
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

TIMO BERTHOLD1,?

THIBAUT FEYDY2

PETER J. STUCKEY2

Rapid Learning for Binary Programs

1 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, berthold@zib.de
2 National ICT Australia?? and the University of Melbourne, 111 Barry St, Carlton 3053, Victoria, Australia,{tfeydy,pjs}@csse.unimelb.edu.au
? Supported by the DFG Research Center MATHEON Mathematics for key technologies in Berlin.

?? NICTA is funded by the Australian Government as represented by the Department of Broadband, Communications and the Digital Economy and the Australian
Research Council.

ZIB-Report 10-04 (March 2010)



Rapid Learning for Binary Programs

Timo Berthold?1 and Thibaut Feydy2 and Peter J. Stuckey2

1 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
berthold@zib.de

2 National ICT Australia?? and the University of Melbourne, Victoria, Australia
tfeydy,pjs@csse.unimelb.edu.au

Abstract. Learning during search allows solvers for discrete optimiza-
tion problems to remember parts of the search that they have already
performed and avoid revisiting redundant parts. Learning approaches
pioneered by the SAT and CP communities have been successfully incor-
porated into the SCIP constraint integer programming platform.
In this paper we show that performing a heuristic constraint program-
ming search during root node processing of a binary program can rapidly
learn useful nogoods, bound changes, primal solutions, and branching
statistics that improve the remaining IP search.

1 Introduction

Constraint programming (CP) and integer programming (IP) are two comple-
mentary ways of tackling discrete optimization problems. Hybrid combinations
of the two approaches have been used for more than a decade. Recently both
technologies have incorporated new nogood learning capabilities that derive ad-
ditional valid constraints from the analysis of infeasible subproblems extending
methods developed by the SAT community.

The idea of nogood learning, deriving additional valid conflict constraints
from the analysis of infeasible subproblems, has had a long history in the CP
community (see e.g. [1], chapter 6) although until recently it has had limited
applicability. More recently adding carefully engineered nogood learning to SAT
solving [2] has lead to a massive increase in the size of problems SAT solvers
can deal with. The most successful SAT learning approaches use so called first
unique implication point (1UIP) learning which in some sense capture the nogood
closest to the failure that can infer new information.

Constraint programming systems have adapted the SAT style of nogood
learning [3,4], using 1UIP learning and efficient SAT representation for nogoods,
leading to massive improvements for certain highly combinatorial problems.

Nogood learning has been largely ignored in the IP community until very
recently (although see [5]). Achterberg [6] describes a fast heuristic to derive
? This research was partially funded by the DFG Research Center Matheon in Berlin

?? NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research
Council.



2 Timo Berthold and Thibaut Feydy and Peter J. Stuckey

small conflict constraints by constructing a dual ray with minimal nonzero ele-
ments. He shows that nogood learning for general mixed integer problems can
result in an average speedup of 10%. Kılınc Karzan et. al. [7] suggest restarting
the IP solver and using a branching rule that selects variables which appear in
small conflict constraints for the second run. Achterberg and Berthold [8] pro-
pose a hybrid branching scheme for IP that incorporates conflict-based SAT and
impact-based CP style search heuristics as dynamic tie-breakers.

2 Rapid Learning

The power of nogood learning arises because often search algorithms implicitly
repeat the same search in a slightly different context in another part of the
search tree. Nogoods are able to recognize such situations and avoid redundant
work. As a consequence, the more search is performed by a solver and the earlier
nogoods are detected the greater the chance for nogood learning to be beneficial.

Although the nogood learning methods of SAT, CP, and IP approaches are
effectively the same, one should note that because of differences in the amount of
work per node each solver undertakes there are different design tradeoffs in each
implementation. An IP solver will typically spend much more time processing
each node than either a SAT or CP solver. For that reason SAT and CP systems
with nogoods use 1UIP learning and frequent restarts to tackle problems while
this is not the case for IP. IP systems with nogoods typically only restart at the
root, and use learning methods which potentially generate several nogoods for
each infeasibility (see [6]).

The idea of Rapid Learning is based on the fact that a CP solver can typically
perform a partial search on a few hundred or thousand nodes in a fraction of
the time that an IP solver needs for processing the root node of the search tree.
Rapid Learning applies a fast CP branch-and-bound search for a few hundred
or thousand nodes, before we start the IP search, but after IP presolving and
cutting plane separation.

Each piece of information collected in this rapid CP search can be used to
guide the IP search or even deduce further reductions during root node process-
ing. Since the CP solver is solving the same problem as the IP solver

– each generated conflict constraint is valid for the IP search,
– each global bound change can be applied at the IP root node,
– each feasible solution can be added to the IP solver’s solution pool,
– the branching statistics can initialize a hybrid IP branching rule [8], and
– if the CP solver completely solves the problem, the IP solver can abort.

All five types of information may potentially help the IP solver. Rapid Learning
performs a limited CP search at the root node, after most of the IP presolving
is done to collect potential new information for the IP solver.

The basic idea of Rapid Learning is related to the concept of Large Neigh-
borhood Search heuristics in IP. But rather than doing a partial search on a
sub-problem using the same (IP search) algorithm, we perform a partial search



Rapid Learning for Binary Programs 3

on the same problem using a much faster algorithm. Rapid Learning also differs
from typical IP heuristics in the sense that it can improve both primal and dual
bounds at the same time.

3 Computational Results

Our computational study is based on the branch-cut-and-price framework SCIP
(Solving Constraint Integer Programs). This system incorporates the idea of
Constraint Integer Programming [9,10] and implements several state-of-the-art
techniques for IP solving, combined with solving techniques from CP and SAT,
including nogood learning. The Rapid Learning heuristic presented in this article
was implemented as a separator plugin.

For our experiments, we used SCIP 1.2.0.5 with Cplex 12.10 as underlying LP
solver, running on a Intel R© CoreTM2 Extreme CPU X9650 with 6 MB cache
and 8 GB RAM. We used default settings and a time limit of one hour for the
main SCIP instance which performs the IP search.

For solving the CP problem, we used a secondary SCIP instance with “em-
phasis cpsolver” (which among other things turns off LP solving) and “presolving
fast” settings (which turns off probing and pairwise comparison of constraints)
and the parameter “conflict/maxvarsfac” set to 0.05 (which only creates no-
goods using at most 5% of the variables of the problem). As node limit we used
max(500, min(niter , 5000)), with niter being the number of simplex iterations
used for solving the root LP in the main instance. We further aborted the CP
search as soon as 1000 conflicts were created, or no useful information was gained
after 20% of the node limit.

As test set we chose all 41 Binary programs (BPs) of the Miplib 3.0 [11],
the Miplib2003 [12] and the IP collection of Hans Mittelmann [13] which have
less then 10 000 variables and constraints after SCIP presolving. BPs are an
important subclass of IPs and finite domain CPs. where all variables take values
0 or 1. Note, that for a BP, all conflict constraints are Boolean clauses, hence
linear constraints.

Table 1 compares the performance of SCIP with and without Rapid Learn-
ing applied at the root node (columns “SCIP” and “SCIP-RL”). Columns “RL”
provide detailed information on the performance of Rapid Learning. “Ngds” and
“Bds” present the number of applied nogoods and global bound changes, respec-
tively, whereas “S” indicates, whether a new incumbent solution was found. For
instances which could not be solved within the time limit, we present the lower
and upper bounds at termination.

Note first that Rapid Learning is indeed rapid, it rarely consumes more than
a small fraction of the overall time (except for mitre). We observe that for
many instances the application of Rapid Learning does not make a difference.
However, there are some, especially the acc problems, for which the performance
improves dramatically. There are also a few instances, such as qap10, for which
Rapid Learning deteriorates the performance. The solution time decreases by
12% in geometric mean, the number of branch-and-bound nodes by 13%. For



4 Timo Berthold and Thibaut Feydy and Peter J. Stuckey

the four unsolved instances, we see that Rapid Learning leads to a better primal
bound in three cases. The dual bound is worse for the instance protfold. For
the instances acc-2 and nug08, Rapid Learning completely solved the problem.

Additional experiments indicate that the biggest impact of Rapid Learning
comes from nogoods and learning new bounds, but all the other sources of in-
formation are also beneficial to the IP search on average.

4 Conclusion and Outlook

Rapid Learning takes advantage of fast CP search to perform a rapid heuris-
tic learning of nogoods, global bound changes, branching statistics and primal
solutions before the IP search begins. Our computational results demonstrate
that this information can improve the performance of a state-of-the-art non-
commercial IP solver on BPs substantially.

We plan to investigate Rapid Learning for general IP problems, where we
need to use bound disjunction constraints [6] to represent nogoods. We also plan
to investigate the application of rapid learning at other nodes than the root, and
combinations of CP and IP search that continually communicate nogoods, using
a hybrid of SCIP and a native CP system.

References

1. Dechter, R.: Constraint Processing. Morgan Kaufman (2003)
2. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering

an efficient SAT solver. In: Proceedings of DAC’01. (2001) 530–535
3. Katsirelos, G., Bacchus, F.: Generalised nogoods in CSPs. In: Proceedings of

AAAI-2005. (2005) 390–396
4. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation.

Constraints 14(3) (2009) 357–391
5. Davey, B., Boland, N., Stuckey, P.: Efficient intelligent backtracking using linear

programming. INFORMS Journal of Computing 14(4) (2002) 373–386
6. Achterberg, T.: Conflict analysis in mixed integer programming. Discrete Opti-

mization 4(1) (2007) 4–20 Special issue: Mixed Integer Programming.
7. Kılınç Karzan, F., Nemhauser, G.L., Savelsbergh, M.W.P.: Information-based

branching schemes for binary linear mixed-integer programs. Math. Progr. C 1(4)
(2009) 249–293

8. Achterberg, T., Berthold, T.: Hybrid branching. In van Hoeve, W.J., Hooker, J.N.,
eds.: Proc. of CPAIOR 2009. Volume 5547 of LNCS., Springer (May 2009) 309–311

9. Achterberg, T.: Constraint Integer Programming. PhD thesis, TU Berlin (2007)
10. Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint integer program-

ming: A new approach to integrate CP and MIP. In Perron, L., Trick, M.A., eds.:
Proc. of CPAIOR 2008. Volume 5015 of LNCS. (2008) 6–20

11. Bixby, R.E., Ceria, S., McZeal, C.M., Savelsbergh, M.W.: An updated mixed
integer programming library: MIPLIB 3.0. Optima (58) (1998) 12–15

12. Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Operations Research Letters
34(4) (2006) 1–12

13. Mittelmann, H.: Decision tree for optimization software: Benchmarks for optimiza-
tion software (2010) http://plato.asu.edu/bench.html.

http://plato.asu.edu/bench.html


Rapid Learning for Binary Programs 5

Table 1. Impact of Rapid Learning on the performance of SCIP

SCIP SCIP-RL Rapid Learning
Name Nodes Time Nodes Time Nodes Time Ngds Bds S

10teams 197 7.2 197 7.3 716 0.1 0 0
acc-0 1 0.9 1 0.9 0 0.0 0 0
acc-1 112 32.6 113 34.4 3600 0.4 1332 0
acc-2 54 58.8 1 4.4 2045 0.4 427 0 X
acc-3 462 392.5 64 76.0 2238 0.7 765 0
acc-4 399 420.2 364 115.4 2284 0.7 722 0
acc-5 1477 354.1 353 126.6 2054 0.5 756 0
acc-6 251 71.0 899 138.2 2206 0.5 591 0
air04 159 45.4 159 45.6 1000 0.2 0 0
air05 191 22.6 191 22.8 369 0.1 0 0
cap6000 2755 2.6 2755 2.7 100 0.0 0 17
disctom 1 2.2 1 2.2 0 0.0 0 0
eilD76 3 17.2 3 17.2 100 0.0 0 0
enigma 733 0.5 1422 0.5 500 0.0 9 0
fiber 51 1.1 53 1.1 100 0.0 0 0
harp2 352292 209.2 306066 191.3 1135 0.4 7 0 X
l152lav 56 2.1 56 2.2 423 0.1 0 0
lseu 366 0.5 450 0.5 500 0.0 146 0 X
markshare4_0 1823558 111.7 2140552 234.4 500 0.0 305 0 X
misc03 176 0.8 284 0.8 500 0.0 138 0
misc07 31972 21.4 34416 22.4 100 0.0 0 0
mitre 6 7.5 6 10.0 4177 2.5 284 1610
mod008 366 0.8 366 0.8 100 0.0 0 0 X
mod010 5 0.8 5 1.0 854 0.2 357 52
neos1 1 3.1 1 3.2 727 0.1 325 0 X
neos21 2020 18.7 1538 17.5 141 0.0 0 0 X
nug08 1 56.2 1 10.2 1011 0.2 460 1392
p0033 3 0.5 3 0.5 500 0.0 287 4 X
p0201 76 0.7 76 0.7 100 0.0 0 0
p0282 24 0.5 24 0.5 100 0.0 0 0 X
p0548 53 0.5 38 0.5 100 0.0 0 10
p2756 213 1.7 111 1.6 100 0.0 0 80
prod1 23015 17.1 25725 20.0 500 0.1 0 0 X
prod2 68682 80.3 68635 79.2 500 0.1 17 0 X
qap10 5 146.8 12 542.0 2107 0.5 1666 0
stein27 4041 0.8 4035 1.1 500 0.0 328 0 X
stein45 50597 18.0 51247 18.1 500 0.0 0 0 X

markshare1 [0.0,7.0] [0.0,5.0] 500 0.0 199 0 X
markshare2 [0.0,14.0] [0.0,11.0] 500 0.0 174 0 X
protfold [-36.9135,-21.0] [-37.0898,-22.0] 3078 1.6 510 0
seymour [414.318,425.0] [414.313,426.0] 653 0.0 0 0 X

geom. mean 212 8.3 185 7.3
arithm. mean 63 902 57.5 71 357 47.4


	Rapid Learning for Binary Programs
	 Timo Berthold and Thibaut Feydy and Peter J. Stuckey 

