our implementation we use an adaptive fourth-order Runge-Kutta inte-
gration. Similarly, if only the start points of the trajectories are given and there is no
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cell complex G defined, we generate G as the Delaunay triangulation of the given no-
des. Depending on the application, it may become advantageous to artificially bound
the domain (or fill parts of it) by inserting additional points at zero flow regions to
recover the interaction of the boundary with domain boundaries or obstacles (e.g., see
cylinder example in Figure 8). The reconstruction part proceeds in two stages: First, it
determines edge splits and merges (Sec. 3.5):

E0 := E
for all time steps k ≥ 0 and k ∆τ < τ

Ek+1 := Ek
for all edges (i, j) ∈ Ek

for all nodes ` ∈ N \{i, j}
on patch/path line segment intersection

record event
split/merge edge and update Ek+1

Second, all detected split events are inserted to the initial grid, by adding the re-
sulting virtual edges and virtual paths (Sec. 3.6). This is done by sorting all events by
ascending time stamps τi and then finding corresponding pairs of events that indica-
te when a cell was entered and left (see Section 3.6). The nodes associated with such
pairs are connected and form a virtual edge that splits a cell. Figure 5 illustrates the
intersection and splitting step, and Figure 8 shows a result of the algorithm for the cy-
linder example. We use the algorithm in [RPH04] to perform intersections between a
line segment and a bilinear surface patch. In case of multiple intersections, we sort all
events after τ, process the first event, and check for intersections with the two new sur-
face patches (see Figure 5). In order to speed up computations, a bounding box test is
applied first, and only line segments passing these tests are considered for intersection
testing.

Performance. For all our experiments we used single core of an Intel i5 CPU with
2.7GHZ and 8GB of RAM. The required computation time for the double gyre ex-
ample is shown in Figure 10, and for the cylinder flow in Figure 17. Without further
optimization (e.g., via spatial hashing), we have to test every edge with every edge
in the material grid for intersection. In this case, the required number of tests grows
exponentially with the number of trajectories and advected grid edges (Fig. 17 c)).
The memory requirements are directly derived from the number of trajectories with
the temporal sampling rate ∆τ (Section 5), number of edges in the advected material
grid, and the overall number of intersection that occur during advection. The number of
trajectories and ∆τ are fixed and are given with the application or determined automa-
tically. Our experiments indicate that number of front edges remains roughly constant,
or even decreases over time, Fig. 10), due to frequent merge events. The main factor is
the number of intersections that occur, which depends on the flow characteristics. For
our experiments the amount of intersections typically shows a linear behavior with in-
creasing integration time. Note that we can either store all intersections and reconstruct
the virtual edges in a post-process, or omit intersections and reconstruct virtual edges
on the fly.

5 Verification and Discussion
In the following, we describe experiments for the verification of our method, and we
evaluate accuracy and convergence as well as grid dependence. Our method has the
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Abbildung 6: Double Gyre. Figure a) shows the average deviation of 30 random edges
with 2,4,8,16 samples per edge from the same time lines sampled densely with 2000
particles, Figure b) same with refinement by our material condition. The colored region
denotes the min-max range of the error among all samples.
following parameters: the integration time τ, the temporal sampling rate ∆τ, and the
initial grid of nodes (which determines connectivity and the spatial sampling rate). We
test its behavior w.r.t. τ and the grid.

Sampling interval ∆τ. The parameter τ and the initial grid is provided externally
by the user, and is often inherent to the data or application. In contrast, the temporal
sampling interval ∆τ for uniform resampling of trajectories is a parameter to the algo-
rithm (see Section 3.5). Increasing the ∆τ decreases the number of required iterations
in the outer loop and improves performance, however, at the risk of missing intersec-
tion events. In contrast, very small values, i.e., becoming “more time-continuous”, do
not necessarily improve the results due to the coarse spatial resolution, but increase
the number of required intersection tests. Our experiments suggest that ∆τ can be set
conservatively to balance performance and accuracy: For our examples we use 1

10× the
ratio of average edge length and maximum vector magnitude, and observe no signifi-
cant change in the results by a further reduction.

Integration Time τ. As any other Lagrangian approach our method depends on the
length of the (integrated) sample trajectories. In our case this length is directly control-
led by the parameter τ. Commonly, any errors amplify during integration, which can
lead to significant deviations after longer integration intervals [BJB∗11,KRWT12]. We
compute discrete time lines during integration, hence the deviation from the “real” con-
tinuous time lines affect the resulting LCS approximation. To test the dependence on
spatial resolution we define the following experiment: given is a flow field, and we con-
sider a single linear edge from a given initial grid. Every edge forms an approximation
of a discrete time line and we assume to get a better approximation by using additional
samples. We remark that this may not be an option in practice, since additional measu-
rements may be required [Thi10, SFBP09]. The original edge uses 2 samples, and we
increase this number exponentially using 4,8,16, . . . samples of the initial straight line
segment at τ = 0. Then we observe the resulting time lines at integration times k ∆τ.
Finally, we compare these time line approximations of different accuracy to a highly
refined version (2000 samples at τ = 0) by computing the sum of the minimal distances
between both polylines (i.e., we used pairwise root mean square (RMS) error distances
of each node in both polyline sets). Figure 6 shows the averaged results for the dou-
ble gyre data set for 30 random edges on a resolution of 20× 40. At a fixed sampling
rate, the error grows exponentially after a certain integration time (Figure 6, left). In
contrast, edges that are adaptively refined using our material constraint remain more
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Abbildung 7: Double Gyre: Stacked LCS approximations for 30 grids that have been
displaced by random rotations and translations. (20× 40 grids and τ = 10). The 10%
longest features have been emphasized (orange).
accurate for longer integration times. Note that edges crossing LCS tend to produce
highest error rates.

Grid Dependence. Since our methods solely depends on discrete lines as cell boun-
dary, it is not restricted to a particular type of grid structure (i.e., regular or irregular).
We analyze the dependence of results on the grid by applying a series of rigid trans-
formations on a sparse, regular, and rectangular grid with cell size h. First, the grid is
translated in both directions by a offset in [0,h], it is then rotated by an angle in [0, π

4 ].
After the transformation we extracted all LCS approximations, i.e., virtual paths, and
highlighted the 10% longest features. Figure 7 shows the result for a series of 30 ran-
dom transformations and the resulting approximation for a 20×40 grid on the double
gyre example. The observable variations mainly depend on local cell size and especi-
ally occur in regions where the grid edges and LCS direction are nearly parallel, i.e.,
intersections occur at very small angles. Overall, the extracted virtual paths still give
a suitable approximation of the underlying LCS structure. This holds especially when
considering FTLE based on finite differences for sparse resolutions (Figure 11 a)).

Resolution Dependence. To show the impact of the resolution to our method we run
our algorithm on the cylinder data set with varying resolution (see Figure 16). In this
case, our method achieves adequate results with up to factor 10 fewer samples, than
FTLE on similar resolutions. The risk of missing important features on low resolutions
is significantly reduced (Figure 16, first row). This is especially relevant in comparison
to AMR methods [SP07] that require to approximate LCS locations on low resolutions
for further refinement. Sparse particle approaches, based on MLS fitting [AGJ11], are
able to achieve excellent results on reduction factors up to 4. However, they have been
shown (visually) to potentially displace or distort features on equally low sampling
rates, and may require adaptive regular resampling of particles. Figure 17 shows the
resulting cell complex elements with timings and Figure 8 two examples of advected
material grids at different resolutions. It is especially interesting to observe that the
number of required material grid edges (front edges, Fig. 17 a)) only increases slowly,
and the number of occurred intersections grows at linear rates (compare Fig. 10 a) and
Fig. 17 b)). In comparison: the straight-forward refinement of time lines (Fig. 6 a))
may require an exponential amount of additional samples, especially in areas of strong
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a) advected 50×25 grid

b) advected 200×100 grid

Abbildung 8: Cylinder Flow: Flow map grids with material condition (blue) and un-
processed edges (grey) at τ = 120.

Abbildung 9: Cylinder Flow: Plot of the number of edges with increasing resolution
(left) and average intersections per edge (right, c.f. Figure 17).
deformations. This can behavior is confirmed by the number of average intersections
per edge with increasing resolution in Figure 9 and 17 b). The edge intersection rate
reduces with increasing amount of samples. The indicated trend leads to the assumption
that an average intersection rate per edge converges against a specific value, but does
not vanish completely. For comparison: the 200× 100 grid in Fig. 16 already uses 20
times more samples than the original flow field in the same region (about 40× 20).
However, there are cases (see Section 6) where such sampling rates are not feasible or
possible.

12



Limitations. We remark that the quality of the initial grid, i.e., the shape of cells,
has significant impact on our method. The patch-ray intersection [RPH04] is generally
very stable. However, degenerated cells or intersections at small angles can introduce
inaccuracies that result in discontinuities along virtual paths (see Fig. 16, top row).
Another important aspect is, that in general, we do not assume the LCS approximations
to re-simplify during the flow integration process. On the same note, our approach
does not cope with moving or vanishing structures with increasing τ. In general, to
accurately resolve such cases requires additional trajectory samples. The same applies
to vector fields containing divergence, that produce spatial undersampling over time.
Still, the geometry of advected cells and number of split events in the graph structure
is a suitable indicator to detect such areas, e.g., for further sample refinement. Finally,
the structures identified with our scheme are based on the assumption that LCS can
be approximated by discrete collapsing time lines based on the available trajectories.
Although we show empirically that this applies to a variety of scenarios, there is no
formal proof of this property at that time. There are examples where our scheme can
give larger number of potential false-positives (e.g., due to noise, see Figure 15) or
deviates from alternative LCS definitions (e.g., for rotational shear flows [Hal10]).

6 Results

We demonstrate the effectiveness of our method for a number of flow fields that are
either synthetic benchmarks or stem from numerical simulations. All FTLE fields that
are shown for comparison were computed with Haller’s [Hal01a] classic algorithm.
The first three examples use an underlying smooth velocity field from which a low
number of path lines are sampled. Clearly, for such data sets better LCS structures
can be obtained simply by sampling more path lines (e.g. by using AMR [SP07]). We
use this as a ground truth to compare our LCS approximations. However, the last two
examples (optical flow and SPH) do not come with an underlying field so our method
is the only one available that achieves subgrid accuracy.

Double Gyre Data. The first example is the double gyre example introduced by
Shadden et al. [SLM05]. This synthetic data set is frequently used to illustrate the
performance and suitability of FTLE approaches such as strain lines [FH12] or ma-
terial separation fields [GOPT11]. We consider integration times τ = 12 and τ = 20.
Figure 11 shows FTLE computed on a low resolution 64× 32 grid (Fig.11 a,b) com-
pared to our method on the same resolution. The last row shows an overlay with FTLE
computed on a 512×256 grid. The path id is color coded so that different paths can be
distinguished. For this example, our approach captures the most prominent ridge struc-
tures, until τ = 20 even for a very coarse sampling. In contrast, FTLE on a comparable
number of trajectories fails to capture major LCS structures as can be seen in Figure 11
d). The double gyre data is also shown in Figure 3 to illustrate the effect of our material
condition, and in Figure 7, 10, and 6 for experiments on accuracy, performance and
robustness (see previous Section 5).

Cylinder Flow. The cylinder flow field represents a simulated fluid flow that has been
created using the Free Software Gerris Flow Solver [Pop04]. Its temporal evolution is
dominated by a periodic vortex shedding which leads to the famous von Kármán vortex
street. The alternating recirculation structures cause strong flow stretching especially
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a) cell complex element count

b) timing

Abbildung 10: Double Gyre. Figure a) shows the number of edges in the material
grid and number of intersection events, b) shows the time required for intersection and
integration for each time step for the 64x32 grid shown in Figure 11.

a) FTLE (64×32, τ = 12) b) virtual paths (64×32, τ = 12) c) FTLE (512×256) and virtual paths

d) FTLE (64×32, τ = 20) e) virtual paths (64×32, τ = 20) f) FTLE (512×256) and virtual paths

Abbildung 11: Double Gyre: a) and d) FTLE with 2048 samples ; b) and e) our results
with material condition displaying all virtual paths in the base grid (colored by node
id) ; c) and f) comparison of FTLE with 131072 samples and virtual paths using 2048
samples (colored and scaled by length).
behind the cylinder. Figure 12 shows the FTLE fields and results of our method: The
upper half of the topmost image shows FTLE computed on a high resolution 300×700
grid. The lower half compares to a 40× 180 grid, which is less than 4% of the high
resolution samples. On low resolutions, features are blurred and are likely to be distor-
ted or missed in a ridge extraction. In contrast, our method produces sharp and detailed
features even for low resolutions as shown in the center. The close-up at the bottom
reveals that shape, number, and location of the LCS are clearly recognizable. Colors
of virtual edges encodes the length of the associated virtual path, i.e., length of the
corresponding polyline at t0 (see Sections 3.3. Note that, we use a regular triangulation
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FTLE: 300x700

FTLE: 40x180

Adaptive Map: 40x180

Abbildung 12: Cylinder Flow (τ = 120, t = 0). Top: FTLE for original flow field re-
solution (300× 700) and low resolution (40× 180). Center: our result ; Bottom right:
Adaptive map, i.e., retriangulated virtual edges in the initial grid, with 40×180 samp-
les, colored by virtual path length. Bottom left: close-up of our resulting adapted mesh
colored by edge length.

Abbildung 13: Marathon Sequence: Our method applied to a sparse irregular samp-
ling computed from a marathon video sequence. Image a) shows the first video frame,
b) the 80% longest features, and c) the 10% longest features extracted. A group of per-
sons blocking running area creates a separation irregularity along the cordon which has
been highlighted in a) and c)
of the underlying grid. The advected and corrected grid at two different resolutions is
shown in Figure 8.

Heated Cylinder. The second simulated data set captures the natural convection ge-
nerated by a heated cylinder using the Boussinesq-approximation to generate the turbu-
lent vortex behavior (simulated using Gerris Flow Solver [Pop04]). In the space-time
domain it starts with a stagnant fluid, while due to heating a highly turbulent plume
develops quickly above the cylinder, which becomes apparent in Figure 14.

Figure 14 a) and b) shows an FTLE field and compares to a virtual edge triangu-
lation computed by our method. The sequence has been computed for a fixed τ = 20
and different t0 = 20,30,40. Our algorithm can use significantly less samples as in-
put, while virtual paths still reveal distinct and well resolved LCS features. Although
the FTLE field uses ≈ 2.7× the number of samples, features get lost and can only be
reconstructed using higher sampling rates (e.g., by using adaptive refinement [SP07]
or higher-order approximation [USK∗12]). Features extracted with our method are re-
presented by distinct polylines, illustrated in Figure 14 c), and have been scaled and
colored by their length.

Optical Flow Field: Marathon Sequence. Until now, we extracted LCS from given
flow fields. One particular feature of our method is that LCS can be extracted right
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a) FTLE sequence b) virtual edge grid

c) virtual paths, scaled and colored by length.

Abbildung 14: Heated Cylinder: Time sequence comparison for FTLE (60×120) and
triangulated virtual edge grid with 36×72 and fixed τ = 20 and t0 = 20,30,40.
away from given trajectories without need to evaluate the flow. This opens applicati-
ons to scenarios, where only trajectories are measured. One example is optical flow
data, and we apply our method to the marathon sequence benchmark data. To segment
crowd video data, FTLE has been successfully used for dense optical flow data by Ali
et al. [AS07]. However, computing dense optical flow fields is computationally expen-
sive and does not necessarily exploit the adaptive nature of the underlying motion. To
speed up computation and to avoid oversampling sparse methods have been proposed,
e.g., by Senst et al. [SES10, SEHS11]. Sparse methods compute a set of irregularly
distributed trajectory samples to represent motion in the underlying image sequence.
In this example, we apply our method to a set of sparse trajectory data of a marathon
sequence. The original video data has a resolution of 720× 404 pixels, while the op-
tical flow field trajectories have been computed for 297 frames. For our evaluation we
used a 2040 trajectory samples, with an initial random distribution. The resulting fea-
ture approximations obtained with our method are shown in Figure 13: a) shows the
first frame of the video sequence, while b) and c) show the 80% and 10% longest vir-
tual path structures, respectively. The features clearly separate areas of strong motion
separation and characteristic patterns within the motion field. In this case, for example,
a group of persons is standing close to the cordon of the running area, which crea-
tes an irregularity in the virtual paths due to people running around the blocked area
(highlighted in Figure 13).
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c) Virtual path results ( =38, =58)t τ

τ

a) simulation setup b) 3D space-time trajectories

boundary

Abbildung 15: SPH Simulation: Slice of the SPH simulation at t = 38. a) shows the
simulation setup and the domain, b) a rendering of the trajectories in space time, and c)
the base grid with virtual path structures (light grey, 10% longest highlighted in orange,
τ = 58)
SPH Simulation Data. Two examples for Lagrangian acquisition methods are Smoo-
thed Particle Hydrodynamics (SPH) data for simulation (e.g., [SFBP09, JFSP10]), and
optical flow measurements from Particle Tracking Velocimetry (PTV) data (e.g., [RG-
PS05]), which both produce a finite number of particle trajectories only. Although fur-
ther interpolation of trajectories is possible, it is non-trivial to decide which interpola-
tion methodology avoids displacement or distortion of the features in the underlying
data [SFBP09]. In fact, [SFBP09] show that interpolation between trajectories of an
SPH data set may not give satisfactory results for the detection of LCS. Hence, we
applied our method using 2D Lagrangian simulation that has been done using a state-
of-the-art SPH tool and contains about 5000 particles filling up a box (Figure 15 a).
After the simulation the geometry of every particle trajectory was exported (see Fi-
gure 15 b)). We sliced all available trajectories at t = 38, created an initial grid using
Delaunay triangulation, and reconstructed the cell complex for τ = 58. The results of
our approximation are shown in Figure 15 c) (virtual paths and initial grid in gray,
10% longest paths are highlighted). The virtual paths are less smooth than in the first
three examples, since trajectories of SPH simulations are not necessarily as smooth
as integral curves of a dense velocity field. However, the approximation still reveals
the basic Lagrangian behavior and indicates two dominant symmetric LCS structures
around the inlet, and the two major vortex structures. The approximations provide a
basic feature-oriented analysis of trajectory data, that would have been inaccessible to
previous methods.
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7 Conclusions

In summary, we present a novel approach to estimate LCS using a discrete material
constraint during advection. We introduced a discrete cell graph structure to approxi-
mate the flow map geometry and to reconstruct material lines w.r.t. to the available
samples. The presented concept provides the following benefits:

• LCS approximations are a direct result of our algorithm and are obtained as
piecewise linear curves (virtual paths). In contrast to existing FTLE methods
they require no post-processing such as ridge extraction [Ebe96, SPFT11].

• No derivatives of the flow field or its flow map are required explicitly. In fact, the
result solely depends on the given trajectories and our material constraint.

• The method requires a significantly lower number of samples than comparable
approaches. It has been demonstrated that it achieves adequate LCS estimations
in subgrid accuracy, even for sparse and irregular grids

• The method allows for efficient reconstruction of discrete time lines and reduces
refinement to a graph traversal problem.

In conclusion, the presented algorithm is especially interesting in applications, where
there are only a finite amount of measured or simulated particle trajectories, an irregu-
lar base grid, or no dense continuous description of the underlying vector field available
(e.g., PTV or SPH [SFBP09, JFSP10, Thi10]). We validated that our method achieves
adequate approximations to time lines and LCS on different input grid types and over
long integration intervals. Due to the adaptive material refinement, this scheme redu-
ces the risk of missing features in sparse samplings, compared to established FTLE
methods [Hal01a,KPH∗09,SP07]. For future work the question arises, whether similar
concepts are suited to obtain feature surfaces in 3D time-dependent flow fields. The
proposed scheme may open up new possibilities to enhance existing refinement criteria
for sampling grids and integral surfaces in flow fields.

Ackknowledgements

This work was partially funded by the German Federal Ministry of Education and
Research under grant number 01LK1213A.

18



50×25 Grid (1200 samples)

100×50 Grid (5000 samples)

140×70 Grid (9800 samples)

200×100 Grid (20000 samples)

Abbildung 16: Cylinder Flow: Comparison of FTLE [Hal01a] (left column), virtual
paths (center, colored by length), and overlay of both (right column, colored and scaled
by length) at increasing sampling resolutions for t0 = 0,τ = 40.

a) total number of eges b) intersections per edge c) timings (seconds)

Abbildung 17: Cylinder Flow: Storage requirements and timings for the resolution
series presented in Figure 16: a) shows the total number of edges in the material grid,
which grows linearly with ongoing advection; b) the ratio of edge number to number
of intersections, which decreases at higher resolutions; c) shows that the timings grow
exponentially without further optimization.
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