
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

YUJI SHINANO
TOBIAS ACHTERBERG?

TIMO BERTHOLD??

STEFAN HEINZ??

THORSTEN KOCH

ParaSCIP – a parallel extension of SCIP

? ILOG, on IBM Deutschland GmbH, Ober-Eschbacher Str. 109, 61352 Bad Homburg v.d.H., Germany
?? Supported by the DFG Research Center MATHEON Mathematics for key technologies in Berlin.

ZIB-Report 10-27 (December 2010)

ParaSCIP – a parallel extension of SCIP∗

Yuji Shinano, Tobias Achterberg, Timo Berthold, Stefan Heinz, and Thorsten Koch

Abstract Mixed integer programming (MIP) has become one of the most impor-
tant techniques in Operations Research and Discrete Optimization. SCIP (Solving
Constraint Integer Programs) is currently one of the fastest non-commercial MIP
solvers. It is based on the branch-and-bound procedure in which the problem is
recursively split into smaller subproblems, thereby creating a so-called branching
tree. We present ParaSCIP, an extension of SCIP, which realizes a parallelization
on a distributed memory computing environment. ParaSCIP uses SCIP solvers as
independently running processes to solve subproblems (nodes of the branching tree)
locally. This makes the parallelization development independent of the SCIP devel-
opment. Thus, ParaSCIP directly profits from any algorithmic progress in future
versions of SCIP. Using a first implementation of ParaSCIP, we were able to solve
two previously unsolved instances from MIPLIB2003, a standard test set library for
MIP solvers. For these computations, we used up to 2048 cores of the HLRN II
supercomputer.

1 Introduction

Branch-and-bound is a very general and widely used method to solve discrete op-
timization problems. An important class of problems which can be solved using
this method are mixed integer programs (MIP). The challenge of these problems
is to find a feasible assignment to a set of decision variables which yields a mini-

Yuji Shinano · Timo Berthold · Stefan Heinz · Thorsten Koch
Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
e-mail: {shinano, berthold, heinz, koch}@zib.de

Tobias Achterberg
ILOG, on IBM Deutschland GmbH, Ober-Eschbacher Str. 109, 61352 Bad Homburg v.d.H., Ger-
many, e-mail: achterberg@de.ibm.com

∗ Supported by the DFG Research Center MATHEON Mathematics for key technologies in Berlin.

1

2 Yuji Shinano, Tobias Achterberg, Timo Berthold, Stefan Heinz, and Thorsten Koch

mum/maximum value with respect to a given linear objective function. The feasible
region for these problems is described by linear inequalities. In addition a subset of
the variables are only allowed to take integer values. These problems are NP-hard
in general [12].

The well-known idea of branching is to successively subdivide the given problem
instance into smaller problems until the individual subproblems (or sub-MIPs) are
easy to solve. During the course of the algorithm, a branching tree is generated
in which each node represents one of the subproblems. To be able to prune the
vast majority of nodes at an early stage, sophisticated mathematical techniques are
used. This allows a dramatic reduction of the size of the branching tree. Typically,
problems with ten thousand variables and constraints (i.e., approximately 210000

potential solutions) can be solved by investigating a few hundred thousand branch-
and-bound nodes.

State-of-the-art MIP solvers such as CPLEX [3], Gurobi [1], or SCIP [8] are
based on a branch-and-cut [15] procedure, a mathematically involved variant of
branch-and-bound. Parallelizing branch-and-cut algorithms has been proven to be
difficult, due to fact that the decisions involved depend on each other [16]. State-of-
the-art codes learn from the decisions already taken, assuming a sequential order-
ing. Furthermore, basically all algorithmic improvements presented in the literature
aim at reducing the size of the branching tree, thereby making a parallelization less
effective and even more difficult. The latter is due to the observation, that they typi-
cally increase the need for communication and make the algorithm less predictable.
Therefore, a well-designed dynamic load balancing mechanism is an essential part
of the parallelizing branch-and-cut algorithms.

Since its introduction in 1992, the MIPLIB [11] has become a standard test set li-
brary used to compare the performance of MIP solvers. The MIPLIB contains a col-
lection of difficult real-world instances mostly from industrial applications. Its avail-
ability has provided an important stimulus for researchers in this active area. The
current version, MIPLIB2003 [9, 4], contains more than thirty unsolved instances
when it was originally released. This number could be reduced to six; stalling at this
level since 2007. These six instances resisted all attempts of the commercial vendors
and the research community to solve them to proven optimality.

Algorithmic improvements for state-of-the-art sequential MIP solvers have been
tremendous during the last two decades [10]. For an overview on large scale paral-
lelization of MIP solvers, see [18]. Most of these approaches struggled, however, to
catch up with the performance of state-of-the-art commercial and non-commercial
sequential MIP solvers when it comes to solving really hard MIP instances of gen-
eral nature. Many unsolved instances of MIPLIB2003 were first solved using se-
quential solvers [13].

In the following we describe how we developed a massive parallel distributed
memory version of the MIP solver SCIP [5] to harness the power of the HLRN II
supercomputer [2] in order to solve two of the remaining open instances of the
MIPLIB 2003.

ParaSCIP – a parallel extension of SCIP 3

2 SCIP– Solving Constraint Integer Programs

SCIP (Solving Constraint Integer Programs) is a framework for constraint integer
programming. Constraint integer programming is an extension of MIP and a special
case of the general idea of constraint programming (CP). The goal of SCIP is to
combine the advantages and compensate the weaknesses of CP and MIP.

An important point for the efficiency of MIP and CP solving algorithms is the in-
teraction between constraints. SCIP provides two main communication interfaces:

(i) propagation of the variables’ domains as in CP and
(ii) the linear programming relaxation as in MIP.

SCIP uses a branch-and-bound scheme to solve constraint integer programs (see
Section 2.2). The framework is currently one of the fastest MIP solvers [14], even
so it is suitable for a much richer class of problems. For more details about SCIP
we refer to [7, 8, 5].

2.1 Mixed integer programs

In this paper, we only focus on mixed integer programs (MIPs), which can be de-
fined as follows:

Definition 1 (mixed integer program). Let R̂ := R∪{±∞}. Given a matrix A ∈
R

m×n, a right-hand-side vector b∈Rm, an objective function vector c∈Rn, a lower
and an upper bound vector l,u∈ R̂n and a subset I⊆N = {1, . . . ,n}, the correspond-
ing mixed integer program MIP = (A,b,c, l,u, I) is to solve

min cT x

s.t. Ax≤ b

l ≤ x≤ u

x j ∈R for all j ∈ N \ I

x j ∈ Z for all j ∈ I.

The goal is to find an assignment to the (decision) variables x such that all lin-
ear constraints are satisfied and the objective function cT x is minimized. Note that,
the above format is quite general. First, maximization problems can be transformed
to minimization problems by multiplying the objective function coefficients by −1.
Similarly, “≥” constraints can be multiplied by−1 to obtain “≤” constraints. Equa-
tions can be replaced by two opposite inequalities.

The linear programming relaxation is achieved by removing the integrality con-
ditions. The solution of the relaxation provides a lower bound on the optimal solu-
tion value.

4 Yuji Shinano, Tobias Achterberg, Timo Berthold, Stefan Heinz, and Thorsten Koch

2.2 Branch-and-bound

One main technique to solve MIPs is the branch-and-bound procedure. The idea
of branching is to successively subdivide the given problem instance into smaller
subproblems until the individual subproblems are easy to solve. The best of all so-
lutions found in the subproblems yields the global optimum. During the course of
the algorithm, a branching tree is generated in which each node represents one of
the subproblems.

The intention of bounding is to avoid a complete enumeration of all potential
solutions of the initial problem, which usually are exponentially many. For a mini-
mization problem, the main observation is that if a subproblem’s lower (dual) bound
is greater than the global upper (primal) bound, the subproblem can be pruned.
Lower bounds are calculated with the help of the linear programming relaxation,
which typically is easy to solve. Upper bounds are obtained by feasible solutions,
found, e.g., if the solution of the relaxation is also feasible for the corresponding
subproblem.

3 ParaSCIP

In this section, we introduce ParaSCIP, a parallel extension of SCIP. The design
goals of ParaSCIP are to exploit SCIP’s complete functionality, to keep the inter-
face simple, and to scale to at least 10 000 cores in parallel.

We will focus on two important features, the dynamic load balancing and the
checkpointing mechanism.

3.1 A dynamic load balancing mechanism

In this section we illustrate the workflow of the dynamic load balancing mechanism
for ParaSCIP. Workload of a sub-MIP computation strongly depends on two fac-
tors. One is the number of branching nodes per solver, which may vary from one
to several millions. The other is the computing time of a single branch-and-bound
node, which may vary from less than one millisecond to several hours. Therefore,
the dynamic load balancing mechanism is a key factor for the parallelization of
branch-and-bound algorithms.

Initialization phase

In the beginning, the LOADCOORDINATOR, which acts as a master process, reads
the instance data for a MIP model which we refer to as the original instance. This
instance is presolved (see Section 4.2) directly inside the LOADCOORDINATOR.

ParaSCIP – a parallel extension of SCIP 5

Original Instance Presolved Instance

SOLVER 1

SOLVER 2

SOLVER n

...

LOADCOORDINATOR

Fig. 1 Initialization phase

MIP presolving tries to fix variables and to detect redundancy of certain constraints,
for details see [7]. The resulting, typically quite smaller, instance will be called the
presolved instance. The presolved instance is extracted from the SCIP environment,
broadcasted to all available SOLVER processes, and embedded into the (local) SCIP
environment of each SOLVER process. This is the only time when the complete
instance is transferred. Later, only the differences between a subproblem and the
presolved problem will be sent. Figure 1 illustrates this initialization procedure. At
the end of this phase all SOLVERs are instantiated with the presolved instance.

Transferring branch-and-bound nodes

After the initialization step, the LOADCOORDINATOR creates the root node of the
branch-and-bound tree. Each node transferred through the system acts as the root
of a subtree. The information that has to be sent consists only of bound changes
for variables between the presolved instance and the subproblem, which gets trans-
ferred. For the initial root node there is no difference between the presolved instance
and the subproblem.

All nodes, which are transferred to SOLVERs, are kept in the LOADCOORDINA-
TOR with their solver statuses until the corresponding solving process terminates.
The SOLVER which receives a new branch-and-bound node instantiates that sub-
problem using the presolved instance (which was distributed in the initialization
phase) and the received bound changes. After that, the SOLVER starts working on
the subproblem.

Load balancing

Load balancing for MIP solving highly depends on the primal and dual bounds,
which are updated during the solving process. The primal bound is given by the
value of the best solution that has been found so far during the solving process. If
one of the SOLVERs finds an improved solution, this solution is sent to the LOAD-

6 Yuji Shinano, Tobias Achterberg, Timo Berthold, Stefan Heinz, and Thorsten Koch

COORDINATOR, which distributes the updated primal bound to all other SOLVERs.
If a SOLVER receives an improved primal bound, it will immediately apply bound-
ing, hence, prune all nodes in its search tree that cannot contain any better solution
anymore.

Periodically, each SOLVER notifies the LOADCOORDINATOR about the number
of unexplored nodes in its SCIP environment and the dual bound of its subtree
which define the solver status. The dual bound is a proven lower bound on the
value of the best solution in that subtree. It is derived from the linear programming
relaxation (see Section 2.1) at the individual nodes. At the same time the SOLVER
is notified about the best dual bound value of all nodes in the node pool of the
LOADCOORDINATOR, which we will refer to as BESTDUALBOUND.Note that this
does not include nodes that are currently processed by any SOLVER.

If a SOLVER is idle and the LOADCOORDINATOR has unprocessed nodes avail-
able in the node pool, then the LOADCOORDINATOR sends one of these nodes to
the idle SOLVER.

To handle the situation that several solvers become idle at the same time, the
LOADCOORDINATOR should always have a sufficient amount of unprocessed nodes
left in its node pool. This ensures that the SOLVERs are kept busy throughout the
computation.

In order to keep at least p “good” nodes in the LOADCOORDINATOR, we in-
troduce the collecting mode, similar to the one introduced in [17]. We call a node
good, if the dual bound value of its subtree (NODEDUALBOUND) is close to the
dual bound value of the complete search tree (GLOBALDUALBOUND).

Consider the case that the LOADCOORDINATOR is not in collecting mode, and it
detects that less than p good nodes with

NODEDUALBOUND−GLOBALDUALBOUND

max{|GLOBALDUALBOUND|,1.0}
< THRESHOLD (1)

are available in the node pool, the LOADCOORDINATOR switches to collecting
mode and requests selected SOLVERs that have nodes which satisfy (1) to switch
also into collecting mode. If the LOADCOORDINATOR is in collecting mode and
the number of nodes in its pool that satisfy (1) is larger than mp · p, it requests all
collecting mode SOLVERs to stop the collecting mode.

If a SOLVER receives the message to switch into collecting mode, it changes the
search strategy to either “best estimate value order” or “best bound order” (see [7]).
It will then alternately solve nodes and transfer them to the LOADCOORDINATOR.
This is done until the SOLVER receives the message to switch out of the collecting
mode. If a node of the branch-and-bound tree is selected to be sent to the LOADCO-
ORDINATOR, the corresponding SOLVER collects the bound changes of that node
w.r.t. the presolved instance, transfers the differing bounds to the LOADCOORDI-
NATOR, and prunes the node from the subproblem’s branch-and-bound tree.

In the context of parallel branch-and-bound, the process until all SOLVERs are
busy is called ramp-up phase [18]. In the ramp-up phase, all SOLVERs run in col-

ParaSCIP – a parallel extension of SCIP 7

lecting mode. The ramp-up phase continues until the number of nodes in the node
pool of the LOADCOORDINATOR is greater than the value p.

The most crucial issue for the load balancing mechanism is to avoid solving
useless subproblems. Consider the situation that a SOLVER is solving a subproblem
for which the dual bound is already quite large. Then, an improvement in the primal
bound will cause all nodes of the subproblem to be pruned.

The SOLVER can detect this situation locally using the best dual bound value
of all nodes in the node pool of the LOADCOORDINATOR (BESTDUALBOUND).
In this situation, the SOLVER requests another node from the LOADCOORDINATOR
while still continuing to solve the current node. After the LOADCOORDINATOR sent
a new node to the SOLVER and restored the old solving node in its node pool, the
SOLVER stops the solution process and restarts with the new node. The solution of
the old node is “delayed”. Note that in case that there is no node available in the
LOADCOORDINATOR, the SOLVER keeps continuing to solve the old node.

The termination phase is started after the LOADCOORDINATOR detects that the
node pool is empty and all SOLVERs are idle.

3.2 Checkpointing and restarting

Checkpointing mechanisms are a common concept in parallel computing to protect
a code against hardware and software failures. The chance that a compute node
crashes within a given time frame increases with the number of compute nodes in
the parallel system. Further, it is not possible to estimate the computing time for
solving a given MIP instance. If the usage of a parallel computing environment is
restricted by a certain time limit, we cannot predict reliably whether the computation
will be finished within that time window. These two issues make checkpointing and
restarting prerequisite functions of a parallel MIP solver.

A natural way for checkpointing would be to save all open nodes of all branch-
and-bound trees and the best primal solution found so far. The number of open
nodes, however, typically grows very fast for hard problem instances. If checkpoint-
ing is performed frequently, this will lead to a huge amount of I/O, slowing down
the computation.

Therefore, we decided to save only primitive nodes, that is, nodes for which no
ancestor nodes are in the LOADCOORDINATOR. This strategy requires much less
effort for the I/O system, even in large scale parallel computing environments. For
restarting, however, it will take longer to recover the situation from the previous run.

To restart, ParaSCIP reads the nodes saved in the checkpoint file and restore
them into the node pool of the LOADCOORDINATOR. After that, the LOADCOOR-
DINATOR distributes these nodes to the SOLVERs ordered by their dual bounds.

In the ramp-up phase, the distributed subproblems are aggressively broken down,
because always one of two branched nodes is transferred to the LOADCOORDINA-
TOR. Further, this node will be presolved as it will become the root node of a sub-
problem. Therefore, the checkpointing and restarting mechanism can be understood

8 Yuji Shinano, Tobias Achterberg, Timo Berthold, Stefan Heinz, and Thorsten Koch

as an implicit load balancing mechanism. It detects the hardest part of the branch-
and-bound tree and automatically breaks it down to easier subproblems.

4 Solving open instances from MIPLIB2003 on HLRN II

In this section, we present computational results for solving two open problem in-
stances, ds and stp3d, from MIPLIB2003 which were conducted on the HLRN II
supercomputer [2]. The computations were performed using SCIP 1.2.1.2 with
CPLEX 12.1 as underlying linear programming solver.

The best known upper bound for the instance ds and stp3d were 116.59 and
500.736, respectively [13]. The optimal values that we proved are 93.52 for the ds
instance (decreased by about 25%) and 493.71965 (decreased by 1%) for stp3d.

4.1 ds and stp3d instances

The instance ds models a real-world duty scheduling problem of a German public
transportation company. In this context, duty scheduling means the assignment of
daily shifts of work to bus or tram drivers by means of a schedule. For this particular
model, the number of duties, represented by 0-1-variables is 67732, the number of
tasks, represented by linear constraints, is 656. The number of variables set to one in
an optimal solution is equal to the cost minimal number of duties to cover all tasks.

stp3d is a Steiner tree packing problem in a three dimensional grid graph. The
instance is a “switchbox routing problem” where connections (wires) between var-
ious endpoints (terminals) have to been routed in the graph. Each set of endpoints
defines a Steiner tree problem which is already NP-hard. In stp3d there are sev-
eral Steiner trees, which have to be placed at the same time into the graph in a node
disjoint way. The objective is to minimize the total length of all networks. Here,
already showing feasibility is NP-hard. Consisting of 204880 variables and 159488
constraints, stp3d is the largest instance in MIPLIB2003.

4.2 Extended presolving

Instances that are to be solved on a supercomputer are usually expected to have an
enormous running time. Hence, all possibilities to reduce the overall running time
in advance should be exploited.

Presolving is an important feature of state-of-the-art MIP solvers that often re-
duces the overall computation time considerably. The task of presolving is twofold:
first, it reduces the size of the model by proving that certain constraints or vari-
ables are redundant and can be removed from the problem formulation or fixed to

ParaSCIP – a parallel extension of SCIP 9

a certain value, respectively, without changing the optimal solution value. Second,
it strengthens the LP relaxation of the model by exploiting integrality information,
e.g., to tighten the bounds of the variables or to improve coefficients in the con-
straints. SCIP provides several presolving techniques, some of which are deacti-
vated by default, due to their computational complexity.

Before starting the parallel computation, we applied an extended preprocessing
on a single machine. Therefore, we used SCIP’s “aggressive presolving” settings
and afterwards performed strong branching on all problem variables. For 0-1 vari-
ables, strong branching tentatively fixes a variable to zero (and subsequently to one),
and solves the corresponding LP relaxation. If this LP turns out to be infeasible, the
variable can be fixed to the opposite value in the original problem. If we could fix
at least one of the problem variables, we iterate the process, starting again with
aggressive presolving.

In particular for the instance stp3d, extended presolving helped to reduce the
problem size and thereby the expected computation time. For this instance, the de-
fault presolving of SCIP reduces the problem size to 136500 variables and 97144
constraints, whereas nine iterations of extended presolving reduced the problem size
to 123637 integer variables and 88388 constraints.

4.3 HLRN II

HLRN II is a massive parallel supercomputing system which is one of the most
powerful computers in Germany and number 64 in the TOP500 list as of November
2010 [6]. From the global system view, HLRN II consists of two identical complexes
located at RRZN in Hannover and ZIB in Berlin. Both complexes are coupled by
the HLRN link, a dedicated fiber connection for HLRN. In the current stage each
complex consists of three parts, the so-called MPP1, MPP2, and the SMP part. We
used MPP2 part whose specification is as follows:

• 960 eight-core compute nodes (2 quad-core sockets each for Intel Xeon Gainestown
processors (Nehalem EP, X5570) running at 2.93 GHz) with 48 GB memory

• Total peak performance 90 TFlop/s
• Total memory 45 TByte
• 4x DDR Infiniband Dual Rail network for MPI
• 4x DDR Infiniband network for I/O to the global Lustre filesystems

4.4 Computational results

The instances ds and stp3d were solved by ParaSCIP on HLRN II using up to
2048 cores for each run and needed to be warm started 16 and 10 times, respectively.
Tables 1 and 2 show the status of each job for ds and stp3d, respectively. HLRN II
is not able to swap, hence real memory size is a strict limit. If a memory shortage

10 Yuji Shinano, Tobias Achterberg, Timo Berthold, Stefan Heinz, and Thorsten Koch

occurs, all SOLVER processes will terminate immediately and solving has to be
restarted.

Tables 1 and 2 show the number of runs needed to solve the instance, the ramp-
up times and the elapsed computation times until the final checkpoint of each single
run. When a SOLVER finishes a sub-MIP computation, it sends its statistical data to
the LOADCOORDINATOR. In case a SOLVER did not finish the first sub-MIP com-
putation by the final checkpoint, its performance will not be taken into consideration
for the statistics. The tables show the number of SOLVERs that solved at least one
sub-MIP to optimality. Note that the SOLVERs which have been idle until the final
checkpoint, e.g. because ramp-up did not finish, have no statistical data. The “# of
nodes to restart” column shows the number of nodes used for restarting the com-
putation. This corresponds to the number of nodes that had been saved at the final
checkpoint of the previous run. Thus, it is always zero for the first job and greater
zero for all subsequent jobs. The final column shows the number of nodes solved at
the job. Note that the number of nodes at the checkpoints is very small compared to
the number of nodes solved for the computations.

The ramp-up time varies among different runs for the same instance. This is due
to the fact, that we changed some parameter settings to better adopt to the individual
behavior of an instance. These changes only influence the path the solver takes, not
the overall result. It took approximately 86 hours to solve ds and approximately 114
hours to solve stp3d to proven optimality. Due to the checkpoint system described
above, some parts of the tree might be resolved several times and only the final solve
will be counted in the statistics.

The summary of statistical data therefore gives an underestimation of the number
of branch-and-bound nodes. The number of nodes was 1174818123 for ds and
14788888 for stp3d. All SOLVERs bookkeep the idle time, that is not used for
solving any sub-MIP. The idle time ratio of all SOLVERs was about 2.2% for solving
ds and 3.9% for solving stp3d. We plan to conduct a single job computation to
solve these instances, in order to provide precise values for the number of branch-
and-bound nodes and the idle time ratios.

Figures 2 and 4 show how the primal and dual bound evolved during the course of
the solution process. The behavior is typical for MIP instances. The primal bound
moves stepwise and reaches the optimal values significantly faster than the dual
bound. The dual bound moves smoothly, stays nearly constant for a long time and
collapses towards the end of the solution process.

Figures 3 and 5 show how the workloads (that is, the number of branch-and-
bound nodes left in all SOLVERs) and the number of nodes in the LOADCOOR-
DINATOR node pool change during the computations. During the whole solution
process, nearly all nodes are “good” w.r.t. our definition from Section 3.1. Para-
SCIP manages very well to keep the node pool of the LOADCOORDINATOR filled.
As long as the node pool is not empty, no SOLVER will become idle. Thus, the small
idle time ratio is due to the management of the node pool.

ParaSCIP – a parallel extension of SCIP 11

Table 1 Each job status for solving ds instance

Job # of cores Comp. Time Ramp-up # of solvers solved # of nodes # of nodes
No. used (sec.) Time(sec.) at least one sub-MIP to restart solved

1 512 14400.5 249.2 185 0 1328147
2 512 18000.6 247.4 105 1 1766849
3 1024 32401.2 333.1 1019 1 71108615
4 2048 23401.1 535.1 2045 8 137270553
5 2048 14400.9 1335.0 2046 5 88130034
6 2048 18001.1 366.5 2020 89 127816887
7 2048 12600.8 324.8 1997 157 77649716
8 2048 16201.2 333.0 1976 248 102950355
9 2048 14401.0 282.0 1927 311 87778722

10 2048 12600.9 309.0 1930 301 71857862
11 2048 12600.8 299.0 1937 292 74279899
12 2048 14400.9 277.5 1911 219 90106215
13 2048 30673.3 – 57 243 477
14 2048 10800.7 294.3 1917 191 57494144
15 2048 14401.0 300.5 1935 196 87130452
16 2048 41402.7 363.4 2047 256 97785724
17 1024 8820.1 353.2 1023 196 363472

– : stopped before ramp-up

Table 2 Each job status for solving stp3d instance

Job # of cores Comp. Time Ramp-up # of solvers solved # of nodes # of nodes
No. used (sec.) Time(sec.) at least one sub-MIP to restart solved

1 512 41467.4 6165.8 239 0 64545
2 1024 41407.4 2927.4 320 146 199719
3 2048 41403.9 2362.3 1185 592 766133
4 2048 1800.3 – 83 527 100
5 2048 1800.4 – 2 446 2
6 2048 1800.3 – 1 444 1
7 2048 1800.9 – 1 443 1
8 2048 43203.9 2474.6 822 442 806159
9 2048 41403.9 2914.2 1817 626 1555160

10 2048 41405.6 4406.7 1778 229 1538151
11 2048 152912.0 3841.8 2047 429 9858917

– : stopped before ramp-up

5 Concluding remarks

We have shown that using our approach, ParaSCIP is able to effectively use the
computing power scales of several thousand cores to solve mixed integer programs.
Furthermore, this could be done without changing the inner workings of the sophis-
ticated sequential algorithm.

Still, many open questions remain. Using a shared memory version of Para-
SCIP, we are planning to estimate how much speed we loose by not using a more

12 Yuji Shinano, Tobias Achterberg, Timo Berthold, Stefan Heinz, and Thorsten Koch

 50

 100

 150

 200

 250

 300

 0 50000 100000 150000 200000 250000 300000 350000

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

Computing Time (sec.)

"Primal_Bound"
"Optimal"

"Dual_Bound"

Fig. 2 Bounds evolution for ds

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 50000 100000 150000 200000 250000 300000 350000

N
u
m

b
e
r

o
f
N

o
d
e
s
 +

 1

Computing Time (sec.)

"Global_Loads"
"Pool_Usages"

Fig. 3 Workload evolution for ds

 480

 485

 490

 495

 500

 505

 510

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

Computing Time (sec.)

"Primal_Bound"
"Optimal"

"Dual_Bound"

Fig. 4 Bounds evolution for stp3d

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000

N
u
m

b
e
r

o
f
N

o
d
e
s
 +

 1

Computing Time (sec.)

"Global_Loads"
"Pool_Usages"

Fig. 5 Workload evolution for stp3d

fine grained parallelism. When increasing the number of cores the time spent in
the ramp-up and ramp-down phases also increases, hampering scalability. We are
currently investigating ways to improve the effectiveness of load balancing during
these phases. While ds and stp3d could be successfully solved, others instances
remain, for which it is unclear which amount of computing time is needed to pro-
duce an optimal solution with today’s MIP solver technology. Trying to judge in
advance, whether an instances is suitable for massive parallel solving and predict-
ing remaining running times is an important topic to be investigated in the future.

References

1. Gurobi Optimizer. http://www.gurobi.com/
2. HLRN – Norddeutscher Verbund zur Förderung des Hoch- und Höchstleistungsrechnens.

http:/www.hlrn.de/
3. IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/software/integration/optimization/cplex-

optimizer/
4. Mixed Integer Problem Library (MIPLIB) 2003. http://miplib.zib.de/
5. SCIP: Solving Constraint Integer Programs. http://scip.zib.de/
6. TOP500 Supercomputer Sites. http://www.top500.org/list/2010/11/100

ParaSCIP – a parallel extension of SCIP 13

7. Achterberg, T.: Constraint integer programming. Ph.D. thesis, Technische Universität Berlin
(2007)

8. Achterberg, T.: SCIP: Solving constraint integer programs. Mathematical Programming Com-
putation 1(1), 1–41 (2009)

9. Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Operations Research Letters 34(4), 1–12
(2006)

10. Bixby, R., Rothberg, E.: Progress in computational mixed integer programming – A look back
from the other side of the tipping point. Annals of Operations Research 149(1), 37–41 (2007)

11. Bixby, R.E., Boyd, E.A., Indovina, R.R.: MIPLIB: A test set of mixed integer programming
problems. SIAM News 25, 16 (1992)

12. Karp, R.M.: Reducibility among combinatorial problems. In: R.E. Miller, J.W. Thatcher (eds.)
Complexity of Computer Computations, pp. 85–103. Plenum Press, New York, USA (1972)

13. Laundy, R., Perregaard, M., Tavares, G., Tipi, H., Vazacopoulos, A.: Solving hard mixed-
integer programming problems with Xpress-MP: A miplib 2003 case study. INFORMS Jour-
nal on Computing 21(2), 304–313 (2009)

14. Mittelmann, H.: Mixed integer linear programming benchmark (serial codes).
http://plato.asu.edu/ftp/milpf.html

15. Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-scale sym-
metric traveling salesman problems. SIAM Review 33, 60–100 (1991)

16. Ralphs, T.K., Ladányi, L., Saltzman, M.J.: Parallel branch, cut and price for large-scale dis-
crete optimization. Mathematical Programming Series B 98(1–3), 253–280 (2003)

17. Shinano, Y., Achterberg, T., t: Fujie: A dynamic load balancing mechanism for new paralex.
In: In: Proceedings of ICPADS 2008, pp. 455–462 (2008)

18. Xu, Y., Ralphs, T.K., Ladányi, L., Saltzmann, M.J.: Computational experience with a software
framework for parallel integer programming. INFORMS Journal on Computing 21(3), 383–
397 (2009)

