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A Visual Approach to Analysis
of Stress Tensor Fields

Andrea Kratz, Björn Meyer, and Ingrid Hotz

Abstract—We present a visual approach for the exploration of stress tensor fields. Therefore, we introduce the idea of multiple linked
views to tensor visualization. In contrast to common tensor visualization methods that only provide a single view to the tensor field, we
pursue the idea of providing various perspectives onto the data in attribute and object space. Especially in the context of stress tensors,
advanced tensor visualization methods have a young tradition. Thus, we propose a combination of visualization techniques domain
experts are used to with statistical views of tensor attributes. The application of this concept to tensor fields was achieved by extending
the notion of shape space. It provides an intuitive way of finding tensor invariants that represent relevant physical properties. Using
brushing techniques, the user can select features in attribute space, which are mapped to displayable entities in a three-dimensional
hybrid visualization in object space. Volume rendering serves as context, while glyphs encode the whole tensor information in focus
regions. Tensorlines can be included to emphasize directionally coherent features in the tensor field. We show that the benefit of such
a multi-perspective approach is manifold. Foremost, it provides easy access to the complexity of tensor data. Moreover, including well-
known analysis tools, such as Mohr diagrams, users can familiarize themselves gradually with novel visualization methods. Finally, by
employing a focus-driven hybrid rendering, we significantly reduce clutter, which was a major problem of other three-dimensional tensor
visualization methods.

Index Terms—

F

1 INTRODUCTION

The focus of this work is the analysis and visualization
of 3D stress tensor fields, which express the response of a
material to applied forces. Important application areas and
their interest in such data are: In material science, a material’s
behavior under pressure is observed to examine its stability.
Similar questions also arise in astrophysics. Rock fractures
caused by tension or compression, for example, are analyzed
in geosciences. A medical example is the simulation of an
implant design’s impact on the distribution of physiological
stress inside a bone [1]. Common to most of these areas
is the goal of finding regions where the inspected material
tends to crack. Various failure models exist, but in general
they are based on the analysis of large shear stresses. Besides
understanding a physical phenomenon, tensor analysis can
help to detect failures in simulations where tensors appear as
intermediate product. In all these application areas, regions
of interest are not necessarily known in advance. For this
reason, powerful visual exploration and analysis tools are of
high importance.

The complexity of tensor data makes them hard to visualize
and interpret. Therefore, users tend to analyze tensor data
via two-dimensional plots of derived scalars (data reduction).
Although these plots simplify the analysis at first glance, they
do not communicate the evolution of tensors over the whole
field [2]. They might even fail to convey all information
given by a single tensor. From a visualization point of
view, the difficulty lies in depicting each tensor’s complex
information, especially for three-dimensional tensor fields.

• A. Kratz, B. Meyer and I. Hotz are with Zuse Institute Berlin.
E-mail: kratz@zib.de, bjoern.meyer@zib.de and hotz@zib.de

Often, visualizations are restricted to two-dimensional slices
(data projection), as three-dimensional visualizations tend to
result in cluttered images. However, data reduction and data
projection both reduce the complex information of the tensor
field to a small subset. Thus, the richness of the data is not
communicated.

A further challenge, for example in contrast to vector field
visualization, is the young tradition of advanced tensor visu-
alization methods in the considered application areas. Users
need to get used to the advantages of modern visualization
techniques, and therefore need tools to explore the data so
they can develop an intuition and construct new hypotheses.
Therefore, it is important to link methods domain experts are
already used to with novel techniques. The main challenges
in visualizing three-dimensional tensor fields, and the resulting
goals of our work are:

• Tensor data are hard to interpret. Thus, we provide an
intuitive approach to the analysis of tensor data.

• Tensor visualization methods do not have a long tradition
in their respective application areas. Thus, we provide
well-known perspectives onto these data and link them
with novel visualization methods.

• A lack of a-priori feature definitions prevents the use of
automatic segmentation algorithms. Thus, we allow users
to find the unknown and let them steer the visualization
process.

• The stress tensors we are dealing with are symmetric
3D tensors described by six independent variables. Thus,
effectively capturing all of this information with a single
visualization method is practically not feasible. We there-
fore employ a feature-dependent hybrid visualization.
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Contribution
To meet these goals, we present a new access to tensor fields.
The major contributions of this paper are:
• Introduction of shape space theory as basic means for

feature designation in attribute space. Previous work
mostly concentrated on the properties of a specific
tensor type. We introduce an intuitive way of finding
tensor invariants that reflect relevant features. Building
upon the idea of shape space, the challenging task of
translating questions into appropriate invariants boils
down to a basis change of shape space. Using concepts
from stress analysis and including failure models, we
present invariants for stress tensor fields together with
common and new visualization techniques (Figure 2).
However, our approach is extendable to the analysis of
various types of symmetric second-order tensors.

• Introduction of multiple linked views to tensor visual-
ization. Previous work mostly concentrated on only two
dimensions and/or one particular visualization technique.
We pursue the idea of providing various perspectives
onto the data and propose visual exploration in attribute
and object space. The concept of shape space serves
as link between the abstract tensor and its visualization
in attribute space. In object space, features are mapped
to displayable entities and are explored in a three-
dimensional hybrid visualization.

2 RELATED WORK

Besides work from tensor field visualization [3], our work is
based on publications from multiple view systems [4] as well
as from the visualization of multivariate data [5]. This review
is structured according to our main contributions focusing on
second-order stress tensors and their visualization in attribute
(diagram views) and object space (spatial views).

Tensor Invariants: Central to our work is the finding that
tensor visualization methods can be designed and parametrized
by a specific choice of invariants, which are scalar quantities
that do not change under orthogonal coordinate transformation.
Considering and analyzing important invariants is common
in many physical applications [6]. For analysis of diffusion
tensors, [6] has been transferred to visualization [7]. In
the same context, Bahn [8] came up with the definition of
eigenvalue space, where the eigenvalues are considered to be
coordinates of a point in Euclidean space. In this work, we
use the term shape space referring to application areas such
as vision and geometric modeling. Coordinates within this
space describe a set of tensor invariants and are called shape
descriptor.

Diagram Views: Only few visualization papers are
related to using diagram views for tensors. Mohr’s circle [9]
is a common tool in material mechanics, being used to
compute coordinate transformations. In visualization, it has
been applied to diffusion tensors to depict the tensor’s
diffusivity [10] as well as to stress tensors [11]. Being a

known technique for domain experts, Mohr diagrams can
ease the access to novel visualization methods. Directional
histograms have been used to visualize the distribution of
fiber orientations in sprayed concrete [12] and for diffusion
tensors in terms of rose diagrams and 3D scatterplots
of the major eigenvector angles [13]. To the best of our
knowledge, combined views for tensors have not been
presented previously.

Spatial Views: A common classification of spatial visu-
alization methods for second-order tensors is to distinguish
between local, global and feature-based methods.

Local methods use geometries (glyphs) to depict single
tensors at discrete points. Shape, size, color and transparency
are used to encode tensor invariants. Dense glyph visualiza-
tions use less complex geometries together with placement
algorithms [14], [15], [16]. When only selected locations are
examined (probing), more complex geometries can be used.
A variety of glyph types have been presented, focusing on
stress tensors [2], higher-order tensors [17] and perceptual
issues [18], [19]. Although, local methods have the potential
to depict the whole tensor information, they generally fail in
giving an overview of the complete 3D tensor field.

In contrast, global methods present an overview and empha-
size regional coherence. They can be classified into methods
based on scalar and vector visualization, as well as hybrid
methods. Scalar visualization methods that are used to visual-
ize tensors are ray-casting [20], [21], [22] and splatting [23],
[24]. The main challenge is the design of an appropriate
transfer function. Kindlmann et al. [20], [21] define an opacity
transfer function based on the isotropic behavior of the tensor
field. Color and shading are defined by tensor properties such
as orientation and shape. Inspired by this work, Hlawitschka et
al. [22] focus on directional information for transfer function
design to emphasize fiber bundle boundaries. Recently, Dick
et al. [1] presented a colormapping for stress tensors in order
to distinguish between compressive and tensile forces.

Vector visualization methods are used to depict the behavior
of the eigenvectors. We distinguish line tracing algorithms
like tensorlines [25], texture-based approaches such as Line
Integral Convolution (LIC) [26] and reaction-diffusion tex-
tures [27], [21]. Hotz et al. [28] presented a LIC-like method
for the visualization of two-dimensional slices of a stress
tensor field. They introduce a mapping of the indefinite stress
tensor to a positive-definite metric. The mapped eigenvalues
then are used to define input parameters used for LIC.

Whereas scalar-related visualization techniques are able to
cover aspects of the whole 3D field, vector-related methods
are mostly restricted to two dimensions. Hybrid approaches
combine global and local methods [29], [30] as well as scalar-
and vector-related techniques [1], [31]. Dick et al. [1] proposed
hybrid visualization for 3D stress tensor fields. They combine
ray-casting of the three eigenvalues with tensorlines to depict
selected directions. To account for clutter, tensorlines are only
seeded on a surface mesh. Although some hybrid approaches
try to combine complex focus with non-disruptive context
visualization, none of the existing methods allows the analysis
and visualization of a complete 3D field both in detail and at
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Fig. 1: Tensor analysis and visualization pipeline. The basis builds the diagonalization of the tensor into its eigenvalues and
eigenvectors. The first step then is the choice of appropriate shape descriptors and directional invariants steered by a specific
question or task. These are visualized in attribute space. Within this space, features are selected using brushing techniques and
are then encoded in a mask volume. In object space, various tensor visualization techniques are combined in a feature-driven
hybrid visualization. Volume rendering provides context, and glyphs or tensorlines are placed in focus regions. The user has a
variety of options to adjust the visualization (interaction loops): Shape descriptors and directional invariants can be adapted
(#1) and focus/context regions can be interactively refined (#2).

large.
Feature-based methods comprise topological methods [32],

[33], [34], [35] and tensor segmentation algorithms [36],
[37]. Regions of similar behavior are merged, which helps
to handle the complex information within a tensor field.
However, automatic segmentation algorithms can only be used,
if the characteristics of interesting structures can be defined in
advance. They fail in describing new features and might even
remove important aspects of the data [5]. Furthermore, they
are hard to extend to three-dimensional tensor data.

3 TENSOR VISUALIZATION AND ANALYSIS
PIPELINE

Multiple linked views are used to explore three-dimensional
stress tensor fields. We distinguish between diagram views in
attribute space (see Section 5) and three-dimensional spatial
views in object space (Section 6). Both are linked over a mask
volume, i.e., a three-dimensional data structure of the same
size as the input data storing a binary value (0 or 1). The
mask is created and modified by brushing tensor properties
in attribute space; it is evaluated for rendering in the spatial
domain. For an overview of the proposed pipeline see Figure 1.

The basis of the pipeline is the diagonalization of the
tensor (Section 4.1.1). Thus, the tensor is decomposed into
shape and orientation, whereas shape refers to the eigenvalues
and orientation to the eigenvectors. The first step then is
the choice of appropriate shape descriptors and directional
invariants (Section 4). We conceive this process as translating
a question into a mathematical description (Figure 2). Being
supported by various views in attribute space, the user can
select and substitute tensor properties (interaction loop #1)
until a set is found for being explored in more detail. Multiple
views are possible at the same time, so different parameter
choices and selections can be visually compared. Within these
views, features are selected and highlighted using brushing-
and-linking techniques (interaction loop #2). In this work,
we propose the following diagrams: Shape space scatterplots
can be understood as a cut through three-dimensional

shape space and, thus, deliver insight into the distribution
of tensor properties (Section 5.1). Mohr diagrams [11]
represent the most important invariants for stress tensors
(Section 4.4). Directional histograms are used to analyze
the distribution of principal directions (Section 5.3), and
directional scatterplots to inspect shape properties together
with directions (Section 5.4).

Hybrid object space rendering (Section 6) allows the in-
spection of the selected features in a spatial context. The
mask defines in which regions glyphs are displayed and/or
tensorlines are started. Volume rendering of scalar invariants
serves as a context view. If the final image does not show
all relevant features, users may refine their selections in
attribute space, changing the mask volume and the rendering
accordingly. Selections in object space, for example of single
glyphs, are part of our future work.

4 TENSOR INVARIANTS AND SHAPE SPACE

In this section we formulate the task of finding relevant
features in the language of shape space. Then we discuss our
particular choice of shape descriptors, directions (Section 4.4)
and shape space scaling (Section 4.3) for stress tensor fields.

4.1 Foundations

For the three-dimensional Euclidean space, a tensor T with
respect to a basis (b1,b2,b3), denoted by Tb, can be described
by a matrix M ∈ R3×3. That is, Tb = M = (mi j) with i,j =
1,2,3. A tensor field over some domain D assigns a tensor
T (x) to every point x ∈ D.

Tensor invariants are scalar quantities that do not change
under orthogonal coordinate transformation. In general, any
scalar function f (λ1,λ2,λ3) again is an invariant. Most com-
mon examples are the tensor’s eigenvalues, determinant and
trace.
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Question
          Shape            Orientation

Invariants
Scaling Visualization Technique

  Attribute    Object
Space

σ₁,σ₂,σ₃ Scatterplot X

X

X

X

X

Logarithmic (SP)Distinguish regions of compression, expansion,
shear and isotropic regions.

τ, R Logarithmic (SP) ScatterplotExplore regions of high shear and kind of anisotropy.

τ Linear (SP) HWY Glyph
Depict the magnitude of shear stress acting at a given
point in any direction.

τ, c, R Linear (SP) Mohr Diagram
Distinguish regions of compression, expansion, shear. 
Kind of anisotropy. Tensor as a whole.

e₁,e₂,e₃ - Directional HistogramDistribution of principal directions.

(e₁±e₃)

(e₁±e₃)

- Directional HistogramDistribution of directions of maximum shear stress.

X

X

X

f(σ₁,σ₂,σ₃) Linear (SP) Volume Rendering
Provide a spatial context by means of a derived
scalar field.

σ₁,σ₂,σ₃

FA, mode(T)

e₁,e₂,e₃

e₁,e₂,e₃

Asymmetric (POS) Ellipsoid GlyphEncode whole tensor information in focus regions.

X

X

σ₁,σ₂,σ₃ Linear (SP) Reynolds GlyphDepict the normal stress acting at a given point in any 
direction.

e₁,e₂,e₃

e₁,e₂,e₃

- TensorlinesEmphasize selected directions.

XNormalized Superquadric GlyphDTI example: Which regions exhibit high anisotropy,
and do they have a characteristic shape?

Fig. 2: Invariant Selection. The table gives examples for shape descriptors and directional invariants that correspond to a
specific task or question. We mainly present invariants for stress tensors. However, our approach is extendable to various types of
symmetric second-order tensors. Besides convertible invariants, the analysis of tensors from diverse application areas requires
variable scalings. The abbreviations SP and POS refer to sign-preserving mappings (SP) and mappings into a positive-definite
metric (POS), respectively. Furthermore, the table lists possible visualization techniques in attribute and object space.

4.1.1 Tensor Diagonalization
Tensors are invariant under coordinate transformation, which
distinguishes them from matrices. That is, the characteristics
of the tensor stay the same, independent from the choice
of basis. Consequently, a tensor can be analyzed using any
convenient coordinate system.

In the following, we only consider symmetric tensors, i.e.,
mi j =m ji, being defined by six independent components. They
can be transformed into a principal coordinate system using
the concept of eigenanalysis

U T UT =

λ1 0 0
0 λ2 0
0 0 λ3

 . (1)

The diagonal elements λi are the eigenvalues and the trans-
formation matrix U is composed of the eigenvectors ei. For
symmetric tensors, the eigenvalues are all real, and the eigen-
vectors constitute an orthonormal basis. They are ordered such
that λ1 ≥ λ2 ≥ λ3.

4.1.2 Stress Tensor
A stress tensor conveys information about the stress acting on
cutting planes through a material (Figure 3). It is given as

σ =

σ11 τ12 τ13
τ12 σ22 τ23
τ13 τ23 σ33

 , (2)

with the diagonal components σi j being the normal stress
components and the off-diagonal components τi j the shear
stress components respective to cutting planes normal to the
coordinate axis. The sign of the normal stress components

σ33

σ33

σ22

τ13τ23

τ13
τ23

b1

b3

b2

n

t

σn
τ

f

f

f

Fig. 3: External forces f that are applied to a material (left),
stress measured on an infinitesimally small volume element
(middle), and force (traction t) acting on an cutting plane
with normal vector n (right).

encodes if they are compressive or tensile. In this paper, we
interpret negative eigenvalues as compressive forces (making
the volume smaller) and positive eigenvalues as tensile forces
(expanding the volume). It is worth noting that in some
application areas the sign is interpreted in a reverse way. If
forces are balanced and there is no rotation (which is, in
general, fulfilled for infinitesimally small volume elements),
the tensor is symmetric and uniquely described by its three
eigenvalues and eigenvectors (Equation (1)). In this context,
the eigenvectors are called principal stress axes, and the
eigenvalues are called principal stresses. As principal stresses
may be positive or negative, the tensor is indefinite. The force
(traction vector) t acting on a cutting plane with normal vector
n is given by

t = σ ·n = τ +σn. (3)

It can be decomposed into its normal stress σn and shear stress
component τ (Figure 3, right). In cutting planes orthogonal
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(a) Linear σ3 ≈ σ2 < σ1; R≈ 1 (b) Planar σ3 < σ2 ≈ σ1; R≈ 0 (c) Isotropic σ3 ≈ σ2 ≈ σ1

Fig. 4: Lame’s stress ellipsoid (displaying all possible traction vectors) and Mohr’s circle in comparison. The ellipsoid’s axis
are aligned with the three eigenvectors, which are scaled by the eigenvalues. For three-dimensional tensors, Mohr’s circle
consists of three circles drawn between the three eigenvalues [11]. The horizontal axis depicts the normal stress and the
vertical axis the shear stress. The outer circle gives an impression of the maximum shear stress, i.e., the larger the circle, the
greater the shear stress acting on that plane. The blue shaded area represents all possible combinations of normal and shear
forces for a given cutting plane. A point within this region then corresponds to the orientation of the plane’s normal.

to the principal directions the shear stress vanishes. For
planes with normals bisecting the minimum and maximum
principal direction, the shear stress takes its maximum value
and is called maximum shear stress τmax. The corresponding
directions are called direction of maximum shear stress.

4.2 Shape Space
We use the term shape space for the vector space spanned
by the three eigenvalues. In this space, tensor shape [7] is
represented by a point, whose coordinates are called shape
descriptors. Finding shape descriptors, suiting the initial ques-
tion, then corresponds to finding an appropriate reference
frame (Figure 5). Common orthogonal reference frames cor-
respond to Cartesian, spherical, and cylindrical coordinates,
respectively. An example for a complete orthogonal spheri-
cal invariant set commonly used in the context of diffusion
tensor imaging (DTI) is [7]: tensor norm (radius), fractional
anisotropy (polar angle) and tensor mode (azimuthal angle).
These descriptors represent central physiological properties
(Figure 2). It is worth noting that all angular coordinates
correspond to relative entities and are not defined in the origin
(norm(T )2 = λ 2

1 +λ 2
2 +λ 2

3 = 0). For tensors with small norm,
these values are unstable and sensitive to small changes. As
a consequence, such coordinate systems are not optimal for
indefinite tensors, for which the characteristic invariants may
be positive, negative, or equal to zero (Section 4.1.2).

An additional useful property of a reference frame is orthog-
onality. Orthogonal invariants exhibit maximum independence
of the shape descriptors by isolating changes of one invariant
from variations of the others.

Which shape descriptors to use may depend on a variety of
criteria. We propose the use of descriptors that give answers
to specific questions and that are familiar to domain-experts.
These criteria do not necessarily coincide with the mathemat-
ically most appealing choices.

4.3 Shape Space Scaling
The scale of the shape space’s coordinate axes has a high
impact on the visualization result. Therefore, it plays a crucial
role in the diagram views (Section 5), as well as for rendering
in the spatial domain (Section 6), where tensor invariants
define color, transparency, glyph shape and glyph size. Most

common visualization methods require positive values, which
is challenging for indefinite tensors, where the sign of the
invariants reveals important physical characteristics. On the
other hand, most diagram views are based on positive as well
as negative eigenvalues. An optimal mapping depends on the
given dataset and the desired visualization. It is possible to
apply the mapping before choosing appropriate shape descrip-
tors (holds for relative entities), or afterwards. We distinguish
between the following mappings:
• Sign-preserving mappings (SP): Examples are linear and

logarithmic mappings (Equation 6) as well as histogram
equalizations.

• Mapping to R+ (POS) [28], [38]: Values are mapped to
the positive domain in a way that keeps the distinction
between positive and negative values (Equation 7).

These mappings are further discussed in Sections 5 and 6 in the
context of the specific visualization methods. The eigenvectors
are already normalized and, therefore, do not need a mapping.

4.4 Shape Descriptors and Directions for Stress
Tensors
Typical questions related to stress tensors are concerned
with stability and failure analysis. Therefore, most failure
models build on the analysis of the maximum shear stress.
An example is the Coulomb-Mohr failure criterion [39].
Assuming no internal friction (µ = 0), it states that a material
yields as long as the maximum shear stress τ falls below the
intrinsic shear strength τ0 of the material. Figure 6 depicts
this failure criterion graphically. As long as Mohr’s circle
(Section 5.2) does not intersect the failure line, the inspected
material does not fracture. The normal of the corresponding
fracture plane is the angle bisector of the principal directions
of σ1 and σ3: the direction of maximum shear stress. The
material parameters µ and τ0 are measured in experiments.

Shape descriptors corresponding to the Coulomb criterion
are [39]:

τ =
σ1−σ3

2
maximum shear stress

c =
σ1 +σ3

2

R =
σ1−σ2

σ1−σ3
shape factor.

(4)
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For other failure models, other shape descriptors exist. In
general, these sets are not simple orthogonal coordinate
frames, but represent important physical quantities.

Considering Mohr’s circle, c represents its center, and τ

its radius (Figure 5). The shape factor R ∈ [0,1] reveals the
kind of anisotropy. Similar to the terminology used in DTI,
stresses with R = 0 are called planar and R = 1 are called
linear (Figure 4). It is a relative value and undefined for
small values of τ (isotropic stresses).

An example for another common anisotropy measure con-
sidering all principal stresses is the von Mises stress

σv =
√

0.5 · ((σ1−σ2)2 +(σ2−σ3)2 +(σ1−σ3)2). (5)

σ1

σ3

σ2
(a) Shape Space

c

τ

R
(b) Circle Parameters

σn

τ

(c) Mohr’s Circle

Fig. 5: Shape Space Transformation using the example of
Mohr’s Circle. The shape space (a) is spanned by the major
(x-axis), minor (y-axis), and medium eigenvalue (z-axis). The
tensor’s shape is represented by a point. A circle is described
by its center c and its radius, which corresponds to the
maximum shear τ . These shape descriptors are computed by
a change of basis, which corresponds to a rotation around
the σ2-axis by 45 degrees (b). A final step corresponds to
a mapping of (τ,c,R) to glyph geometry (c), whereas R
distinguishes planar and linear stresses.

τ0+μσn

τ0

τ

σn

(σ1−σ3)/2

σ1

σ1

σ3

σ3

θθ

2θ

σ1σ2σ3

Fig. 6: Coulomb-Mohr failure criterion: The red area indicates
normal-shear force combinations leading to material failure
(left). The relation between the principal stress directions σ1
and σ3 and the predicted fracture plane are given by the angle
θ .

5 DIAGRAM VIEWS

We propose several diagram views, presenting various perspec-
tives onto (stress) tensor characteristics (Figure 2). The views

abstract from the tensor volume’s spatial representation, and
give insight into the statistical distribution of tensor properties.
All attribute-space views are linked and can be used side-by-
side. Brushing in the views creates and updates a mask volume
that is used to assign visualization methods in the spatial view
(Section 6). The diagram views are parameterized by:
• Choice of shape descriptors.
• Choice of directions.
• Choice of shape space scaling.

In this section, we offer a default selection of views and
parameterizations for the failure analysis of stress tensors. Of
course, a wide range of other parameter choices corresponding
to the underlying application and data is possible, too.

Statistical views (e.g. scatterplots, histograms) are especially
suitable to quantify tensor characteristics. We have adapted
scatterplots to fit scalar (Section 5.1) as well as directional
tensor invariants (see Section 5.4). Directional histograms
quantify selected directions, as eigenvectors or the direction
of maximum shear. Furthermore, we present Mohr diagrams
(Section 5.2) as additional perspective on the tensor data. They
are a common tool in engineering, and therefore familiar to
a large group of users. Compared to quantitative techniques,
they give a more detailed view onto single tensors.

5.1 Shape Space Scatterplot
A scatterplot is used to depict the relation between two scalar
invariants. Figure 7 illustrates a scatterplot that is used to
quantify normal (compressive or tensile) and shear stresses.
The input, therefore, are the three principal stresses sorted in
descending order, i.e., σ1 ≥ σ2 ≥ σ3. The plot is divided into
four quadrants (A,B,C,D). Due to the ordering, there never
will be any points in the upper left quadrant (A). Points in
the upper right quadrant (B) correspond to eigenvalues that
are all positive, characterizing tensors of high tensile stresses.
Accordingly, points in the lower left quadrant (C) correspond
to high compressive stresses. The most interesting region is the
lower right quadrant (D), which shows tensors with tensile and
compressive stresses.

To summarize, we can deduce the following tensor field
characteristics from the (σ1,σ3)-scatterplot:
• The more points in quadrant B, the higher the level of

expansion.
• The more points in quadrant C, the higher the level of

compression.
• The more points in quadrant D, the higher the level of

mixed stresses.
• Points that have a large distance to the isotropic axis

exhibit a high level of shear.
• Points that are located near the isotropic axis exhibit no

shear at all; they describe tensors with isotropic behavior.
For the scatterplot, there is no need for a mapping into the

positive domain. In contrast, an explicit distinction between
positive and negative scalar invariants can be important. We
propose two sign-preserving mappings: Logarithmic and his-
togram equalization [40]. As a standard logarithmic mapping
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σ1

σ3 ≤ σ1 < 0 σ3 < 0,σ1 > 0

σ3

σ3 ≤ σ1 > 0

Fig. 7: Schematic illustration of the scatterplot (left). The
x-axis represents the major eigenvalue and the y-axis the
minor eigenvalue. The medium eigenvalue is color-coded (blue
denotes low, red denotes high values). Example scatterplot for
the two-force dataset (right); a simulation of a cube affected by
a pushing and a pulling force, which results in compressive as
well as tensile stresses. The eigenvalues were logarithmically
mapped (Equation 6).

has a singularity in zero, we use

f (σi) =

{
log(σi +1), for σi ≥ 0
− log(1−σi), for σi < 0.

(6)

The results are then linearly mapped to the range of -1 to
1. In order to see as many tensor characteristics as possible,
often a logarithmic mapping is sufficient. For some datasets,
however, the data remain cluttered after the mapping. In this
case, a histogram equalization is useful. Our modular approach
allows an interactive adjustment of the mapping to the needs
of the underlying dataset.

σ1

σ3

(a) (σ1,σ3)

τR = 0.5

planar

linear

(b) (τ,R)

min(σ2) max(σ2)

Fig. 8: Scatterplot for the slit-cube dataset (Section 7) with
varying shape descriptors as input. (a) Considering (σ1,σ3)
as input, regions of compression, expansion and shear can
be distinguished. The inspected dataset exhibits mostly high
shear stresses, no compressive forces and marginally tensile
forces. Therefore, we analyze the shear region (Quadrant D) in
more detail (b) considering (τ,R). Plotting the shape factor R
reveals that within this region more linear (R≈ 1) than planar
(R≈ 0) behavior happens.

5.2 Mohr Diagram
Figure 9 illustrates the Mohr diagram, which is used to
analyze selected tensors in more detail. It consists of Mohr

circles (Figures 4 and 6), which give an impression of the
relationship between the three eigenvalues and their relative
strength. The circle’s position on the x-axis indicates whether
the respective tensor exhibits tensile or compressive forces. Its
radius expresses the level of shear. In the original diagram [11],
most circles would be located around the origin. This is a
region of high interest as it represents high shear and sudden
changes from tensile to compressive stresses. To equalize
the circles’ distribution, we exploit that, in general, a Mohr
diagram is only one-dimensional; all circles are centered at
the x-axis. We categorize the circles according to the tensor’s
anisotropic behavior (isotropic, linear, planar), and divide
the Mohr diagram into three separate diagrams (Figure 9).
Thus, clutter around the origin is reduced significantly. By
drawing semi-circles in context regions, we achieve a more
compact visualization without losing information or clarity.
To summarize, we can deduce the following conditions from
the Mohr Diagram:

• The more circles on the left, the higher the level of
compression.

• The more circles on the right, the higher the level of
expansion.

• Circles around the origin exhibit both: compressive and
tensile forces.

• The greater the circle’s radius, the higher the level of
shear.

• Circles degenerating to a single point exhibit no shear at
all; they describe tensors with isotropic behavior.

• A high number of circles on one of the three
categorization axes represents a high number of
isotropic/linear/planar tensors.

σ3 = σ2 = σ1

R≥ 0.5

R < 0.5

σi < 0 σi > 0

Fig. 9: We extended the Mohr diagram proposed by [11] as
depicted above. The circle’s position on the x-axis represents
whether the corresponding tensor is in compression (left)
or tension (right). The vertical position corresponds to their
anisotropic behavior. For a better overview, we only draw
semi-circles.

Due to its usability for the analysis and depiction of a single
tensor or only a few tensors, the Mohr diagram is best used
after a selection has been specified in the other diagram views.
We achieve a further reduction of Mohr circles to be displayed,
by clustering tensors with similar eigenvalue behavior. As
similarity measure we use the Euclidean distance between two
points in shape space. In the Mohr diagram, we encode the
number of occurrences by color (Figure 13).
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5.3 Directional Histogram
Figure 10 illustrates the directional histogram, which is used
to analyze the distribution of principal shear directions. Of
course, other directions of interest can be inspected, too.
An example is the directions of maximum shear stress.
The spherical diagram projects each direction, for example
the major eigenvector, onto the surface of a unit sphere.
Due to the non-oriented nature of a symmetric tensor’s
directional components only half of the sphere’s surface
needs to be considered. Therefore, all vectors are flipped
to the positive half space of a user-selected axis (x,y,z). To
create the histogram, either a binning or a splatting approach
[12] can be followed. We use the former. The number of
intersections between vectors and a given surface patch on
the sphere are counted, thus performing a region-dependent
binning. For accurate results, a uniform subdivision of the
surface is crucial. To account for patch size variations,
we normalize the counted frequencies by the respective
patch’s surface area. Given a triangulation of the unit sphere,
we either bin by triangle or by the Voronoi cell of each
vertex. Triangle binning results in a discrete visualization
of the counted frequencies, where each triangle is colored
uniformly. Mapping the frequencies to vertex colors produces
a continuous diagram, as the values are interpolated between
neighboring vertices. The interpretation of the final plot
depends on the selected viewing direction. In the 2D plot, the
diagram’s center corresponds to all vectors that are collinear
with this viewing direction. An arbitrary point on the sphere’s
surface represents all vectors that span the angles α and
β with respect to the two axes orthogonal to the selected
viewing direction (Figure 10).

We use two representations of the directional histogram
(Figure 19):
• Hemisphere
• Mapping of the hemisphere into a planar representation

for a better depiction in 2D [41]

180° 0°

90°

0°

180°

α

β

(x, y, z)

(x, y, z)

(x, y, z)

0

P(α,β)

selected viewing axis

Fig. 10: The input directions for directional histogram and
directional scatterplot are projected on a hemisphere, flipping
all vectors to the half space defined by the selected viewing
axis. Each point P(α,β ) on the hemisphere represents all vectors
spanning the angles α and β .

5.4 Directional Scatterplot

The directional scatterplot uses the same setup of unit sphere
and projected vectors as the directional histogram, but in-
stead of binning the directions each vector is represented
by an individual point on the sphere’s surface. This direct
representation of the vectors allows using the point’s size,
color, and transparency to represent tensor properties. Due to
numeric instabilities in simulations, isotropic tensors exhibit
an increased noise ratio (Figure 11, a). To reduce the noise
level in the plot and emphasize pronounced directions, we
map the shear stress to transparency. Thus, nearly isotropic
tensors do not contribute to the final plot (Figure 11, b).
Reasonable quantities to be mapped to colors are normal and
shear stresses.

(a) (b)

Fig. 11: Directional scatterplot for the rotating-star dataset.
In Figure (a), all points have the same transparency, which
reveals artifacts due to isotropic tensors. In Figure (b) the
shear stress is mapped to transparency, i.e., low transparency
for low shear stresses and nearly opaque points for high shear
stresses. Thus, nearly isotropic tensors do not contribute to the
plot.

6 SPATIAL VIEWS

The spatial views represent the tensor field in its original
three-dimensional coordinates. The most basic method to
display tensors in a spatial context is to use graphical icons
(glyphs), e.g. ellipsoids, that are placed at discrete points
within the volume. Although glyphs have the potential
to show the entire tensor information, they fail to give a
continuous view of the tensor field. Such a global view,
however, is important to identify regions of compression
and expansion, respectively. Volume rendering methods give
a global view of the tensor field. However, in general they
only work on derived scalar values and thus do not contain
directional information. We use a hybrid rendering approach,
combining volume rendering with glyphs and tensorlines. The
visualization is interactively steered by a mask volume that
is created and updated through user selections in the diagram
views.

The basic idea is to use various visualization methods to
separate focus and context regions in the dataset. Therefore,
we evaluate the mask volume and map the selected features
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to geometrical tensor representations (glyphs, tensorlines). The
context is visualized by a volume rendering of the remaining
dataset, using a scalar invariant chosen by the user.

Volume Rendering: Volume rendering serves as context
view with decreased opacity in focus regions, allowing to
analyze glyphs and tensorlines in more detail. We use standard
GPU ray-casting of scalar invariants, for example, the von
Mises stress. As tensorlines and glyphs are explicit geometries,
we have to account for correct intersections between volume
and opaque scene geometry. As proposed by [42], we use a
depth image of the geometry. During volume traversal, rays
are stopped as soon as they hit geometry positions.

Tensorlines: To add directional information, tensorlines
can be drawn in focus regions, i.e., seeds are randomly placed
inside the masked volume. Starting at these seed points, the
line is integrated using a fourth-order Runge-Kutta scheme.
The integration is stopped as soon as the line runs into an
isotropic region.

Tensor Glyphs: Alternatively, glyphs can be drawn in
focus regions, encoding the whole tensor information locally.
Currently, we use ellipsoids. In order to distinguish between
positive and negative eigenvalues, we map the tensor to a
positive-definite metric using an antisymmetric-mapping [28]:

f (σi,c,α) = exp(αarctan(c ·σi)). (7)

The parameter c determines the slope of the function in the
origin, α is a scaling parameter. The glyph’s size can be
adapted using a global scale parameter.

7 RESULTS

We describe two visual analysis sessions by means of
two datasets with diverse characteristics (Sections 7.1, 7.2).
Whereas the slit cube simulation is an example where do-
main experts have clear questions, the rotating-star dataset
demonstrates a case with less specific questions. All analyses
were performed on a standard desktop PC, equipped with an
Intel Core 2 Duo CPU with 3.0 GHz and a NVIDIA GeForce
8800GT GPU.

7.1 Exploring the Slit-Cube Dataset
The slit-cube dataset is generated via a finite element simu-
lation of the deformation of a clamped cube with two slits.
Surface forces are applied to the top and the side of the
cube, which is fixed at the bottom. Figure 12 (a) illustrates
this process. The images are rendered based on a uniform
resampling of the dataset. The resolution of the tensor field
is 256×256×256. In this context, the stress tensor expresses
the cube’s response to the applied forces. Questions are:
• How does the material respond to the applied forces?
• Which forces act in the material?

In general, the von Mises stress σv, a scalar value that is
derived from the stress tensor (Equation (5)), is used to predict
yielding of materials. Regions where σv is high, are prone to
material failure.

Figure 12 (b) shows a spatial view of the dataset, using a
hybrid rendering to visualize focus and context. A volume

(a) (b)
min(σv) max(σv)

Fig. 12: Slit Cube. The dataset is based on a finite element
simulation of the deformation of a clamped cube with two slits
(a). It is fixed at the bottom. Surfaces forces act on the top and
the side of the cube. (b) Shows a hybrid rendering of the slit-
cube dataset. Volume rendering of the von Mises stress serves
as context, while ellipsoids oriented by the eigenvectors and
scaled by the eigenvalues are positioned in focus regions to
emphasize high shear stresses.

rendering of the von Mises stress gives an impression of the
whole field, while glyphs are positioned in focus regions and
highlight areas of extremely high stresses. It can be seen that,
due to the applied forces, the cube’s slits increase. Large
stresses are concentrated close to the edges of the slits and at
the bottom where the cube is fixed, while large areas of the
cube are hardly affected by the applied forces.

The von Mises stress is easy to interpret, however,
important information of the stress tensor is ignored. That
is, we cannot say which forces are prevalent in the material
and we cannot say anything about the direction of maximum
stresses.

The (σ1,σ2,σ3)-scatterplot (Figure 8) allows a distinction
between compressive, tensile and mixed stresses as well as
isotropic and high shear stresses. It shows that the inspected
dataset exhibits mostly indefinite stresses, no compressive
forces and marginally tensile forces. Therefore, in the next
step of the analysis, we switch the shape descriptors from
(σ1,σ2,σ3) to (τ,R) using a logarithmical mapping (interac-
tion loop #1) for the display (Figure 8). Thus, the shear region
(Quadrant D) can be analyzed in more detail. Plotting the
maximum shear stress against the shape factor R reveals that
this region exhibits more linear than planar behavior. Linear,
planar and isotropic stresses are further explored in the Mohr
diagram (Figure 13). The circles are color-coded according to
their frequency. Using the Mohr diagram as overview, we can
reveal the physical behavior over the whole field. It is clearly
visible that the slit-cube mainly exhibits indefinite stresses
resulting in Mohr circles centered around the origin. However,
looking at Figures 13 (b), (c) we can also deduce marginally
compressive and tensile forces. As compressive forces are only
small outliers in the scatterplot, we have not seen them before.

As we are especially interested in regions of high shear
stress, we next examine the directions of maximum shear stress
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(a) Overview (b) σi < 0 (c) σi > 0 (d) Zoom

# = 1 max(#)

Fig. 13: Slit Cube. The Mohr diagram (a) mainly reveals mixed stresses (circles around the origin) as already shown in the
scatterplot. Figures (b) and (c) show regions of compressive (b) and tensile forces (c), respectively. Looking at the scatterplot
alone, we deduced that no compressive forces appear in the dataset, as these are only small outliers. Zooming into the linear
region reveals more detail. The circles are colored according to their frequency (#).

(Figure 19). The directional histogram reveals one strongly
expressed peak aligned with the z-direction. A second, minor
accumulation is smeared over a larger angle in x,y-plane, ap-
proximately 90 degrees to the main stress direction. Figure 14
shows a hybrid rendering, where additional tensorlines are
seeded in regions of high stress following the major principal
stress direction.

min(σv) max(σv)

Fig. 14: Slit Cube. The image shows a hybrid rendering of the
slit-cube dataset. Volume rendering of the von Mises stress
serves as context. Tensorlines are seeded in regions of high
stress and integrated along the major eigenvector direction.

7.2 Exploring the Rotating-Star Dataset

Our second example shows data from an astrophysical simu-
lation of a rotating neutron star’s dynamics. Analyzing the
evolution of such systems plays a major role for the un-
derstanding of the fundamental processes involved in core
collapse supernovae and gravitational wave production.

(a) (b)
# = 0 max(#)

Fig. 19: Slit Cube. Directional histogram to examine the
distribution of the directions of maximum shear stress. We
mapped the hemisphere (front part of the sphere in (b)) into a
planar representation (a) for a better depiction in the paper.

The simulation results consist of a variety of data types,
i.e., (complex) scalars, vector fields and tensors. The data
is usually three-dimensional and time-dependent, given on
a grid with spatially varying resolution (AMR). In this
work, we focus on the second-order stress tensor field. The
data is resampled on a uniform grid with a resolution of
128×128×128 samples.

Until now, the domain experts’ examination focused
on the scalar fields (e.g. magnetic-, velocity- and density
fields), which give insight into the evolution of the star
formation. Other data types arise as intermediate product of
the simulation. The additional analysis of the stress tensor
field could support a deeper understanding of the physical
processes that cause this specific formation. Investigations are,
for example, related to the forces that participate in the star’s
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(a) t = 10 (b) t = 500 (c) t = 1580

Fig. 15: Rotating Star. The tensorlines are integrated along the major eigenvector direction. Following the lines shows that the
star’s rotation lags around its perturbation. The seed points were placed at the star’s center using a simple random seeding.
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(a) t = 10

σ₁

(b) t = 500

σ₁

(c) t = 1580

min(τ) max(τ)

Fig. 16: Rotating Star. The scatterplot shows that, due to the perturbation, the forces get stronger with increasing time steps.
The shape of the plot stays the same, which leads to the assumption that the eigenvalues correlate to each other. The color
represents the maximum shear stress τ .

(a) t = 10 (b) t = 500 (c) t = 1580

# = 0 max(#)

Fig. 17: Rotating Star. Directional histogram for the shear vectors. The colored triangles represent the number of data points
(#) exhibiting a maximum shear direction falling into the triangle. At the beginning of the simulation (a) all shear directions
exhibit a specific angle, which is nicely depicted by a single circle in the diagram. In later time steps, the shear directions
become more scattered and the strongly expressed direction splits into two maxima rings (b). With further increasing time, these
two maxima merge again resulting in one dominant ring (c). According to our domain experts, the splitting is not physical. It
possibly reveals discretization artifacts.

(a) t = 10 (b) t = 500 (c) t = 1580

min(λ1) max(λ1)

Fig. 18: Rotating Star. Hybrid rendering that combines volume rendering of the first tensor component with glyphs.
Superquadrics are calculated only on the equatorial plane and colored according to the major eigenvalue λ1. As deduced
from the scatterplot, the forces get stronger with increasing time steps resulting in larger ellipsoids revealing linear forces.

collapse. However, contrary to our first example (Section 7.1),
questions are much more basic. Since the users are not used
to look at the tensor data, they do not have any specific

expectations. Therefore, the first goal of the visual exploration
is to get an initial idea of the information that is contained in
the data. Besides the physical interpretation, a thorough data
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analysis is of high importance to validate the quality of the
simulated data. Often, even simple visualizations can reveal
failures in the simulations.

For a first impression of the dataset, Figure 15 displays
tensorlines following the major eigenvector for three time
steps t. The lines are seeded close to the center of the star.

Figure 20 shows the Mohr diagram of the rotating-star
dataset. Due to the high gravitational forces inside the star only
compressive stresses occur. According to our sign convention
this means that all stresses are negative. In such a case it is
common in the respective application areas to consider only
the absolute value of the stresses. The principal stresses are or-
dered according to their magnitude, i.e., |σ1| ≥ |σ2| ≥ |σ3|. As
a consequence, the dataset reveals positive-definite behavior,
which can be clearly seen in the Mohr diagram. An interesting
observation that can be made when zooming into the focus
regions, is that the stresses exhibit perfectly linear behavior,
i.e., the shape factor is R = 1.

# = 1 max(#)

Fig. 20: Rotating star. The Mohr diagram reveals only com-
pressive forces, which are perfectly linear. According to our
sign convention this means that all stresses are negative.
In such a case it is common in the respective application
areas to consider only the absolute value of the stresses. The
principal stresses are ordered according to their magnitude,
i.e., |σ1| ≥ |σ2| ≥ |σ3| and, thus, restricted to the positive
x−axis. In the selected region we draw full colored circles.

Figure 16 shows scatterplots for three time steps. As
|σ1| ≥ |σ2| ≥ |σ3|, only positive stresses occur. Therefore,
only quadrant B is displayed. It can be observed that after
the initial perturbation the principal stresses |σ1|, |σ3| as well
as the shear forces get stronger with increasing time, i.e.,
the distance to the isotropic axis increases (Figure 16 (c)).
Interestingly the characteristic shape of the scatterplot stays
the same over a long period of time. This might lead to the
assumption that the major and minor eigenvalue correlate to
each other. As we have seen in the Mohr diagram, all tensors
exhibit perfect linear behavior. Therefore, we can deduce that
the major eigenvalue |σ1| grows almost quadratically with
respect to |σ2| and |σ3|.

A temporal analysis of the dominant shear directions can
be performed based on the directional histograms given in
Figure 17. All time steps clearly reflect the symmetry inherent
to the data set. At the beginning of the simulation (t = 10)
all shear directions exhibit a specific angle, which is nicely
depicted by a single circle in the diagram. In later time steps,
the shear directions become more scattered and the strongly
expressed direction splits into two maxima rings (t = 500).
With further increasing time, these two maxima merge
again resulting in one dominant ring (t = 1580). According
to our domain experts, the splitting is not physical. As a
consequence, the visualization triggered a discussion about
the possible reasons for this development. First ideas included
discretization artifacts and problems with the resolution of
the star’s surface.

Figure 18 shows a hybrid rendering of the dataset. The
volume rendering uses the σ11 component of the tensor. Even
though this is not an invariant it expresses a characteristic
tensor behavior, due to the high symmetry of the data. The
rendering is combined with a glyph representation seeded in
the equatorial plane.

8 DISCUSSION

Our results demonstrate the application of the presented
pipeline (Figure 1) and shape space as basic means for
feature designation in attribute space (Section 4). We have
shown that the complexity of tensors can be embedded
into a coherent concept, which builds the foundation for
future research in tensor field visualization. Previous work
mostly concentrated on one particular type of tensor and
visualization technique. Analyzing tensors from diverse
application areas, which exhibit different properties, requires
convertible invariants and variable mapping techniques.
Figure 2 shows invariants for stress tensors, however, the
underlying concept can be used for other tensors, too. As
motivated by our co-operation partners, future research will
include the comparative visualization of different tensor types
that occur during the same simulation (e.g. gravitational field
tensor and stress tensor).

Our results and the discussion with domain experts
further confirm the need for powerful visual exploration and
analysis tools. The concurrent use of well known and new
visualization methods provides an access to both, the data
and modern visualization techniques. In material science and
astrophysics, tensors are simulated solely to investigate scalar
quantities (von Mises stress, density). Tensors mainly appear
as intermediate product of simulations. Although, experts
know that the tensor contains important information, which
may help to answer their questions (What makes the material
crack?, Which forces make the star collapse?), they avoid
looking at the complex data as they do not know how to
interpret it.

Until now, domain experts are mainly used to two-
dimensional plots. Therefore, attribute-space plots are of
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high importance. Our experience is that domain experts
favor simple visualization techniques like scatterplots and
icons that are familiar to them (e.g. Mohr’s circle). In object
space, a sparse usage of lines and glyphs at specific locations
is preferred, which motivates the use of a binary mask
volume to determine focus and context regions. Moreover,
all physicists and engineers rated the brushing-and-linking as
extremely helpful to ease the interpretation of the data. That
way, the visual exploration leads to new questions, which
encourages both, the curiosity to look at the whole tensor
and, as a consequence, the development and usage of more
complex visualization techniques. Another aspect that arose
during discussions was the usefulness of our methods to
detect failures in simulations.

Our material science partners really like the Mohr diagram;
the familiar technique motivated them to use our tools. For
astrophysicists the representation was new but considered
as interesting. A limitation is that the diagram suffers
from clutter. A clear distinction between linear and planar
anisotropy in the tensor field is still difficult. Therefore, we
will integrate clustering algorithms in the future to reveal
more insight into important tensor properties.

Another subject that remains to be investigated is volume
rendering in the context of tensor fields. Users like this
visualization technique as they know, how to interpret it. This
work presents renderings of scalar measures (e.g., von Mises
stress). Recently, Dick et al. [1] presented a colormapping of
the three eigenvalues to distinguish between compressive and
tensile forces. More advanced colormappings based on other
tensor invariants may be interesting, too.

9 CONCLUSION

To the best of our knowledge, we presented the first approach
that solves the challenging problem of visualizing three-
dimensional tensor fields by combining multiple views. A
solid theoretical basis was provided by extending the notion
of shape space, which serves as a link between the abstract
tensor and its visualization in attribute space. This theory
provides an intuitive way of finding relevant features.

In the considered application areas, visual tensor analysis
and exploration are still in their infancy. Domain experts are
often used to the analysis of derived scalar fields, although they
know that the tensor field contains important information to
their questions. Especially attribute plots help them to familiar-
ize themselves with more advanced visualization techniques,
explore the data and to construct new hypotheses.
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