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Abstract

In the paper arguments are given why the concept of static evaluatiy k&s the potential to be a useful extension to
Monte Carlo tree search. A new concept of modeling SE through a dgahsystem is introduced and strengths and weaknesses
are discussed. The general suitability of this approach is demonstrated.

I. MOTIVATION

The concept of Monte-Carlo simulations applied to go [1] bamed with the UCT algorithm [2], [3], which is a tree search
method based on Upper Confidence Bounds (UCB) (see e.g. [dyluped a new type of programs like [5], [6], [7] that
dominate computer go in recent years. The detailed tournamegort [8] of the program MoGo playing against profesalon
and amateur players reveals strengths and weaknesses ab MbiGh are typical for programs that perform a Monte Carlo
Tree Search (MCTS).

With the significant progress especially 9nx 9 go where MoGo running on large hardware reached profedsiewve, it
needs good reasons to start work on a static evaluationifum¢$E) in go. The following are indications that, althougging
a large step forward, MCTS will not be able to take programprtifessional playing level purely on its own:

« The ratio log(increase in needed computing power) / (irg@da strength) is too big to get to professional strengtln wit
pure MCTS in the foreseeable future.

o Compared with human playing strength the playing level of Cdecreases with increasing board size from 9x9 to
13x13 to 19x19.

o There are still children under 10 years old with a clearlyheigplaying strength than the best programs running on the
largest clusters available. Even if computing power cowddirizreased by currently unimaginable amounts and minors
could be beaten in the game, it would be unsatisfying, if iplgystrength would have to rely so massively on hardware.

One way to equip MCTS with more go knowledge is to add it diyeby having heuristic procedures to detect special
situations and add a bonus to the number of simulations womdnyes that it recommends.
The problem with this approach seems to be that

« either the situations that allow precise recommendatidnsiaves are too special and thus happen too rarely, so that
the constant effort invested in recognizing such positisnt®o high compared with the improvement MCTS would gain
given the same extra time, or

« the situations are more general, but this generality ptevan accurate recommendation of the best move or a safe
recommendation of which moves to ignore, or

« anything in between.

What is needed is an approach that has an understanding ajdaleand global situation igeneralpositions, that either
is accurate to some extent or indicates in which areas it isaoourate. On top of that it needs to be fast. What simplifies
matters is that it does not have to be perfect in any respeck bf accuracy could be compensated with a higher speed, or
it could be slow if its accuracy matches the quality of theiiton of a strong human player.

The SE proposed in this paper is applicable to any positiois, ieasonably fast and has in general a good understanding
of the situation. Before supporting this statement with teails in section V, we argue in the following section whiigh
quality SE is not unrealistic and how it should be structudidcuss limits of the design in section Ill and give detafighe
dynamical system in section IV.

In section VIl we comment on necessary future improvemehthestatic evaluation. The appendix gives an example how
an influence function can guide finding the best move which @ould have to accomplish through more expensive global
search.

1Among users of the Internet Go server KGS the abbreviatiorsSBéd for 'Score Estimator’. Although different from *StaEvaluation’ a score estimator
is easily obtained from static evaluation by adding up pbdliges of chains to be alive at the end of the game or pointee@mwned by White or Black.



II. INITIAL CONSIDERATIONS

A. Resources unused in pure MCTS

Why should it be possible to design a static evaluation wharh grovide at least some information faster and/or bettan th
MCTS?

One strength of MCTS is to be useful for programs playing ofzenes than go or even for optimization tasks not involving
games. This strength is at the same time a weakness whee@pplgo: MCTS does not take advantage of simplifying aspects
of the nature of go:

1)
2)

3)

4)

Chains are localChains connect adjacent stones of the same colour into asenthat all of them are captured, or none
of them are. Stones that are not connected to the chain doehmtdto it.

Capturing a chain is localTo capture a chain the opponent must fill all of the chain’saeglt intersections. Opposing
stones placed further away do not capture the chain.

Go has an influence fielddlthough at the end of the game it is clear for each point whamow and for each chain
whether it is alive or dead, so the state of each point anchdsdully described by 1 bit, this is not the case earlier in
the game.

At earlier stages it makes sense to introduce a field whiclddoe called ’influence’ or 'strength’ which is useful as a
model to guide towards optimal play, not only for humans.

This influence field is not simply a tool to accommodate humawrsess in reading compared to MCTS. The point
to make is that this influence-field is in some sense real andbeacharacterized and modeled. It shows, for example,
some stability or null-sum property and can explain highayipng level sacrifice moves as done with a position in the
appendix.

We want to state it as a conjectuf@ maximize playing strength for a given amount of comparali power (cycles per
sec and given amount of memory, both sufficiently large bed¥ia field embodying strength, influence and perhaps other
fields / state variables have to be introduc@this is not different from progress in the natural scienaes mathematics
where the improvement of quantitative knowledge and anugienl of the scientific language depend on each other.
For human go-players the importance of knowing about infteds self-evident. The point to make is that MCTS misses
out on the guiding potential of a sufficiently accurate infloe function. MCTS gets its strength from statistical l&agn
but its efficiency depends on the size of the search spacehvilniceases exponentially with the board size. The cost of
computing a good static evaluation does not increase expiallg with the board size.

Influence varies smoothlyThe influence of stones falls off smoothly, at least in the nipg in non-life-and-death
situations. Also, the example in the appendix shows the oEedermediate influence values other than 1 (full domirati
and 0 (no influence at all). More discussion on smoothnes®inag be found in section Il.A. in [9].

B. Design Decisions
Based on the above observations the following design aesdnave been made for the static evaluation function.

A
that
side

The strength values of chains and influence values at paiateegresented by floating point numbers because of points 3)
and 4) above but also to evaluate some fuzzy knowledge by &@@&uthat changes smoothly with the degree of certainty
of the knowledge.

Because of 1), 2) the set of all relations of neighbouringhfgoand chains is formulated as a single dynamical system of
algebraic relations expressing the strength of each chadnrdluence at a point in terms of the strength of neighbaurin
chains and influence at neighbouring points. A strengthevaduassigned to a whole chain, irrespective of its size or
shape. All that matters in this approximation are the nedginbood relations. Astatic evaluation based owynamical
systems will be abbreviated as SEDS in the remainder of thermpap

different question is whether the SE should depend on wheesoext. Although it may become slightly better by taking
into account (e.g. if two important chains of opposiéoar touch each other and have only one liberty each, sothieat

to move next may capture the opponent’s chain), the Sie wescribed does not use who moves next. Reasons are:

It is not obvious how to use who moves next without prejudieenein the simple case of, say, Black moving next and
white chains under atari being so small that their captuselda priority. Another example is the case when many white
chains are under atari.

Making the SE dependent on who moves next is not a generdl@ullt may take 2 moves to simplify the all-or-nothing
fight so that the SE can 'see’ the outcome, or 3, 4, ... moves.i3sue of merging SE and MCTS has to be solved more
rigorously, not by a quick fix of making SE dependent on who esomext.

The value of moving next naturally varies from area to areacdnsider it properly would imply to know the value for
each area but that essentially means to be able to play gerfBais would be contradictory to the philosophy of sttt

up the problem of determining the best move into three pddsigning a static evaluation, a search procedure (MCTS)
and an interplay between both.



Il. LIMITS OF WHAT DYNAMICAL SYSTEMS CAN DO

Not all rules of go are local by nature. The rule that playdtsrmaate in their moves sets limits to the usability of SEDS
which are to be discussed in this section. On the other hand,local fight both sides may not alternate their moves. If the
fight does not have highest priority then one side may not answ opponents move and play elsewhere. A different example
of non-alternating moves is given in the appendix where aifgacallows Black to move twice in a row in a crucial area.

A. Ladders

The action at a distance inflicted by ladder breaking stomesns to be a good example against local models like our
dynamical system model. But as with plane waves in physits ng distance effect being described throlwogal differential
equations one can not easily exclude that ladder breakoengstcould be described through a local model. Howevergeladd
are a good counterexample against static evaluation. Fongbe, to work out a long winding ladder like in diagram 1 istdty
- even if possible at all in principle - would be so much moridilt than simply performing the moves in a deep but narrow
tree search.

W@ @ao®

Diagram 1. @ catchegX) in a winding ladder.

B. Life & Death

An example for a concept in go thati®t a purely local phenomenon, i.e. it can not be described bgidering only one
chain/point and its neighbours at a time, is the concepif®fwhich is defined recursivelyA chain is alive if it participates
in at least two living eyes and an eye is alive if it is surroeddnly by living chainsTo identify unconditional life one has
to consider the complete group of living chains at once.

088 ¢
¢

Diagram 2. Diagram 3.

For example, the lives of the white chains in diagram 2 depem@ach other and the conclusion that all chains are alive
can only be drawn at once, not in an iterative way and not bygidening one chain and its neighbours at a time, so not by a
purely local algorithm. Similarly, the life of the white stes in diagram 3 hangs on who moves next atdisgantpoint A in
a discrete, non-iterativavay.

The current version of a SEDS computer program recognizas-lpcal) static life (life without ever having to answeryan
threat) at the time when neighbourhood relations are eskaul during the initialization of SEDS. Although this is esfistep
towards including life and death in SEDS, static life hapmpenly rarely in games.



IV. A DYNAMICAL SYSTEMSAPPROACH

In this section we describe a conceptually simple dynansigstems model that was implemented and studied for itsgttien
and weaknesses.

A. The Setup

The elementary objects on the board (we call them units from an) are taken to be all empty points and chains (for

which no shape is recorded). Individual stones of a chaire mvown identity in this model.

Based on the capture rule of go, units have completely loglations with each other, i.e. the state variables desgyibi
each unit can be computed explicitly from the state varmbleneighbouring units and the resulting dynamical systamhe
solved iteratively.

This system couples all units on the board (i.e. all (empyints and chains) and thus a fixed point of the dynamical
system is a global consequence of the whole board. A changgangth of one chain would influence the strength of weak

neighbouring chains and so on but the influence would stoprang chains.

With points on the edge of the board having only 3 neighbouadsia the corners only having 2 neighbours, the influence

of the edge should come out properly without the need of eatiificial adjustments.

B. State Variables

To eachpoint i (i.e. each empty intersection) are attached 2 real floatoigt iype numbers:

w; . .. probability to be occupied b§) at the end of the game
b; ... probability to be occupied b at the end of the game

and to eactcthain j is attached one number:
s ... probability for this chain to survive.

All values are in the intervaD. .. 1.
For explanation purposes we also introduce

w;, b; ... probability that at least one neighbouring point is occddig resp.() or @ at the end of the game.
C. The Relations
Apart from the trivial requirement that probabilities add to 1:
b, +w; =1 (1)
the only assumption we make isw;/b; = w;/b; , i.e.
w;b; = b, 2)

At least in the extreme casésy;, b;) = (1,1), (1,0), (0,1) this relation is correct.
From (1), (2) we get

1:T1 i) — T — 7 Wy
w z( w) 7, blw
w; W
w1<+bi> 7
Wi i\ w;i
== 14+ = = L 3
v i<+bi> w; + b; ()

wherew;, b; have to be expressed in termstgf w;, s; from the neighbouring points and chains.



D. An Example Computation

In this simple example we are going L
to use relation (3) to compute the
probability of points 1,2,3 in diagram - @123@+
4 to be occupied finally by Black strengths would also be computed iteratively based on tbagth
or White. For the simplicity of this
example, the chains are set to be
alive: s; = 1. In the real model their
of direct neighbouring chains and the influence of their aireeighbouring points.

To apply 3 we seb; = s(leftblackstone) = 1 andw; = s(whitestones) = 1 and get

Diagram 4.

1 1
— wy = TT1-32- by = w3 = by (by symmetry)
1 _
wy = T — by = probability of @ on 1 or 3
1 2 = 1 — probability of () on 1 or 3
- 1+3/4 = 1—-wws
_ 4 S
= - 1
3 _ 3
b2 = ? "\ - 4

A similar computation is done for all chains where the pralitgbof being captured is computed as the probability of all
neighbouring points being occupied by the opponent andti@tlaed opponent chains being alive.

This small example demonstrates how the computation goeg& hlso shows the limited value of the numbers obtained.
They make sense if the moves are played randomly. In theadinivof the formulas all moves are assumed to be uncorcklate
but that is not the case: if White plays on 1 then Black plays @n@ vice versa.

Another systematic error is made in relation 1. There ar@tpoivherew; = b, = 0. For example, in a living white eye
there isw; = 1 although White will not play there but that is no problem if pisi with w; = 1 are regarded as either occupied
in future or owned by White. But points where relation 1 is truly violatee &berties that are shared by two chains in seki.
Here isw; = b; = 0. The problem is not the territorial count with both pointdtipg w; = b; = 0.5 but the safety of the
chains. The SEDS can conclude fram = b; = 0 that both chains are safe, but not fram = b, = 0.5.

E. A Full Board Example

PNWAOTOITON 0O

#ﬁ}’ [ ]

{
abcdefghjklImnopqgrst

Before the iteration alb; andw; variables are initialized to 0.5 and al] variables are initialized to 1.0 .



In total there are 489 variables and as many equations. Tlosviiog are just three of them:

Wrg = (qubr95r7ss7 - qubr95r7 + 1)/
(qubr957’7537 - bq8br95r7 +

Sr7SsTWqgWr9 — Ss7WqsWr9 + 2)7

b’r’S = —Wpg+ 17
Sp7 = —S8p4S57WprWeeWesWrs + 1.
The full set is shown omttp://lie.math.brocku.ca/ twolf/papers/WoSE2010/1 . Through this system each dynam-

ical variable (2 for each point, 1 for each chain) is exprdsseterms of the variables describing their neighbouringn{so
and chains.
The system is iterated until all values change less than shrashold parameter.

V. RESULTS
A. Existence, Uniqueness and Stability

The dynamical systems formulated along the lines of theipusvsection have always at least two solutions: one salutio
where all white chains live, all black are dead and all emptiynis are fully under white influence and the same with sveitth
colours. If allw;, b;, s; are initialized according to one of these solutions, theatten will keep these values stable.

In addition to these solutions in any board position comgse far the dynamical system had another solution (i.e. @ fixe
point) with all values in the interval 0..1. This solution svabtained from any initial conditions other than the oneslileg
to the two extreme solutions mentioned above.

A good question is how many iterations are necessary foralles to settle down so that all changes are less than some
threshold parameter, say)—°. The interesting result is that for clear cut situationsydielw iterations(< 10) are necessary
whereas for very unstable situations (for example, twoch#td chains both under atari) the number of iterations caohre
hundreds or thousands. This opens the possibility to getgspaioduct a measure of instability. On the other hand #xgiires
more iterations than needed for a strength estimate.

B. Statistics on Professional Games

The SEDS function has been tested in detail by trying to ptettie next move in professional games. Alternatively one
can also look at these tests as tries to exclude as many mevessaible but the professional move if the main intention is
to use the SEDS to narrow the search of MCTS.

The test consisted of doing a 1-ply search for all positioosuaing in all 50,000 professional games from the GoGoD
collection [10]. For each board position in these gamesitithides

« performing each legal move in this position,

« iterating the dynamical system in the new position until sigstem stabilizes,

« adding up all probabilities of chains to survive and poimide owned by either side and thus reaching a total score,
« ordering all legal moves according to their total scores,

« finding and recording the position of the professional mavéhe ranking of all moves.

The statistics have been recorded separately for each mmabar because at different stages of the game the staticatiead
has different strengths and weaknesses.

The results of this test are reported untgp://lie. math.brocku.ca/twolf/papers/WoSE2010/2 due to the size
of the diagram files. The data have been produced by evadu&tih million positions from the 50,000 professional games
of the GoGoD collection ([10]). On this web site three seaasnof diagrams are shown. Each sequence contains over 400
diagrams, one for each move number. Figure 1 is one of theaiiegof the first sequence. It shows the number of positions
in which the professional move lands in the range . (z + 1)% of legal moves as sorted by the SE where- 99 are the
top moves falling in thed9...100% range andr = 0 are the worst moves. Thus the higher the graph is on the rightlze
lower it is on the left, the better is the static evaluation.

Fig. 1. A statistics of the ranking of the next professionavmaccording to SEDS in all positions with move number 50 frorA(8professional games

The second series of diagrams differs from the first by haginggarithmic vertical axis. This is useful if the emphass i
to safely ignore moves from further consideration in MCT$éaese then we want to be reasonably sure that SE does not rank
good moves (moves played by the professional player) asdrathg left side of figure 1). In other words, we want to be sure
that the graph is low on the left and to highlight that rang@gatithmic vertical scale is useful. Figure 2 is the lodmaric
version of figure 1).



Fig. 2. The diagram of figure 1 here with logarithmic verticaisa

If one normalizes the vertical axis in figure 1 then this cussthe probability density?(z) of the ranking of the professional
move among all moves. If one accumulates this density froenripht one obtains a so called 'survival functioR(z):
R(z) = ffg P(u)du which is displayed in figure 3. For example, a point on the freqith horizontal coordinate 85 and
vertical coordinate 62 means: The professional move is kéfbt a probability of62% (it survives) if the worst85% of the
moves are dropped (worst according to the SEDS).

Fig. 3. The data of figure 1 here in a cumulative form of a suivivaction

C. Interpretation

In view of the simplicity of the static evaluation functiorEBS the results as shown in figure 1 are surprisingly good.
Deficiencies are not difficult to explain. Because of the lammcept of the dynamical system approach the SEDS has no
concept of life (except a hard-wired fast recognition ofisthfe), i.e. it does not know of the need of two eyes and tkaddit
of destroying eyes. For the SEDS in its current form (Dec 2068ength is 100% correlated with resistance againstgbein
captured. As a consequence sacrifice moves, like Black onfiyuime 4 get a low ranking. This is an extreme example where
the professional move (Black on A) gets the lowest rankinglbfmoves by SEDS. Moves of this type make up the most left
hump in figure 2.

@O
o

)
W/

Fig. 4. A position from a professional game where SEDS fails ttulacking a concept of eyes.

Whereas the humps on the left of figure 2 are due to good (piofesds moves getting a low evaluation by SEDS, the dents
on the right of the graph are due to bad moves getting a higluaian by SEDS. The most right dent in figure 2 is due to
the feature of the evaluation function to favour moves on2teline, especially the 2-2 points. Again, this is a conseqaenc
of not knowing about the need for 2 eyes due to not knowing Blatk and White can not do 2 moves at once, i.e. fill 2
eyes at once. For the SEDS a move osiaor 4'" line can be cut under by the opponent on #ié line because SEDS does
not know that the move on th@"? line needs two eyes.

When skipping through diagrams dntp://lie.math. brocku.ca/twolf/papers/WoSE2010/2 one sees that the
current version of SEDS is most useful early in the game wifen&l death fights do not play a big role yet but also after
about 15 moves when the exact influence of the edge of the ®arot so crucial anymore.

Based on these findings it is expected that an appropriatsdamation of life based on 2 eyes when computing the sthengt
of chains will lead to a significant improvement of SEDS. Thelgem is to find a natural merger of the need for 2 eyes
with the current interaction formula 3. Also, the conceptlifi is not local, so the solution of the dynamical system &mel
determination of a (non-local) measure of life based on % egast be merged naturally into one algorithm. Of course, one
could make quick progress with a superficial repair but tine afi this exercise is to get a lasting concept that has nocaifi
parameters and no artificial constructs and thus scalesifgamove indefinitely with increasingly available computswer)
and thus has the potential to result in a strong program iriahe run.



D. Timing

The following times have been recorded on a Dell Optiplex @X€C with Intel(R) Pentium(R) D CPU 3.40GHz processor
with 2MB cache size running Linux. One CPU was used. Timesnted in table 1 are the result of averaging the times for
evaluating 400 positions from 400 professional games fieenGoGoD game collection [10] each position on the same move
number. The computations include making a move and upd#tiagtrength of chains and influence at points on the whole
board.

move number| time in us for | time in ms for
static evaluation ranking moves
10 46.2 16.2
30 51.8 17.1
100 73.8 19.2
130 83.9 19.3
200 104.4 16.7
300 180.0 10.8

Table 1. Average times for static evaluation and ranking of/@s.

As the update of the strength of a chain is slower to compuwta #n update of the influence at a point, the static evaluation
(column 2) becomes slower the more stones are on the boartheQsther hand, the more stones are on the board, the fewer
legal moves exist and ranking all moves (column 3) becomsterfa

VI. SUITABILITY AND AVAILABILITY

For SEDS to be usable in its current form, the quality of thekirag it produces shown in figure 1 should be higher than
the quality of a ranking MCTS is able to produce in the samet{solumn 3 of table 1). This has not been tested.

Independent of the outcome of such an experiment, SEDS tuitent form has much potential for improvement. Also, it
would become much more usable if one could use the resultsstditer evaluation directly in MCTS without performing a
1-ply search like now.

A run-time library under Linux is available that providedlirence values at points and strength values of chains. dt als
has a function which sorts all legal moves by their estimageality. To try it out within a MCTS program please contac th
author.

VIl. FUTURE TASKS

The dynamical system as formulated in section 1V is a firssieer that allows us to study general properties of such an
approach.

The following are possibilities to improve SEDS.

« The formula for the strength of a chain could be improved hyngi the simple number of liberties a higher weight in
the current probability computation.

« SEDS should provide a local awareness of stability (i.e.dépendence of the local strength measures on who moves
next), of the size of an unstable area and thus of the impoetafh performing moves in this area,

« A recognition of safe links and simple life based on influesheuld be included in SEDS. The aim should be to improve
the performance in guessing professional moves, more aedyrin excluding as many as possible moves other than the
next moves in professional games.

Whereas MCTS is self-sufficient, SE is not. The merging of heithbe a main future task. In doing this one would want
to be able to vary smoothly the times allocated to both, at $itatically then dynamically depending on the board positi
more time for SE early in the game and in non-fighting posg#tjdass time towards the end of the game and in all-or-nothing
fights.

APPENDIX

In this appendix an example is given to support the claim ithao there is a field that embodies strength and influence,
which is not an artificial human construct but which is at tleart of the game and is of intrinsic, fundamental naturehién t



following position such a hypothetical field is used to explthe optimal move which is a sacrifice.

10 | 10 |
9 I 9 I
8 8 )
7 7 4
6 6
5 5
4 4 @
3 3
2 2 —
1 1
abcdefgh abcde fgh
Diagram 5. Diagram 6.
@ to move. @ lives.

In diagram 5 the aim of Black is to make its corner ch@ nalive which can only happen by capturing one of the white mhai
&), D . But neither one can be captured directly by playing onlytsrvicinity (@ on b6 would be captured ky) on b7 and

@ on the first row would be answered Ky) on b4 and be too slow). Nevertheless, a static evaluatioctim modeling an
influence field, for example the one described in section Igubd give small but nonzero values for Black’s strength arbu
a6, b6 and on the first row at b1, c1, d1. If modeled correctgs¢hinfluence values alone should be too low to indicate the
death of the white chain®) , @ individually but if all influence is added up and increasedabyalue equivalent to the right

of moving next then the total should be enough to indicate fiifr @ .

The remaining question is how to convert this prospect effiiir Black into a good first move. Also here the influence field
helps. If this field is to be meaningful then it should not aparmrratically from one move to the next, except at the very en
when the position becomes completely settled and the valupg to one of the two extremes. So Black can not expect to
change the total sum of all Black strengths through a clevaremBut what Black can expect to do is to shift the distribati
of its influence. To succeed in this example, Black needs talleuall its influence onto its weakest white neighbour chain
which is) , i.e. to move its small influence at a6, b6 towards the cligino weaken it further. The result of the sequence
in diagram 6 is that White now has total control of the points la and Black in exchange gets one extra move towards
catching®) which is enough in this case.

This principle of bundling influence to overcome a threshsiténgth in a local target area in order to live, link, kill @rt,
explains all sacrifice moves, not only in this example andaomy in life and death problems. This is a good guidance not
only for players but also for computer programs to formutatgtical and strategic aims, being bound on one hand by #stab
total sum of influence but on the other hand being allowed ifi sifluence and to focus it to overcome threshold values
locally for living and killing. These threshold values résiiom the discrete requirement of two eyes for life and tlgckte
nature of the capture rule capturing all stones of a chaimaé.o

A variation of this principle is to look for moves which make weak stones good sacrifice stones, aiming to move the
remaining strength of these stones to a distant and moreriemicarea.

In some games the principle of collecting thinly spread ptigé through playing ’light’, i.e. through playing stonagich
have a good chance of being sacrificed later, is not only actdatoncept but a strategic one. When a professional player
gives a strong amateur player many handicap stones thek Btacnot simply be fooled, the only way for White to win is
to collect all potential on the board by playing light and lpmbly sacrificing stones.

But also in even games thinly spread influence/potentiahigrgortant concept. Influence may be shifted around to force
the opponent to become very strong on one side of a local arealer to gather own strength and be better prepared tdkattac
on the opposite side of that area, in other words to creatalanbe in the opponents position. This is known as a proverb:
Attach against the stronger stone ([11], p. 121).
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