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Abstract

We propose a novel integer programming approach to transfer minimization for
line planning problems in public transit. The idea is to incorporate penalties for
transfers that are induced by “connection capacities” into the construction of the
passenger paths. We show that such penalties can be dealt with by a combination
of shortest and constrained shortest path algorithms such that the pricing prob-
lem for passenger paths can be solved efficiently. Connection capacity penalties
(under)estimate the true transfer times. This error is, however, not a problem in
practice. We show in a computational comparison with two standard models on
a real-world scenario that our approach can be used to minimize passenger travel
and transfer times for large-scale line planning problems with accurate results.

1 Introduction

Line planning is a classical optimization problem in the design of a public transportation
system. Given an infrastructure network and an origin-destination matrix of travel
demands, the line planning problem is to find a set of lines or paths in the network
with corresponding operation frequencies such that all travel demands can be satisfied.
There are two main objectives, namely, minimization of operation costs (the operator’s
point of view) and minimization of travel and transfer times (the passengers’ point of
view).

Since the late nineteen-nineties, the line planning literature has developed a series of
integer programming models that try to capture these objectives better and better,
see Odoni, Rousseau, and Wilson [16] and Bussieck, Winter, and Zimmermann [8] for
an overview. Operation costs are discussed in the articles of Claessens, van Dijk, and
Zwaneveld [9], Bussieck, Lindner, and Lübbecke [7], and Goossens, van Hoesel, and
Kroon [12, 13]; we focus in this article on travel and transfer times. Bussieck, Kreuzer,
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and Zimmermann [6] (see also the thesis of Bussieck [5]) first proposed an integer pro-
gramming model that maximizes the number of direct travelers (i.e., the number of
travelers with zero transfers) on the basis of a “system split” of the demand, i.e., an
a priori distribution of the passenger flow on the arcs of the transportation network.
Schöbel and Scholl [18, 19] model travel and transfer times explicitly in terms of a
change-and-go graph that is constructed on the basis of all potential lines. This model
allows a complete and accurate formulation of travel and transfer time objectives; its
only drawback is its size. Nachtigall and Jerosch [15] address this problem and achieve
a graph reduction with a column generation approach in terms of partial passenger
paths between two transfers; however, the number of rows in the associated integer
programming formulation still grows with the number of lines. Borndörfer, Grötschel,
and Pfetsch [3, 4] propose a computationally efficient integrated line planning and pas-
senger routing model with a polynomial number of constraints. The disadvantage of this
model is that it ignores transfers between lines of the same mode completely (transfers
between, e.g., bus and tram lines are considered).

We propose in this paper a new approach that tries to combine the advantages of
the models of Borndörfer, Grötschel, and Pfetsch [3, 4] and Schöbel and Scholl [18, 19].
Augmenting the passenger routing component of the first model by a term that accounts
for transfers that are induced by direct connection capacities allows to minimize an
(under)estimate of transfer times. Since the computational efficiency of the original
model is retained, this makes progress towards a treatment of transfers that is both
efficient and exact. We substantiate this claim by a computational study for a large-
scale real-world line planning scenario for the city of Potsdam in Germany.

2 Line Planning Models

We state in this section three line planning models. The first is a basic model similar
to that of Borndörfer, Grötschel, and Pfetsch [3, 4]; it does not consider transfers. The
second model extends the first by accounting for (a lower bound on) the number of
transfers in a passenger path. This model, henceforth referred to as direct connection
capacity model, relates the demand for direct passenger paths to an associated trans-
portation capacity; if the capacity for direct passenger paths is exceeded, the remaining
passengers must travel on paths with one or more transfers. The direct connection
capacity model overestimates the capacity for direct connections, such that some pas-
sengers paths account for less transfers than needed, i.e., the model accounts for some,
but not all transfers. The third model is the change-and-go model of Schöbel and
Scholl [18, 19]; it serves as a reference to compute the correct travel times and transfer
penalties.

We use the following notation. Consider a public transportation network as a graph
N = (V,E), whose nodes and edges correspond to stations and connections between
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these stations, respectively. Denote by L the line pool, i.e., a set of paths in N that
represent all valid lines, by Lst the set of lines that provide a direct connection between
nodes s and t, by F ⊆ N the set of possible frequencies at which these lines can
be operated, by F ∈ N an upper bound on the maximum number of lines that can
be operated on an edge of N , and by κℓ ∈ Q+ the vehicle capacity of line ℓ. Let
further (dst) ∈ QV×V

+ be an origin-destination (OD) matrix that gives the travel demand
between pairs of nodes, and denote by D = {(s, t) ∈ V ×V : dst > 0} the set of all OD-
pairs with positive demand. Derive a directed passenger routing graph N̄ = (V,A) from
N by replacing each edge e ∈ E with two antiparallel arcs a(e) and ā(e). Denote by P(s,t)

the set of all possible directed (s, t)-paths in N̄ for (s, t) ∈ D, and by P =
⋃

(s,t)∈D P(s,t)

the set of all such paths; these represent travel routes of passengers. Associated with
each arc a ∈ A and path p ∈ P are travel times τa ∈ Q+ and τp =

∑

a∈p τa, respectively,
and with each transfer a (uniform) penalty σ ∈ Q+. Let kp be the minimum number
of transfers that passengers must do on path p if all lines in L would be built. Let
Kp = {kp, . . . , |V | − 1} be a set of possible numbers of transfers on path p ∈ P. A path
p ∈ P with k ∈ Kp transfers has travel and transfer time τp,k = τp + kσ. Let e(a) be
the undirected edge corresponding to a ∈ A, and let us interpret a(n undirected) line
in N in such a way that passengers can travel on this line in both directions in N̄ .

Denote finally for an integer programming model M and some relaxation R by vR(M)
the optimal objective value of relaxation R of M.

2.1 Basic Model

Consider the following basic model for line planning:

(B) min λ
∑

ℓ∈L

∑

f∈F

cℓ,f xℓ,f + (1 − λ)
∑

p∈P

τp yp

(i)
∑

p∈Pst

yp = dst ∀ (s, t) ∈ D

(ii)
∑

p:a∈p

yp ≤
∑

ℓ:e(a)∈ℓ

∑

f∈F

κℓ,f xℓ,f ∀ a ∈ A

(iii)
∑

f∈F

xℓ,f ≤ 1 ∀ ℓ ∈ L

(iv)
∑

ℓ:e(a)∈ℓ

∑

f∈F

f · xℓ,f ≤ F ∀ e ∈ E

(v) xℓ,f ∈ {0, 1} ∀ ℓ ∈ L, f ∈ F
(vi) xℓ,f ≥ 0 ∀ ℓ ∈ L, f ∈ F
(vii) yp ≥ 0 ∀ p ∈ P.

Model (B) differs from the one in Borndörfer, Grötschel, and Pfetsch [3] by the use of
binary variables xℓ,f for the operation of line ℓ ∈ L at frequency f ∈ F . The continuous
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variables yp account for the number of passengers that travel on path p ∈ P. We denote
by cℓ,f the cost of line ℓ operated at frequency f , and by κℓ,f = κℓ · f the capacity
of line ℓ operated with frequency f . The objective function of program (B) minimizes
a sum of line operating costs and passenger travel times, weighted by a parameter
0 ≤ λ ≤ 1. Equations (i) stipulate a passenger flow of dst for each OD-pair (s, t) ∈ D.
Inequalities (ii) enforce sufficient transportation capacity on each arc. Inequalities (iii)
ensure that a line is operated with at most one frequency, while inequalities (iv) bound
the number of lines that can be operated on an individual edge.

Program (B) contains an exponential number of inequalities (iii). These so-called SOS
constraints (see Beale and Tomlin [2]) are usually redundant in real world line planning
problems. This is due to cost structures that satisfy

c·,fi
+ c·,fj

> c·,fk
for all fi, fj, fk ∈ F

because of the presence of a substantial fixed cost component. Such costs favor the
operation of a single frequency for each line. In fact, replacing two low frequencies by
a higher one only creates trouble if overcapacities get in conflict with the frequency
constraints (iv). In practice, this is rarely the case. However, it is possible to construct
examples where the SOS constraints are violated; such cases can be dealt with using
SOS branching, see [17]. We therefore propose (B) (i), (ii), (iv), (vi), and (vii) as
an empirically strong SOS-LP relaxation of program (B), that not only relaxes the
integrality constraints (v), but also the SOS constraints (iii). Constraints (iii) and
(v) can be resolved in the branch-and-bound process, the SOS-LP relaxation itself by
column generation.

Proposition 2.1. The pricing problem for passenger path variables in the SOS-LP
relaxation of program (B) is a shortest path problem. It can be solved in polynomial
time. The pricing problem for line paths in the SOS-LP relaxation of program (B) is
an NP-hard longest path problem. It can be solved in polynomial time if the lines have
length O(log |V |).

Proof. The proof is similar to that in Borndörfer, Grötschel, and Pfetsch [3].

2.2 Direct Connection Capacity Model

The main disadvantage of the basic model is that it ignores transfers completely and
therefore greatly underestimates travel disutilities. Our idea to mitigate this problem is
to account for the number k ∈ K of transfers on each passenger path p ∈ P, and for the
transportation capacity of lines that permit the connections required by such passenger
paths. Then, if there is not enough transportation capacity for paths with a small
number of transfers, paths with more transfers have to be chosen. Unfortunately, such
transportation capacities seem to be hard to determine. However, approximations in
terms of underestimations on the number of transfers on a passenger path and, likewise,

4



necessary conditions on transportation capacities can be derived. We describe now an
implementation of this idea that focuses on direct connections.

Consider the following direct connection capacity model :

(DCC) min λ
∑

ℓ∈L

∑

f∈F

cℓ,f xℓ,f + (1 − λ)
∑

p∈P

∑

k∈Kp

τp,k yp,k

(i)
∑

p∈Pst

∑

k∈Kp

yp,k = dst ∀ (s, t) ∈ D

(ii)
∑

p∈P:a∈p

∑

k∈Kp

yp,k ≤
∑

ℓ∈L:e(a)∈ℓ

∑

f∈F

κℓ,f xℓ,f ∀ a ∈ A

(iii)
∑

p∈Pst:a∈p,0∈Kp

yp,0 ≤
∑

ℓ∈Lst:e(a)∈ℓ

∑

f∈F

κℓ,f xℓ,f ∀ a ∈ A, ∀ (s, t) ∈ D

(iv)
∑

f∈F

xℓ,f ≤ 1 ∀ ℓ ∈ L

(v)
∑

ℓ∈L:e(a)∈ℓ

∑

f∈F

f · xℓ,f ≤ F ∀ e ∈ E

(vi) xℓ,f ∈ {0, 1} ∀ ℓ ∈ L, f ∈ F
(vii) xℓ,f ≥ 0 ∀ ℓ ∈ L, f ∈ F
(viii) yp,k ≥ 0 ∀ p ∈ P, k ∈ Kp.

Model (DCC) differs from model (B) by the use of continuous variables yp,k that account
for the number of passengers that travel on path p ∈ P doing at least k transfers; let
us call k the transfer estimate of path p. By definition, the objective coefficients of
the passenger path variables satisfy τp,j ≤ τp,k for j < k, and the model will use the
smallest transfer estimate, ideally k = 0, unless forced otherwise. Such an enforcement
is given by constraints (viii) and (iii). The minimum transfer constraints (viii) stipulate
the theoretical lower bound on the transfer estimate. Note that paths that cannot be
direct connections account for a transfer penalty of at least kpσ that is ignored in model
(B). The direct connection capacity constraints (iii) bound the volume of direct (s, t)-
travelers on an arc a by the transportation capacity of lines that connect s and t. If
this capacity is exceeded, some (s, t)-paths must take at least one transfer that would
also have been ignored by model (B). Of course, some capacity of the lines Lst on
arc a might be used up by other travelers, i.e., the right hand side of constraint (iii)
overestimates the capacity for direct (s, t)-connections. It can therefore happen that the
model calculates zero transfer estimates on some passenger paths that actually require
at least one transfer. The remaining constraints are similar to model (B): Equations (i)
enforce the passenger flow, inequalities (ii) sufficient transportation capacity on each
arc, inequalities (iv) are the SOS frequency constraints, and inequalities (v) bound the
total frequency on each arc.

Proposition 2.2. Model DCC dominates model B as an integer program and with
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respect to the SOS-LP relaxation, i.e., vIP (DCC) ≥ vIP (B) and vSOS−LP (DCC) ≥
vSOS−LP (B).

Proof. yp =
∑

k∈Kp
yp,k is feasible for (B) for any solution of (DCC).

Consider now the solution of the SOS-LP relaxation of program (DCC) by a column
generation approach. To this purpose, associate dual variables π, µ ≥ 0, ν ≥ 0, and
η ≥ 0 with constraints (i), (ii), (iii), and (v) of program (DCC). The pricing problem
for line variables is

min
ℓ∈L, f∈F

λcℓ,f −
∑

e∈ℓ

[

ηe +
∑

a∈{a(e),ā(e)}

(

µa +
∑

(s,t)∈D νa,(s,t)

)]

. (1)

Except for the numerical values on the edges, this problem is identical to the line pricing
problem for the basic model (B). The pricing problems for the passenger variables yp,0
and yp,k, k ≥ 1, are as follows:

min
(s,t)∈D

−π(s,t) + min
p∈P(s,t)

min
k∈Kp∩{0}

∑

a∈p

[

(1 − λ)τa + µa + νa,(s,t)
]

(2a)

min
(s,t)∈D

−π(s,t) + min
p∈P(s,t)

min
k∈Kp\{0}

∑

a∈p

[(1 − λ)τa + µa] + (1 − λ)kσ. (2b)

These problems can be solved using shortest path techniques. Consider for a line ℓ ∈ L
the directed path ℓ(u,v) that connects u to v in N̄ = (V,A) via arcs a(e), e ∈ ℓ, where
ℓ(u,v) = ∅ if u 6∈ ℓ or v 6∈ ℓ. For any u, v ∈ V let

δωuv = min
ℓ∈L:u,v∈ℓ

∑

a∈ℓ(u,v)
ωa (3)

be the length, possibly ∞, of a shortest direct connection between u and v in N̄ = (V,A)
on lines in L with respect to arc lengths ω ≥ 0. Suppose that the direct connection
length matrix (δωuv) can be computed for arbitrary arc weights ω ≥ 0 in time O(Φ).

Consider first the pricing problem (2a) for direct (s, t)-passenger paths. Setting ωa =
(1 − λ)τa + µa + νa,(s,t) for all a ∈ A, problem (2a) is equivalent to

min
(s,t)∈D

−π(s,t) + δωst.

Consider now the pricing problem (2b) for (s, t)-passenger paths with at least one
transfer. Setting ωa = (1 − λ)τa + µa for all a ∈ A,

θωuv,st = δωuv + (1 − λ)σ +

{

∞, uv = st,

0, else,
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Algorithm 1: Computing shortest direct connections in a transportation network
via length constrained lines between a set of terminals.

Input : Transportation network G = (V,E) with edge weights ω ≥ 0, set of
terminals T ⊆ V , length bound K ∈ N

Output: Shortest direct connection matrix (δωuv) w.r.t. edge weights ω

for all u, v ∈ V, u 6= v, k = 0, . . . , K do1

dkuv = ∞2

end3

for all v ∈ V, k = 0, . . . , K do4

dkvv = 0, δωvv = 05

end6

for all u ∈ V do7

for k = 1, . . . , K do8

for all (v, w) ∈ A do9

dkuw = min{dk−1
uv + ωvw, d

k−1
uw }10

end11

end12

end13

for u, v ∈ V, u 6= v do14

δωuv = min{djuv : ∃s, t ∈ T, ∃i, j, k ∈ N : disu + djuv + dkvt <∞, i+ j + l ≤ K}15

end16

for u, v ∈ V , and ∆ω
st, (s, t) ∈ D, to the length of a shortest (s, t)-path in a complete

digraph with node set V and arc lengths θωuv,st (note that θωst,st = ∞ such that a shortest
(s, t)-path will use at least two direct connection arcs), problem (2b) is equivalent to

min
(s,t)∈D

−π(s,t) − (1 − λ)σ + ∆ω
st.

Problem (2a) can be solved in time O(|D|Φ), problem (2b) in time O(Φ + |D|φ(|V |)),
where φ(|V |) is the time needed to solve a single source shortest path problem on a
complete digraph with |V | nodes.

It remains to investigate the computation of the shortest direct connection matrix (δωuv).
This computation depends on the encoding of the line pool. If the line pool is given
explicitly, the matrix entries can be computed by enumeration via Equation (3). If the
line pool is generated dynamically, shortest direct connection times can be computed in
a similar way as the lines themselves. We give here an example for length constrained
lines as discussed in Borndörfer, Grötschel, and Pfetsch [3]; other line construction rules
can be dealt with analogously.

Suppose T ⊆ V is a set of terminals between which lines can be constructed. Let
us stipulate that a line contains at most some number K of edges. Then (δωuv) can
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be computed by Algorithm 1 in time Φ = O(|T |2|V |2K2), and the pricing problem
(2) can be solved in O(|D||T |2|V |2K2) ≤ O(|V |6K2). The complexity of line pricing is
O(|T |2|E|K2K) ≤ O(|V |4K2K), see Borndörfer, Grötschel, and Pfetsch [3], for the basic
and for the direct connection capacity model. The complexity of the passenger pricing
problem is polynomial for the basic and pseudo-polynomial for the direct connection
capacity model. As line pricing is the hard part, the direct connection capacity model
retains the computational complexity of the basic model.

Proposition 2.3. Consider a line planning problem with length constrained lines. The
pricing problem for passenger path variables in the SOS-LP relaxation of program
(DCC) is a constraint shortest path problem. It can be solved in pseudo-polynomial
time. The pricing problem for line paths in the SOS-LP relaxation of program (B) is
an NP-hard longest path problem. It can be solved in polynomial time if the lines have
length O(log |V |).

2.3 Change-and-Go Model

Schöbel and Scholl [18] proposed an approach that allows for a correct modeling of
transfers. The idea is to set up a so-called change-and-go network that contains the
nodes and edges of all lines, i.e., the change-and-go network contains a copy of each
node and edge for every line that contains this nodes and edge, respectively. Further
transfer edges are added to model possible transfers. This approach aims at small,
explicitly computable line pools.

A formal statement of the change-and-go model is as follows. The basis is a change-
and-go graph G = (V, E). Its nodes V = VO ∪ VL represent either pairs of stations and
lines or origin/destination nodes, i.e.,

VL = {(s, ℓ) | s ∈ V ℓ ∈ L},
VO = {s ∈ V : ∃ t ∈ V, dst + dts > 0}.

Its edges E = EO ∪ EL ∪ ET connect OD-nodes to the network, different nodes of the
same line (traveling edges), and different nodes at the same station (transfer edges):

EO = {
(

s, (s, ℓ)
)

| s ∈ V, ℓ ∈ L : s ∈ ℓ}
EL = {

(

u, ℓ), (v, ℓ)
)

| ℓ ∈ L : (u, v) ∈ E}

ET = {
(

v, ℓ), (v, ℓ̃)
)

| ℓ ∈ L, ℓ̃ ∈ L}.

Similar as for the basic model, we consider a directed passenger routing graph D =
(V,A) derived from G by replacing each edge with two antiparallel arcs. We associate
with the line arcs AL and the OD arcs AO the travel times of the corresponding arcs in
the transportation network. With the transfer arcs AT we associate the transfer penalty
σ. The lengths τp of the passenger paths in the so-constructed passenger routing graph
then account for the travel times and transfer penalties. The associated IP model is:
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(CG) min λ
∑

ℓ∈L

∑

f∈F

cℓ,f xℓ,f + (1 − λ)
∑

p∈P

τp yp

(i)
∑

p∈Pst

yp = dst ∀ (s, t) ∈ D

(ii)
∑

p:a∈p

yp ≤
∑

ℓ:e(a)∈ℓ

∑

f∈F

κℓ,f xℓ,f ∀ a ∈ A

(iii)
∑

f∈F

xℓ,f ≤ 1 ∀ ℓ ∈ L

(iv)
∑

ℓ:e(a)∈ℓ

∑

f∈F

f · xℓ,f ≤ F ∀ e ∈ E

(v) xℓ,f ∈ {0, 1} ∀ ℓ ∈ L, f ∈ F
(vi) xℓ,f ≥ 0 ∀ ℓ ∈ L, f ∈ F
(vii) yp ≥ 0 ∀ p ∈ P.

The passenger pricing problem is again a shortest path problem, the lines are supposed
to be given explicitly.

Proposition 2.4. Model CG dominates model DCC as an integer program and with
respect to the SOS-LP relaxation, i.e., vIP (CG) ≥ vIP (DCC) and vSOS−LP (CG) ≥
vSOS−LP (DCC).

Proof. yp,k =
∑

P :ψ(P )=p, |P∩AT |=k yp is feasible for (DCC) for any solution of (CG); here

ψ(P ) denotes for a passenger path P in the change-and-go passenger routing graph
D = (V,A) the corresponding passenger path in the routing graph N̄ = (V,A).

3 Computational Results

We perform in this section a computational comparison of the three line planning mod-
els of Section 2, namely, the basic model (B), the direct connection capacity model
(DCC), and the change-and-go model (CG). We test the models on six instances that
are associated with two underlying transportation networks (three instances for each
network) that we denote as Dutch and Potsdam. In all cases, the line pool can be
enumerated; its maximum size is 4,424.

The Dutch network was studied by Bussieck [11] as a test case for his direct travelers
approach to line planning. Instance Dutch1 contains 15 lines of a line plan computed
by him that maximizes the number of direct travelers. Using the terminal stations of
these 15 lines as possible start/end nodes of new lines, we extended the line pool by
generating between each pair of terminal nodes lines along shortest paths to obtain
instance Dutch2; computing all possible lines between each pair of terminals results
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Table 1: Statistics on the Dutch and the Potsdam line planning instances. The columns list the
instance, the number of nodes and edges of the preprocessed transportation network, the size of the
line pool, the number of nodes and edges of the change-and-go graph, the number of OD-pairs with
positive demand, the number of binary variables for lines and frequencies, and the number of constraints
for the basic line planning model, the direct connection capacity model, and the change-and-go model.

#constraints
name |V | |E| |L| |V| |E| |D| #vars (B) (DCC) (CG)

Dutch1 23 106 15 87 284 420 60 577 737 567
Dutch2 23 106 225 999 5 020 420 900 737 1 462 2 159
Dutch3 23 106 4424 36 326 203 092 420 17 696 5 010 13 358 68 614
Potsdam1 1 089 5 282 51 1 885 8 557 4 443 111 6 966 13 786 6 938
Potsdam2 1 089 5 292 132 3 787 22 914 4 443 342 7 057 18 974 10 485
Potsdam3 1 087 5 268 3433 93 904 702 512 4 443 10 233 10 330 47 155 187 374

in instance Dutch3. The line operation frequencies are 3, 6, 9, and 18 (a maximum
frequency of 9 is not sufficient to satisfy the entire demand in instance Dutch1), and an
objective weighing parameter of λ = 0.97 that produces travel time and cost values of
nearly the same order of magnitude. The transfer penalty was set to σ = 15 minutes.

The Potsdam data were provided by the public transport company ViP Verkehrsge-
sellschaft Potsdam GmbH (ViP) in a joint project to optimize the line plan 2010 for the
city of Potsdam. The line pool contains lines for regional and commuter trains. These
lines are not operated by ViP and we therefore assume them to be fixed. ViP operates
the bus and tram lines in Potsdam, and the task was to plan these lines. The instances
Potsdam1, Potsdam2, and Potsdam3 result from different stages of the project. Their
numbers of edges and nodes differs slightly because of changes in the definition of node
and edge attributes throughout the running time of the project, e.g., whether a node
is a terminal node or whether turning is possible. In fact, the Potsdam instances are
constructed in such a way as to reflect all practical requirements for the line plan 2010,
e.g., minimum service frequencies at some stations. Line operation frequencies were
taken as 3, 6, and 9 for bus lines; this corresponds to a cycle time of 60, 30, and 20
minutes in a time horizon of 3 hours. Trams had to be operated at frequency 9, i.e.,
every 20 minutes. Line costs are proportional to line lengths plus a fixed cost term that
is used to reduce the number of lines (ViP wanted to operate as few lines as possible).
The objective weighing parameter was set to λ = 0.8, because this value reduces costs
significantly while the increase in travel time is small (λ = 0.8 is an extreme point of
the Pareto curve). The transfer penalty was again set to σ = 15 minutes.

Table 1 gives some statistics about the test instances. The columns labeled |V |, |E|,
and |L| list the number of nodes, edges, and lines after some preprocessing. We remark
that the instances contain copies of edges that account for different transportation
modes, e.g., bus, tram, regional, and commuter traffic in Potsdam. The number of
nodes and edges of the associated change-and-go graph |V| and |E| are listed in the
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next two columns, followed by the number of OD-pairs |D| with non-zero demand.
The last four columns give statistics on the integer programs associated with the three
models, namely, the number of binary line/frequency variables (#vars), and the number
of constraints in models (B), (DCC), and (CG).

The instances were solved with a column generation algorithm that is implemented
on the basis of the CIP framework scip, version 1.2.0, see [1, 20], using CPLEX
12.1 [14] as LP-solver (in single core mode). Line/frequency variables were enumerated,
passenger path variables were priced using a shortest path algorithm. For the direct
connection capacity model we used the pricing algorithm as described in Section 2.2.
Some “preprocessing cuts” (about the minimum total line frequency over some cuts,
similar to [10]) were added for the Dutch instances, but not for the Potsdam instances
because there they took too much time for a small LP improvement. Some cuts of the
form

∑

p∈Pst:a∈p

yp,0

dst
≤

∑

ℓ∈Lst:e(a)∈ℓ

∑

f∈F

xℓ,f ∀ a ∈ A, ∀ (s, t) ∈ D

were added to the direct connection capacity models. They stipulate that a direct
passenger flow between nodes s and t on some arc a must be covered by at least one
line. As these constraints are of the same form as inequalities (DCC) (iii), the pricing
problem is essentially unchanged. Furthermore, we used the SOS-constraints instead
of SOS branching since the line pool is small enough, and computed integer solutions
by means of three special rounding heuristics in addition to the primal heuristics built
into scip. A time limit was set to 5 hours for the Dutch instances, and to 10 hours
for the Potsdam instances, since the Potsdam network is much more complex. All
computations were done on an Intel Quad-Core 2, 3.0 GHz computer (in 64 bit mode)
with 6 MB cache and 16 GB of main memory, running openSuse Linux 11.2.

Table 2 shows the results. Its columns list the model considered, the solution time
(values of 5h and 10h indicate that the time limit has been reached), the number of
branch-and-bound nodes, the best lower and upper bounds, and the duality gap. Taking
the lines of the best primal solution of a model as line pool of a (small) change-and-go
model and solving this model by re-optimizing passenger flow allows to evaluate the
quality of line plans that have been computed using models that ignore or underestimate
transfer times. The last three columns list the value, the cost and the travel as well as
the transfer time of such a “verified” solution.

Only the smallest instance Dutch1 can be solved to optimality for all models within the
given time frame. The only other model that can be solved to optimality is the direct
connection capacity model for instance Potsdam1. In all other cases, duality gaps come
up. No primal solution was found for the largest change-and-go models Dutch3 (CG)
and Potsdam3 (CG), and for Dutch3 (CG), the model with the largest number of lines,
not even the LP relaxation could be solved.

Comparing different models with respect to verified solutions, it turns out that the
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Table 2: Computing line plans with different models. The columns list the instance, computation
time, number of branch-and-bound nodes, the best lower and upper bound, the duality gap, and the
verified value, cost, and travel time (including transfers) of the best solution.

name time nodes obj. best sol gap sol∗ cost∗ time∗

Dutch1 (B) 1s 111 445 205 445 205 0.00% 461 785 64 900 13 294 394
Dutch1 (DCC) 2s 102 459 493 459 493 0.00% 459 493 66 100 13 179 194
Dutch1 (CG) 13s 1979 459 493 459 493 0.00% 459 493 66 100 13 179 194

Dutch2 (B) 5h 1.5 · 106 435 341 438 968 0.83% 451 735 58 200 13 176 026
Dutch2 (DCC) 5h 15 989 438 991 452 356 3.04% 452 794 61 600 13 101 414
Dutch2 (CG) 5h 370 4307 100 459 779 6.75% 459 779 76 700 12 845 992

Dutch3 (B) 5h 91 071 434 434 438 742 0.99% 453 699 58 300 13 238 268
Dutch3 (DCC) 5h 138 435 394 491 598 12.91% 490 243 102 000 13 043 446
Dutch3 (CG) 5h 0 - - - - - -

Potsdam1 (B) 10h 30 062 201 917 201 961 0.02% 217 187 11 428 1 040 219
Potsdam1 (DCC) 4 522s 69 215 225 215 225 0.00% 215 252 12 565 1 025 999
Potsdam1 (CG) 10h 2 038 214 726 215 468 0.35% 215 468 13 541 1 023 177

Potsdam2 (B) 10h 4 167 200 886 202 174 0.64% 219 822 11 844 1 051 730
Potsdam2 (DCC) 10h 345 213 390 214 783 0.65% 215 086 13 054 1 023 178
Potsdam2 (CG) 10h 121 211 097 215 944 2.30% 215 944 11 625 1 033 220

Potsdam3 (B) 10h 1 821 200 571 202 570 1.00% 220 430 12 580 1 051 823
Potsdam3 (DCC) 10h 1 211 561 217 161 2.65% 217 520 13 054 1 035 382
Potsdam3 (CG) 10h 1 210 445 - - - - -

change-and-go model is always outperformed by one of the other models within the
given time frame. The best solutions for instances Dutch2 and Dutch3 were found by
the basic model. In all other cases and, in particular, for all Potsdam instances, the
direct connection capacity model performs best.

Tables 3 and 4 provide a closer look at the error that is made by ignoring transfer times
in the basic model, and by underestimating them in the direct connection capacity
model. The tables list intervals of travel times and numbers of transfers, respectively.
The following columns give the differences in travel time and transfers, respectively, in
number of passengers and in percent, between the original and the verified solution.
The basic model performs poorly, while the direct connection capacity model turns out
to be amazingly accurate.

References

[1] T. Achterberg, SCIP: Solving Constraint Integer Programs, Math. Programming
Computation, 1 (2009), pp. 1–41.

12



Table 3: Comparing original and verified passenger travel times in minutes (including a transfer
penalty of 15 minutes) for line plans computed with models (B) and (DCC). The columns list the
travel time interval and the differences between the original and the verified solution in number of
passengers and in percent for the three Potsdam instances.

basic model: original vs. verified solution

travel time Potsdam1 Potsdam2 Potsdam3

0 - 10 -74 (0.55%) -291 (2.2%) -309 (2.3%)
10 - 20 -2498 (14.1%) -3020 (17.4%) -3218 (18.8%)
20 - 40 +1526 (18.4%) +2334 (28.8%) +2544 (27.8%)
40 - 60 +650 (9.4%) +514 (7.6%) +490 (7.1%)
60 - 90 +367 (28.3%) +434 (32.5%) +463 (34.6%)
> 90 +29 (43.9%) +29 (43.9%) +30 (45.5%)

direct connection capacity model: original vs. verified solution

travel time Potsdam1 Potsdam2 Potsdam3

0 - 10 +29 (0.22%) +56 (0.42%) +66 (0.49%)
10 - 20 -29 (0.18%) -33 (0.18%) -82 (0.45%)
20 - 40 -6 (0.08%) -40 (0.53%) -6 (0.08%)
40 - 60 -2 (0.03%) -32 (0.47%) -5 (0.07%)
60 - 90 +8(0.61%) +49 (3.7%) +27 (2.0%)
> 90 0 (0%) 0 (0%) 0 (0%)

Table 4: Comparing original and verified passenger transfers for line plans computed with models
(B) and (DCC). The columns list the travel time interval and the differences between the original and
the verified solution in number of transfers and in percent for the three Potsdam instances.

basic model: original vs. verified solution

#transfers Potsdam1 Potsdam2 Potsdam3

0 -4131 (11.2%) -4884 (13.5%) -4638 (12.7%)
1 +4042 (37.5%) +4769 (41.6%) +4490 (40.4%)
2 +89 (65.9%) +114 (71.3%) +147 (75.8%)
≥ 3 +1 (inf) +1 (inf) +1 (inf)

direct connection capacity model: original vs. verified solution

#transfers Potsdam1 Potsdam2 Potsdam3

0 0 (0%) 0 (0%) 0 (0%)
1 -1 (0.01%) -30 (0.31%) -28 (0.29%)
2 +1 (0.76%) +30 (21.7%) +27 (12.2%)
≥ 3 0 (0%) 0 (0%) +1 (50%)

13



[2] E. Beale and J. Tomlin, Special facilities in a general mathematical programming

system for non-convex problems using ordered sets of variables, in Proceedings of the 5th
International Operations Research conference, J. Lawrence, ed., Tavistock Publkications
Ltd., London, 1970, pp. 447–454.

[3] R. Borndörfer, M. Grötschel, and M. E. Pfetsch, A column-generation approach

to line planning in public transport, Transportation Science, 1 (2007), pp. 123–132.

[4] , Models for line planning in public transport, in Computer-aided Systems in Public
Transport, M. Hickman, P. Mirchandani, and S. Voß, eds., vol. 600 of Lecture Notes in
Economics and Mathematical Systems, Springer-Verlag, 2008, pp. 363–378.

[5] M. R. Bussieck, Optimal lines in public rail transport, PhD thesis, TU Braunschweig,
1997.

[6] M. R. Bussieck, P. Kreuzer, and U. T. Zimmermann, Optimal lines for railway

systems, Eur. J. Oper. Res., 96 (1997), pp. 54–63.

[7] M. R. Bussieck, T. Lindner, and M. E. Lübbecke, A fast algorithm for near optimal
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