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Abstract

In this paper, we discuss the relation of unsplittable shortest path routing (USPR) to
other routing schemes and study the approximability of three USPR network planning
problems. Given a digraph D = (V, A) and a set K of directed commodities, an USPR is
a set of flow paths Φ(s,t), (s, t) ∈ K, such that there exists a metric λ = (λa) ∈ ZA

+ with
respect to which each Φ(s,t) is the unique shortest (s, t)-path.

In the Min-Con-USPR problem, we seek for an USPR that minimizes the maximum
congestion over all arcs. We show that this problem is hard to approximate within a
factor of O(|V |1−ǫ), but easily approximable within min(|A|, |K|) in general and within
O(1) if the underlying graph is an undirected cycle or a bidirected ring. We also construct
examples where the minimum congestion that can be obtained by USPR is a factor of
Ω(|V |2) larger than that achievable by unsplittable flow routing or by shortest multi-path
routing, and a factor of Ω(|V |) larger than by unsplittable source-invariant routing.

In the Cap-USPR problem, we seek for a minimum cost installation of integer arc
capacities that admit an USPR of the given commodities. We prove that this problem
is NP-hard to approximate within 2 − ǫ (even in the undirected case), and we devise
approximation algorithms for various special cases. The fixed charge network design
problem FC-USPR, where the task is to find a minimum cost subgraph of D whose fixed
arc capacities admit an USPR of the commodities, is shown to be NPO-complete.

All three problems are of great practical interest in the planning of telecommunication
networks that are based on shortest path routing protocols. Our results indicate that
they are harder than the corresponding unsplittable flow or shortest multi-path routing
problems.
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Approximation
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1 Introduction

Many data networks presently employ shortest path routing protocols such as OSPF, IS-
IS, or RIP [42, 43, 44]. With these routing protocols, all end-to-end traffic streams are
routed along shortest paths with respect to some administrative link lengths (or routing
weights). The simplicity of this policy offers many advantages in practice: It admits the use
of decentralized and distributed routing algorithms, it has very good scaling properties with
respect to the network size, and it typically leads to less administrative overhead than with
classical connection oriented protocols. On the other hand, the shortest path routing policy
has an inherent drawback: It is not possible to configure end-to-end routing paths for the
communication demands individually. The routing paths can be controlled only jointly and
only indirectly by changing the administrative routing lengths of the network links.

Finding a metric of routing lengths that induce a set of globally efficient end-to-end
routing paths is a major difficulty in such networks. The shortest path routing paradigm
enforces rather complicated and subtle interdependencies among the paths that comprise a
valid routing. Additional difficulties arise if the communication demands must be sent unsplit
through the network – a requirement that is often imposed in order to ensure tractability of
end-to-end traffic flows and to prevent package reordering and other unwanted effects of multi-
path routing in practice. In this case, the lengths must be chosen such that the shortest paths
are uniquely determined for all communication demands.

The task of finding an efficient such routing in an existing network can be formulated as
a minimum congestion unsplittable shortest path routing problem (Min-Con-USPR). The
problem input consists of a digraph D = (V,A) with arc capacities ca ∈ Z+ for all a ∈ A,
and a set of directed commodities K ⊆ V × V with demand values d(s,t) ∈ Z+, (s, t) ∈ K.
A feasible solution is an unsplittable shortest path routing (USPR) of the commodities, i.e.,
a metric λ = (λa)a∈A ∈ ZA

+ that induces a unique shortest (s, t)-path for each commodity
(s, t) ∈ K. Each commodity’s demand is sent unsplit along its shortest path. The objective
is to minimize the maximum congestion (i.e., the flow to capacity ratio) over all arcs, which
is a good measure for the overall network service quality.

The task of designing and dimensioning an USPR network may be formulated as a fixed
charge network design problem (FC-USPR) or as a capacitated network design problem
(Cap-USPR). In both problems, we are given additional arc capacities ca ∈ Z+, a ∈ A, and
arc costs wa ∈ Z+, a ∈ A. In FC-USPR, the given capacities are regarded as fix. The task
is to find a minimum cost arc set F ⊆ A and an USPR for the given commodities within
the subgraph (V, F ), such that the induced arc flows do not exceed the capacities ca. In
Cap-USPR, the given values ca are interpreted as basic capacity units that can be installed
in integer multiples. Here, we seek for integer capacity multipliers za ∈ Z+, a ∈ A, and a
corresponding USPR, such that the capacities caza are not exceeded by the induced flows and
the total capacity installation cost

∑

a∈A waza is minimized.
In spite of its long history in practice, USPR has received attention in the mathematical

literature only recently. Ben-Ameur and Gourdin [5, 6] and Broström and Holmberg [12, 13]
study structural properties of (undirected) path sets where all paths are uniquely determined
shortest paths for edge metric. Ben-Ameur and Gourdin also devise integer linear program-
ming models to find a metric that induces a prescribed set of shortest paths (or prove that
no such metric exists). Farago et al. [24, 25] study a special case of this Inverse Shortest
Paths problem where the given paths are known to be shortest paths with respect to the
number of edges and the task is to find lengths such that all these paths are unique short-
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est paths. Bley [9] shows that finding such a metric is computationally hard if the range of
admissible link lengths is bounded. Algorithms based on local search techniques, Lagrangian
relaxation, and integer programming methods as well as computational results for real-world
network design and congestion minimization problems with USPR and multi-shortest path
routing are discussed in [7, 8, 10, 11, 14, 22, 24, 26, 27, 32, 35, 40, 41]. Fortz and Thorup [27]
show that it is NP-hard to approximate the minimum congestion that can be obtained with
multi-shortest path routing within a factor less than 3/2. Dinitz et al. [19], Kolliopoulos and
Stein [34], and Skutella [46] study the approximability of (variants of) the unsplittable flow
problem, while Lorenz et al. [36] discuss the relation of source-invariant routing to several
other routing schemes. Results concerning the approximability of USPR problems have not
been published (to our knowledge).

This paper is organized as follows. In Section 2, we formally define the three USPR
problems addressed in this paper and discuss some of their basic properties.

Section 3 contains a comparison of USPR with several other routing schemes. We construct
examples where the minimum congestion that can be obtained with USPR is a factor of
Ω(|V |2) larger than the minimum congestion that is achievable with unsplittable flow, shortest
multi-path, or multicommodity flow routing, and a factor of Ω(|V |) larger than the congestion
of an optimal unsplittable source-invariant routing. Furthermore, we show that the so-called
no-bottleneck condition, which is typically assumed in unsplittable flow problems, has no
effect on the complexity of unsplittable shortest path routing problems. This gives theoretical
evidence for the practical experience that routing planning for USPR is harder than for these
other routing paradigms.

In Section 4, we present new hardness results for the three USPR problems. We prove that
it is NP-hard to approximate the minimum congestion problem Min-Con-USPR within a
factor of O(|V |1−ǫ) (for any ǫ > 0) and that the fixed charge network design problem FC-
USPR is NPO-complete. Furthermore, we show that the capacitated network design problem
Cap-USPR is NP-hard to approximate within a factor of O(2log1−ǫ|V |) in the directed and
within a factor of 2 − ǫ in the undirected case.

In Section 5, we discuss approximation algorithms for Min-Con-USPR and Cap-USPR
that work for general underlying (di)graphs. In the first part of this section we devise simple
|A|- and |K|-approximation algorithms for Min-Con-USPR. In the second part, we show
how to approximate the uniform and the single-source Cap-USPR problem within a fac-
tor O(|K|) and the undirected uniform Cap-USPR problem within a factor of O(log |V |),
using techniques that have been proposed for other capacitated network design problems. Fi-
nally, in Section 6, we present constant factor approximation algorithms for Min-Con-USPR
and Cap-USPR for the special cases where the underlying graph is a bidirected ring or an
undirected cycle. FC-USPR remains NPO-complete even in these special cases.

Unless stated otherwise, our hardness results and algorithms hold also for the undirected
problem versions, where both the underlying graph and the commodities are undirected.
Table 1 summarizes the results of this paper.

2 Unsplittable shortest path routing problems

Let D = (V,A) be a directed graph with arc capacities ca ∈ Z+, a ∈ A, and let K ⊆ V × V
be a set of directed commodities with demand values d(s,t) ∈ Z+, (s, t) ∈ K.

For each commodity (s, t) ∈ K, let P(s, t) denote the set of all (s, t)-paths in D. Further-
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Problem Min-Con-USPR Cap-USPR FC-USPR

Hardness Ω(|V |1−ǫ) undirected: 2 − ǫ NPO-complete,

directed: Ω(1log1−ǫ |V |) i.e., Ω(2|V |1−ǫ

)

Approx. general: min{|A|, |K|} general: - -

undir. cycle: 2 undir. cycle: 2

bidir. ring: 3 bidir. ring: 4

uniform: |K|
single-source: |K|

undir. uniform: O(log|V |)

Table 1: Approximability of USPR problems.

more, let P :=
⋃

(s,t)∈K P(s, t). For any path P , we write a ∈ P or v ∈ P to indicate that the

arc a ∈ A or the node v ∈ V occurs in P . The concatenation of two paths P1 = (v1
0 , a

1
1, . . . , v

1
l )

and P2 = (v2
0 , a

2
1, . . . , v

2
k) with v1

l = v2
0 is denoted by P1⊕P2 := (v1

0 , a
1
1, . . . , v

1
l = v2

0 , a
2
1, . . . , v

2
k).

For simplicity, we refer to a path P = (v0, a1, v1, . . . , al, vl) with only its node sequence
P = (v0, v1, . . . , vl) if the underlying digraph D is simple. For any path P and any arc length
vector λ = (λa)a∈A ∈ RA

+, we denote λ(P ) :=
∑

a∈P λa.

Definiton 2.1 We say that a metric λ = (λa) ∈ RA
+ defines an unsplittable shortest path

routing (USPR) for the commodity set K, if the shortest (s, t)-path with respect to λ is
uniquely determined for each commodity (s, t) ∈ K. We denote the shortest (s, t)-path with
respect to λ with Φ(s,t)(λ).

The demand of each commodity is routed unsplit along the respective shortest path. For a
metric λ that defines an USPR, the total flow through an arc a ∈ A is therefore

fa(λ) :=
∑

(s,t)∈K: a∈Φ(s,t)(λ)

d(s,t) . (1)

The task in the minimum congestion unsplittable shortest path routing problem is to find a
metric λ ∈ ZA

+ that defines an USPR for the given commodity set K. The objective is to
minimize the maximum congestion fa(λ)/ca over all arcs. Formally, this problem is defined
as follows:

Problem: Min-Con-USPR

Instance: A digraph D = (V,A) with arc capacities ca ∈ Z+, a ∈ A, and a
commodity set K ⊆ V × V with demands d(s,t) ∈ Z+, (s, t) ∈ K.

Solution: A metric λ ∈ ZA
+, such that the shortest (s, t)-path w.r.t. λ is

uniquely determined for each commodity (s, t) ∈ K.

Objective: min (maxa∈A fa(λ)/ca), where fa(λ) is as defined in (1).

In the two network design problems, we are given additional arc costs wa ∈ Z+, a ∈ A. The
task in the fixed charge network design problem is to find a minimum cost arc set F ⊆ A and
a metric λ ∈ ZF

+, such that λ defines an USPR for the commodities K in the subgraph (V, F )
and such that the induced arc flows fa do not exceed the original capacities ca.
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Problem: FC-USPR

Instance: A digraph D = (V,A) with arc capacities ca ∈ Z+, a ∈ A, and
arc costs wa ∈ Z+, a ∈ A, and a commodity set K ⊆ V × V with
demands d(s,t) ∈ Z+, (s, t) ∈ K.

Solution: An arc set F ⊆ A and metric λ ∈ ZF
+, such that λ induces a

unique shortest (s, t)-path Φ(s,t)(λ) in (V, F ) for each (s, t) ∈ K,
and fa(λ) ≤ ca for all a ∈ F .

Objective: min
∑

a∈F wa.

In the capacitated network design problem, we seek capacity multipliers za ∈ Z+, a ∈ A, and
a metric λ ∈ ZA

+ which defines an USPR for the commodity set K, such that fa ≤ caza for
all a ∈ A. The goal is to minimize the total capacity installation cost

∑

a∈A waza.

Problem: Cap-USPR

Instance: A digraph D = (V,A) with arc capacities ca ∈ Z+, a ∈ A, and
arc costs wa ∈ Z+, a ∈ A, and a commodity set K ⊆ V × V with
demands d(s,t) ∈ Z+, (s, t) ∈ K.

Solution: Capacity multipliers za ∈ Z+, a ∈ A, and a metric λ ∈ ZA
+, such

that the shortest (s, t)-path w.r.t. λ is uniquely determined for
each commodity (s, t) ∈ K, and fa(λ) ≤ zaca for all a ∈ A.

Objective: min
∑

a∈A zawa.

In all three problems, we may assume without loss of generality that D contains an (s, t)-path
for each commodity (s, t) ∈ K and that D is simple: Loops cannot be contained in a uniquely
determined shortest path and, if two parallel arcs were contained in two commodities’ routing
paths, then these paths would not be unique shortest paths. Furthermore, we may assume
that there are no parallel commodities: If there were two or more parallel commodities from
s to t, these would have to use the same (uniquely determined shortest) flow path in any
unsplittable shortest path routing and, therefore, could be aggregated into one commodity.

Observe that, for any bijection idx : A ↔ {1, . . . , |A|}, the metric λa := 2idx(a) induces
unique shortest paths between all node pairs. Hence, any instance of Min-Con-USPR or of
Cap-USPR has a feasible solution, provided that the underlying digraph D contains at least
one (s, t)-path for each (s, t) ∈ K.

If the underlying graph D contains only one (s, t)-path for each (s, t) ∈ K, then all metrics
λ ∈ ZA

+ define the same USPR. In this case, any metric defines an optimal solution for Min-
Con-USPR or Cap-USPR, and FC-USPR is trivially solvable. The simplest non-trivial
case is when the underlying digraph contains two paths for each commodity. Yet, already in
this case all three USPR problems become (weakly) NP-hard.

Theorem 2.2 Min-Con-USPR, FC-USPR, and Cap-USPR are NP-hard, even if the
underlying graph is a bidirected ring.

Proof. We construct a polynomial reduction from the Partition to the problem of solving
Min-Con-USPR to optimality. The NP-hardness of FC-USPR and Cap-USPR follow
analogously. Given a set of items i ∈ {1, . . . , k} with sizes di ∈ Z+, the Partition problem
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. . .

. . .

s1 s2 s3 sk

tk t3 t2 t1

Figure 1: Reduction from Partition to Min-Con-USPR: Solid lines are arcs, dashed lines
are commodities.

is to find a subset S ⊆ {1, . . . , k} with
∑

i∈S di = 1/2
∑k

i=1 di or to prove that no such subset
exists. This problem is known to be NP-complete; see Karp [33] or Garey and Johnson [28].

Given a Partition instance consisting of the items i ∈ {1, . . . , k} with sizes di ∈ Z+, the
instance of Min-Con-USPR is built as shown in Figure 1. For each item i ∈ {1, . . . , k}, we
introduce two nodes si, ti and a commodity (si, ti) with a demand value d(si,ti) = di. The arc
set consists of the arcs (si, si+1), (si+1, si), (ti, ti+1), and (ti+1, ti) for all i = 1, . . . , k − 1, as
well as (s1, tk), (tk, s1) (sk, t1), and (t1, sk). The arc capacities are set to

c(sj ,sj+1) = c(sj+1,sj) = c(tj ,tj+1) = c(tj+1,tj) =

k
∑

i=1

di for all j = 1, . . . , k − 1, and

c(s1,tk) = c(tk ,s1) = c(sk,t1) = c(t1,sk) = 1/2

k
∑

i=1

di .

It is not difficult to verify that any unsplittable flow routing of these commodities is also an
unsplittable shortest path routing. Therefore, any feasible partition of the items corresponds
to an unsplittable shortest path routing of the commodities such that the flows do not exceed
the arc capacities, and vise versa. The commodities routed across arc (s1, tk) form one set of
the partition, those routed across (sk, t1) the other set. �

One easily observes that all three USPR problems contain the Disjoint Paths problem as a
special case. For general directed graphs, these problems therefore are actually NP-hard in
the strong sense, even if all demands and capacities are equal to one.

3 Relation to other routing schemes and the no-bottleneck

condition

The unsplittable shortest path routing model is very restrictive and inherits structural prop-
erties of several other routing models. In this section, we compare USPR to four closely
related but less restrictive routing models. We show that the minimal congestion that can be
obtained with USPR for a given commodity set may exceed the congestion achievable with
the other routing models by an arbitrarily large factor.

The most flexible routing model is (fractional) multicommodity flow routing. With this
routing model, the demand of each commodity may be distributed arbitrarily and indepen-
dent of the other commodities onto several flow paths. It thus admits the best possible use
of the available capacities. In order to implement MCF routing in practice, the network

6



must admit the configuration of arbitrary end-to-end routing paths and flow distributions for
each commodity individually. This introduces many practical difficulties and complicates the
network management. Therefore, many telecommunication network protocols are based on
routing models that are less capacity efficient but easier to implement in practice.

With shortest multi-path routing, the traffic that is sent from a node s to a node t is
distributed equally to all neighbors of s that are contained in any shortest (s, t)-path with
respect to some metric λ. This routing model (adequately) describes so-called equal cost
multi-path traffic splitting policies in shortest path routing protocols. Fortz and Thorup [27]
show that the minimum congestion achievable with shortest multi-path routing cannot be
approximated within a factor less than 3/2.

The unsplittable flow routing model requires that each commodity is sent unsplit via a
single path through the network. In contrast to the USPR model, the commodities’ flow
paths may be chosen independent of each other. Kolliopoulos and Stein [34] prove that it is
NP-hard to approximate the minimum congestion unsplittable flow routing within 2− ǫ, for
any ǫ > 0.

The fourth routing model that is closely related to USPR is unsplittable source-invariant
routing. With this routing model, each commodity is routed on a single flow path. All flow
paths with the same destination must form an anti-arborescence directed towards this destina-
tion. Once two flows meet on their way to a common destination, they cannot split anymore.
This model describes the routing possibilities of packet networks with independently config-
urable store-and-forward routers. Lorenz et. al. [36] show that finding a minimum congestion
unsplittable source-invariant routing is NP-hard. They also show that the minimum conges-
tion may be factor Ω(|V |) higher for unsplittable source-invariant routing than for unsplittable
flow routing.

Given a digraph D = (V,A) with arc capacities ca ∈ Z+, a ∈ A, and commodities
K ⊆ V × V with demand values d(s,t) ∈ Z+, (s, t) ∈ K, we denote the optimal solution value

of the Min-Con-USPR problem by LUSPR. With LMCF , LUFP , LSMPR, and LUSIR we refer
to the minimal congestion values that can be obtained with fractional multicommodity flow
routing (MCF), an unsplittable flow routing (UFP), a shortest multi-path routing (SMPR),
and an unsplittable source-invariant routing (USIR) on the same instance, respectively. It is
obvious that

LUSPR ≥ LUFP ≥ LMCF ,

LUSPR ≥ LSMPR ≥ LMCF , and

LUSPR ≥ LUSIR ≥ LMCF ,

since every unsplittable shortest path routing is also a valid shortest multi-path routing, a
valid unsplittable flow routing, and a valid unsplittable source-invariant routing of the given
commodities. In the following we construct instances where the gap between USPR and the
other routing models becomes arbitrarily large.

Proposition 3.1 There is a family of instances with

(i) LUSPR ≥ Ω(|V |2) · LSMPR,

(ii) LUSPR ≥ Ω(|V |2) · LUFP , and

(iii) LUSPR ≥ Ω(|V |2) · LMCF .
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s1 sα

u1 uα

v1 vα

t1 tα

s

t

Figure 2: An instance with LUSPR = α2 and
LUFP = LSMPR = LMCF = 1. Arcs with
capacity α are bold, arcs with capacity 1 are
thin. For each node pair (si, tj) there is a
commodity with demand 1.

s

t

v1 v2 . . . vα

t1 t2 . . . tα

Figure 3: An instance with LUSPR ≥
Ω(|V |)LUSIR. The solid lines are arcs, the
dashed lines are the commodities. All ca-
pacities and demands are one.

Proof. Let α ∈ Z+ and consider the digraph D = (V,A) illustrated in Figure 2. It consists
of the nodes V := {s, t} ∪ {si, ti, ui, vi : i = 1, . . . , α} and the arcs A := A1 ∪ A2, where
A1 := {(ui, vj) : i, j = 1, . . . , α} and A2 := {(si, s), (s, ui), (vi, t), (t, ti) : i = 1, . . . , α}. The
arc capacities are ca = 1 for all a ∈ A1 and ca = α for all a ∈ A2. In this graph, consider the
commodities K := {(si, tj) : i, j = 1, . . . , α} with demands d(si,tj) = 1 for all (si, tj) ∈ K.

The congestion of any unsplittable shortest path routing is LUSPR = α2, since all com-
modities’ routing paths must follow the same subpath between the nodes s and t in an
unsplittable shortest path routing, and therefore share some arc (ui, vj) of capacity 1.

On the other hand, the congestion is 1 for an optimal shortest multi-path routing (where
all arc lengths are chosen equal), as well as for an optimal unsplittable flow routing or an
optimal multicommodity flow routing. For α → ∞, we obtain the claimed relations. �

Proposition 3.2 There is a family of instances with LUSPR ≥ Ω(|V |) · LUSIR.

Proof. Let α ∈ Z+ and consider the digraph illustrated in Figure 3. It contains the nodes
V := {s, t}∪{ti, vi : i = 1, . . . , α} and the arcs A := {(s, vi), (vi, t), (t, ti) : i = 1, . . . , α}. All
arcs have capacity 1. In this network, consider the commodities K := {(s, ti) : i = 1, . . . , α}
with demands d(s,ti) = 1. In any unsplittable shortest path routing, all commodities are
routed via the same subpath between s and t. The minimal congestion value for USPR
therefore is LUSPR = α. With source-invariant routing, the commodities may be routed via
different s, t-subpaths, as they have different destinations. The optimal congestion for this
routing model therefore is 1, and with α → ∞ we obtain the claim. �

The presented worst-case gaps between the different routing paradigms hold for the corre-
sponding undirected routing variants, too. (In the undirected shortest multi-path routing
policy and the undirected unsplittable source invariant routing policy, we arbitrarily choose
s as the source and t as the destination for each undirected commodity (s, t) ∈ K.)

8



s t

D

s t

s1

sq

t1

tq

D

Figure 4: The no-bottleneck condition is irrelevant for USPR problems: The large commodity
(s, t) can be replaced by many small commodities (si, tj), which must share the same (s, t)-
path.

An assumption commonly made for unsplittable flow problems is that the maximum de-
mand value does not exceed the minimum capacity. Typically, unsplittable flow problems are
easier to approximate if this additional condition holds than in the general case; cf. [19, 34, 46].
For unsplittable shortest path routing problems, however, this so-called no-bottleneck condi-
tion has no effect on the approximability.

Proposition 3.3 For any instance I = (D, c,K, d) of Min-Con-USPR with dmax > cmin,
there exists an equivalent instance I′ = (D′, c′,K ′, d′) with d′max ≤ c′min (i.e., any solution for
I with objective value L can be transformed into a solution for I′ with objective value L, and
vice versa).

Proof. Suppose we are given a Min-Con-USPR instance (D, c,K, d) with dmax > cmin. Let
r := dmax/cmin and q := ⌈√r ⌉. For each node v ∈ V , we introduce q additional nodes vj and
2q arcs (v, vj) and (vj, v), j = 1, . . . , q, see Figure 4. The capacities c′ are given as c′a := ca

for all a ∈ A, and c′(v,vj ) = c′(vj ,v) :=
∑

a∈A ca for all j = 1, . . . , q. Each commodity (s, t) ∈ K

is replaced by q2 new commodities (si, tj) with demand values d′(si,tj)
≃ d(s,t)/q

2. (Or more

precisely, with demand values d′(si,tj)
∈ {⌊d(s,t)/q

2⌋, ⌈d(s,t)/q
2⌉} such that

∑q
i,j=1 d′(si,tj)

=

d(s,t).)
Clearly, d′max ≤ c′min holds.
Now, consider the set of all commodities (si, tj), i, j = 1, . . . , q, for some (s, t) ∈ K. Since

all nodes si have only one neighbor s and all nodes tj have only one neighbor t, all these q2

commodities (si, tj) must be routed via the same (s, t)-subpath in an unsplittable shortest
path routing. Therefore, any unsplittable shortest path routing of the commodities K in D
corresponds to an unsplittable shortest path routing of the commodities K ′ in D′, and vice
versa. As the corresponding routings induce the same flows on the arcs of D, the maximum
congestion values are equal for both routings. �

Analogously, any instance of FC-USPR or of Cap-USPR can be transformed into an equiv-
alent instance with dmax ≤ cmin. However, note that in general this transformation is not
polynomial in the strong sense, because the size of the underlying digraph grows by a factor
of Θ(dmax/cmin).

4 Inapproximability results

In the following section, we analyze how hard it is to approximate the three unsplittable
shortest path routing problems.
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4.1 The minimum congestion problem

We begin by showing that Min-Con-USPR is not approximable within a factor of O(|V |1−ǫ),
unless P = NP. As a first step, we show that there is no constant factor approximation.

Lemma 4.1 Let α ∈ Z+ be an arbitrary number. It is NP-hard to approximate Min-Con-
USPR within a factor less than α + 1.

Proof. We construct a reduction from the NP-complete decision problem Fully Disjoint
Paths to Min-Con-USPR. Fully Disjoint Paths is a restricted variant of the classical
Disjoint Paths problem [28]. Given a directed graph H = (W,F ) and a set of node pairs
(si, ti), i = 1, . . . , k, the task is to find (si, ti)-paths Pi in H that are not only internally
disjoint but share no nodes at all (including the paths’ first and last nodes), i.e., {v ∈ W :
v ∈ Pi and v ∈ Pj} = ∅ for all i, j = 1, . . . , k with i 6= j. It is easy to verify that the Disjoint
Paths problem remains NP-complete even with this stronger notion of disjointness. Note
that the directed version of Fully Disjoint Paths remains NP-hard even if the number
k ≥ 2 of nodes pairs is not part of the problem input. Yet, we assume that k is part of the
input of Fully Disjoint Paths, because then our construction carries over literally to the
undirected problem version.

Suppose we are given a Fully Disjoint Paths instance consisting of the digraph H =
(W,F ) and the node pairs (si, ti), i = 1, . . . , k. W.l.o.g., we may assume that there is an
(si, ti)-path in H for each i = 1, . . . , k and that {si, ti} ∩ {sj, tj} = ∅ for all i 6= j.

We construct a Min-Con-USPR instance (D, c,K,d) as follows. The digraph D = (V,A)
contains all nodes and arcs of H. Furthermore, D contains one extra node r and 2kα additional
nodes ul

i and vl
i with l = 1, . . . , α and i = 1, . . . , k, i.e.,

V := W ∪ {r} ∪ {ul
i, vl

i : i = 1, . . . , k , l = 1, . . . , α}.

r

vα
1

v1
1

t1

s1

uα
1

u1
1

vα
2

v1
2

t2

s2

uα
2

u1
2

H

(a) Digraph D with indicated arc capacities:
Arcs with capacity α are bold, arcs with ca-
pacity 1 are thin.

r

vα
1

v1
1

t1

s1

uα
1

u1
1

vα
2

v1
2

t2

s2

uα
2

u1
2

H

(b) Commodities K with indicated demand
values: commodities with demand α are
bold, commodities with demand 1 are thin.

Figure 5: Constructed Min-Con-USPR instance.
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For each pair i, j = 1, . . . , k with i 6= j we add α2 new arcs. These arcs form the set

A1 :=
{

(ul
i, v

m
j ) : i, j = 1, . . . , k , i 6= j , l,m = 1, . . . , α

}

.

Additionally, we introduce 2α + 1 arcs for each i = 1, . . . , k, which together comprise the arc
set

A2 :=
{

(uα
i , si), (ti, v

1
i ), (vα

i , r) : i = 1, . . . , k
}

∪
{

(ul
i, u

l+1
i ), (vl

i, v
l+1
i ) : i = 1, . . . , k , l = 1, . . . , α − 1

}

.

We let A := F ∪ A1 ∪ A2. The arc capacities are defined as

ca :=

{

1, if a ∈ A1, and

α, otherwise.

The commodity set K contains two types of commodities. For each i = 1, . . . , k, there is a
commodity (u1

i , r) with demand value d(u1
i ,r) = α. For each pair i, j = 1, . . . , k with i 6= j and

each pair l,m = 1, . . . , α, there is a commodity (ul
i, v

m
j ) with d(ul

i,v
m
j ) = 1. Figure 5 illustrates

the constructed Min-Con-USPR instance for the case where k = 2.
It is obvious that this transformation is polynomial in the encoding size of the given

Fully Disjoint Paths instance and α. Furthermore, any metric λ ∈ ZA
+ that induces

unique shortest paths for the commodities in K defines a feasible solution for the constructed
Min-Con-USPR instance.

In the first part of the proof, we show that there exists an unsplittable shortest path
routing whose induced flows do not exceed the arc capacities if the given Fully Disjoint
Paths instance has a feasible solution. Assume there exist fully disjoint (si, ti)-paths Pi in
H, i = 1, . . . , k. Then we define the metric λ as

λa :=











1, if a ∈ Pi for some i ∈ {1, . . . , k}
or if a ∈ ⋃k

i=1

{

(u1
i , u

2
i ), . . . , (u

α
i , si), (ti, v

α
i ), . . . , (v2

i , v
1
i )

}

, and

|A|, otherwise.

One easily finds that all shortest paths in D are unique with respect to λ. In particular,
the shortest (u1

i , r)-path is the path Φ(u1
i ,r) = (u1

i , . . . , u
α
i , si) ⊕ Pi ⊕ (ti, v

α
i , . . . v1

i , r) for each

i = 1, . . . , k, and the shortest (ul
i, v

m
j )-path is Φ(ul

i
,vm

j
) = (ul

i, v
m
j ) for each i, j = 1, . . . , k with

i 6= j and l,m = 1, . . . , α. Figure 6 illustrates this routing. It is not difficult to verify that
the arc flows fa(λ) induced by this routing do not exceed the arc capacities ca, a ∈ A.

In the second part of the proof, we show that the flows of any unsplittable shortest path
routing exceed at least one arc capacity by a factor of at least α + 1 if the Fully Disjoint
Paths instance has no solution. So, suppose there is no set of fully disjoint (si, ti)-paths in
H and let λ ∈ ZA

+ be an arbitrary metric that defines unique shortest (u, v)-paths Φ(u,v) for
all (u, v) ∈ K.

First, assume that some arc (ul
i, v

m
j ) is contained in the shortest path Φ(u1

h
,r) for some

commodity (u1
h, r). Since Φ(u1

h
,r) is the unique shortest (u1

h, r)-path, its arc (ul
i, v

m
j ) is also

11
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Figure 6: USPR in D if fully disjoint (si, ti)-paths exist in H.

the unique shortest (ul
i, v

m
j )-path. The total flow across this arc therefore is at least d(u1

h
,r) +

d(ul
i,v

m
j ) = α + 1, while its capacity is only c(ul

i,v
m
j ) = 1. This leads to a congestion of at least

α + 1 for this routing. In the following, we thus may assume that all commodities (u1
i , r),

i = 1, . . . , k, with demands d(u1
i ,r) = α are routed within the subgraph D′ = (V, F ∪ A2).

Now, suppose we had ti ∈ Φ(u1
i ,r) for all i = 1, . . . , k. Then at least two of these paths,

say Φ(u1
1,r) and Φ(u1

2,r), would have to intersect in some internal node w ∈ W , as illustrated in

Figure 7. Otherwise, there would exist fully disjoint (si, ti)-paths in H. However, these two
paths Φ(u1

1,r) and Φ(u1
2,r) cannot be unique shortest paths w.r.t. λ, as they contain different

subpaths between w and r.
Consequently, there must be some i ∈ {1, . . . , k} such that ti 6∈ Φ(u1

i ,r). Since Φ(u1
i ,r) is

completely contained in D′, there must be some j 6= i such that tj ∈ Φ(u1
i
,r). Furthermore, all

nodes ul
i and vm

j , l,m = 1, . . . , α, are contained in Φ(u1
i ,r) . Hence, all α2 commodities (ul

i, v
m
j )

are routed along their respective subpath of Φ(u1
i ,r), see Figure 8. The total flow across arc

(tj , u
α
j ) therefore is at least α + α2, while its capacity is only α.

Together, the two parts of the proof imply that it is NP-hard to approximate Min-Con-
USPR within a factor less than α + 1. �

If we choose α = 1 in the above construction, all capacities and demand values of the Min-
Con-USPR instance are equal to 1. This yields the following theorem.

Theorem 4.2 For any ǫ > 0, it is NP-hard to approximate Min-Con-USPR within a factor
of 2 − ǫ, even if all demand values and capacities are equal to one.

For the general case, we obtain a stronger non-constant inapproximability bound by choosing
α depending on the size of the given Fully Disjoint Paths instance.

Theorem 4.3 For any ǫ > 0, it is NP-hard to approximate Min-Con-USPR within a factor
of O(|V |1−ǫ).
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2, r)-paths intersect in some internal
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Figure 8: If t1 ∈ Φ(u1
2,r), then the shortest

path property forces all commodities (ul
2, v

m
1 )

to follow their respective subpath of Φ(u1
2,r).

Proof. The encoding size of the constructed Min-Con-USPR instance is bounded by
O

(

α2 log α(|W | + |F |)
)

. With α = α(H) := |W |q, the presented construction thus remains
polynomial in |W |+ |F | for any fixed q ∈ Z+. Because |V | ∈ Ω(α), there exists some qǫ ∈ Z+

for every ǫ > 0, such that α 6∈ O(|V |1−ǫ) for α := |W |qǫ . With Lemma 4.1, this implies the
claim. �

Analogously, it follows that approximating Min-Con-USPR within a factor of O(|A|1/2−ǫ) or
O(〈I〉1/2−ǫ) is NP-hard for any ǫ > 0, where 〈I〉 is the encoding size of the Min-Con-USPR
instance (including the encoding size of the cost and capacity values).

By adding α many new nodes rj, j = 1, . . . , α, and replacing each commodity (u1
i , r) of

demand d(u1
i ,r) = α by α many commodities (u1

i , r
j) with d(u1

i ,rj) = 1, we may transform the
Min-Con-USPR instance constructed in the proof of Lemma 4.1 into an instance that satis-
fies dmax ≤ cmin. For the special class of Min-Con-USPR instances constructed in the proof
of Lemma 4.1, this transformation is strongly polynomial. Therefore, the inapproximability
results of Lemma 4.1 and Theorem 4.3 also hold for the case where dmax ≤ cmin.

4.2 The capacitated network design problem

A problem that is closely related to the capacitated network design problem Cap-USPR is the
Generalized Steiner network problem, also known as Point-to-Point Connection
problem: Given a (directed) graph D = (V,A) and with arc costs wa ∈ Z+, a ∈ A, and a
set of commodities K ⊆ V × V find a minimum cost arc set F ⊆ A such that the subgraph
(V, F ) contains an (s, t)-path for each (s, t) ∈ K.

With demand values d(s,t) := 1 for all (s, t) ∈ K and ca := |K| for all a ∈ A, the Gen-
eralized Steiner network problem reduces straightforward to the Cap-USPR problem.
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Figure 9: Constructed Cap-USPR instance. Edges with capacity 2M(k−1) and 2Mk(k−1)
are bold, edges with capacity 1 are thin.

Inapproximability results for the directed and undirected Generalized Steiner network
problem carry over immediately to the corresponding Cap-USPR problem.

Dodis and Khanna [20] showed that there is no polynomial time O(2log1−ǫn) for the directed
Generalized Steiner network problem for ǫ > 0, unless NP ⊆ DTIME(npolylog(n)).
This yields the strongest inapproximability threshold for the directed Cap-USPR problem
currently known.

Theorem 4.4 ([20]) For any ǫ > 0, the directed Cap-USPR problem is inapproximable
within O(2log1−ǫ |V |), unless NP ⊆ DTIME(npolylog(n)).

For the undirected Generalized Steiner network problem, Goemans and Williamson [29]
devised a simple primal dual algorithm that achieves a worst case performance guarantee of
2 − 1/|K|, the best known inapproximability threshold is well below this number. 1 In the
following, we prove a slightly stronger result for the undirected Cap-USPR problem.

Theorem 4.5 For any ǫ > 0, it is NP-hard to approximate the undirected Cap-USPR
problem within a factor of 2 − ǫ.

Proof. We present a reduction similar to the one used in the proof of Lemma 4.1.
Suppose we are given an undirected Fully Disjoint Paths instance consisting of the

graph H = (W,F ) and the node pairs (si, ti), i = 1, . . . , k. We may assume w.l.o.g. that
there is an (si, ti)-path in H for each i = 1, . . . , k, and that {si, ti} ∩ {sj , tj} = ∅ for all i 6= j.
Let M := ⌈(2 − ǫ)k/ǫ⌉ + 1.

We construct an undirected Cap-USPR instance (G, c,w,K, d) as shown in Figure 9: The
node set V of the graph G = (V,E) contains all nodes in W , the three nodes v, w, and r, and

1Andrews [1] shows that there is no O(log1−ǫ|V |)-approximation algorithm for the Buy-at-Bulk Network
Design problem unless NP ⊆ ZPTIME(npolylog(n)). This proof can be adapted to show the same threshold
for the undirected Cap-USPR problem. However, Andrews’ construction inherently used randomization and
relies on the probabilistic Erdös-Sachs theorem [21]; a deterministic construction that yields the same bound
is not known.
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Figure 10: USPR in G if fully disjoint (si, ti)-paths exist in H.

a node ui for each i = 1, . . . , k. The edge set E consists of all edges in F , one edge vw, and
the edges rui, uisi, uiv, and wti for each i = 1, . . . , k.

The commodity set K contains two types of commodities: For each i = 1, . . . , k, we
introduce a commodity (r, ti) with demand value d(r,ti) := 1. For all pairs i, j = 1, . . . , k with
i 6= j, we introduce a commodity (ui, tj) with a demand of d(ui,tj) := 2M .

The edge capacities and costs are defined as

ce :=











2M k(k − 1), if e = vw,

2M (k − 1), if e ∈ {uiv, wti : i = 1, . . . , k},
1, otherwise, and

we :=











M, if e = vw,

1, if e ∈ {uisi : i = 1, . . . , k},
0, otherwise.

For any fixed ǫ > 0, this construction is polynomial in the size of H.
First, suppose there exist fully disjoint (si, ti)-paths Pi in H. Then we define the metric

λ as

λe :=























1, if e ∈ Pi for some i ∈ {1, . . . , k}
or if e ∈ {rui, uisi, uiv, wti : i = 1, . . . , k},

|A|, if e = vw, and

|A| + 2, otherwise.

It is easy to verify that this metric λ induces an USPR for the commodity set K, as illustrated
in Figure 10. For each i = 1, . . . , k, the unique shortest (r, ti)-path is (r, ui, si)⊕Pi, and for pair
i, j = 1, . . . , k with i 6= j, the unique shortest (ui, tj)-path is (ui, v, w, tj). If the corresponding
commodities are routed along these paths, the induced edge flows fe do not exceed the given
capacities ce, e ∈ E. Hence, the metric λ and the capacity multipliers ze = 1 for all e ∈ E form
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a feasible solution for the constructed Cap-USPR instance. The total capacity installation
cost for this solution is

∑

e∈E

weze =

k
∑

i=1

wuisi
+ wvw = k + M .

Now, suppose there is no set of fully disjoint (si, ti)-paths in H. Let λ ∈ ZE
+ be an arbitrary

metric that defines an USPR for the commodities K. Analogous to the proof of Lemma 4.1,
there are two possible cases: Either some commodity (ui, tj), i 6= j, is routed across an edge
ulsl, or all commodities (ui, tj), i 6= j, and (at least) one commodity (r, ti), i ∈ {1, . . . , k}, are
routed together across the edge vw.

In the first case, a commodity (ui, tj) with demand value d(ui,tj) = 2M is routed across
an edge ulsl with culsl

= 1. Then the capacity multiplier zulsl
must be at least 2M and,

therefore, the cost of this solution is no less than zulsl
wulsl

= 2M .
In the second case, all k(k−1) commodities (ui, tj), i 6= j, with d(ui,tj) = 2M and (at least)

one commodity (r, tl) with d(r,tl) = 1 are routed across the edge vw with cvw = 2Mk(k − 1).
Then the capacity multiplier zvw must be at least two, which also yields a total solution cost
of at least 2M .

Hence, if there are no fully disjoint (si, ti)-paths in H, then any feasible solution of the
constructed Cap-USPR instance has a cost of at least 2M .

Since it is NP-hard to decide whether fully disjoint (si, ti)-paths exist in H, it is also NP-
hard to approximate the optimal solution of the constructed undirected Cap-USPR instance
within a factor strictly less than 2M/(k + M) > 2 − ǫ, as claimed. �

Theorem 4.5 also holds for the directed Cap-USPR problem, but the stronger general inap-
proximability threshold for the directed case follows from Theorem 4.4. With a construction
similar to the one presented in the proof of Theorem 4.5 one can show that the directed Cap-
USPR problem remains hard to approximate within 2 − ǫ even if |K| = 2. For the special
cases where the underlying digraph is a cycle or a bidirected ring, a variant of the reduction
used in Theorem 2.2 yields a constant inapproximability threshold of 4/3 for the both the
undirected and the directed Cap-USPR problem, respectively.

4.3 The fixed charge network design problem

Intuitively, the fixed charge problem FC-USPR is harder than the Cap-USPR problem,
where the installation of arbitrarily large arc capacities is allowed. For any given Cap-USPR
instance, there exists a feasible solution which can be easily found (provided that D contains
an (s, t)-path for each (s, t) ∈ K). For FC-USPR, on the other hand, already the task of
finding some feasible solution is NP-hard, cf. Theorem 2.2. If we were given an FC-USPR
instance with cost one for some arcs and prohibitively large costs for all others, then the core
of the problem is to find an USPR in the subgraph induced by the edges of cost one. As
this is an NP-complete problem, we cannot expect to find a solution of FC-USPR with a
reasonable quality guarantee in polynomial time. In the following, we prove this intuition.

Theorem 4.6 FC-USPR is NPO-complete.

Proof. We present an approximation preserving reduction, to be more precisely a PTAS-
reduction [2, 18], from the Min-Weight-Sat problem.
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The Min-Weight-Sat problem is defined as follows: Given a set X of boolean variables,
a collection C of disjunctive clauses of at most three literals per clause, and a non-negative
integer weight for each variable in X, the aim is to find a truth assignment for X that satisfies
all clauses in C and minimizes the sum of the weights of the true variables. In Min-Weight-
Sat(3), each variable occurs at most three times in total and at least once as a negated
and once as an unnegated literal. It was shown by Orponen and Mannila [39] that Min-
Weight-Sat is NPO–complete. As for the unweighted satisfiability problem, the restricted
problem Min-Weight-Sat(3) remains NPO–complete. The restriction to 3 occurrences of
each boolean variable is not necessary to prove Theorem 4.6, but it allows us to use a simpler
reduction where all demand values and capacities are either 1 or 2.

Suppose we are given a Min-Weight-Sat(3) instance consisting of the boolean variables
x1, . . . , xn with nonnegative weights wi ∈ Z+, 1 ≤ i ≤ n, and the clauses C1, . . . , Cm. We
construct an instance (D, c,w,K, d) of FC-USPR, such that any truth assignment for the
Min-Weight-Sat(3) instance corresponds to a solution of the FC-USPR instance whose
cost is equal to the weight of the truth assignment.

The digraph D = (V,A) contains the 6n + 2m nodes

V :=
{

qi, v1
i , v2

i , v̄1
i , v̄2

i , ri : i = 1, . . . , n
}

∪ {sh, th : h = 1, . . . ,m} .

Among these nodes, we introduce the arcs

Ax :=
{

(qi, v
1
i ), (v1

i , v
2
i ), (v2

i , ri), (qi, v̄
1
i ), (v̄1

i , v̄
2
i ), (v̄2

i , ri) : i = 1, . . . , n
}

, and

AC :=
{

(sh, v̄1
i ), (v̄2

i , th) : i = 1, . . . , n and h = 1, . . . ,m s.t. xi appears unnegated in Ch

}

∪
{

(sh, v1
i ), (v2

i , th) : i = 1, . . . , n and h = 1, . . . ,m s.t. xi appears negated in Ch

}

.

For each boolean variable xi, the nodes indexed by i form a variable subgraph as shown in
Figure 11(a). For each clause Ch, the nodes sh, th, and either the nodes v1

i , v2
i or the nodes

v̄1
i , v̄2

i with index i such that xi occurs in Ch form a clause subgraph as shown in Figure 11(b).
The arc capacities and costs are defined as

ca :=

{

2, if a ∈ Ax,

1, if a ∈ AC ,

wa :=

{

wi, if a = (qi, v
1
i ), i ∈ {1 . . . , n}, and

0, otherwise.

The commodity set K consists of a commodity (qi, ri) with a demand value of d(qi,ri) = 2
for each i = 1, . . . , n, and of a commodity (sh, th) with a demand d(sh,th) = 1 for each
h = 1, . . . ,m.

Clearly, this construction is polynomial in the size of the given Min-Weight-Sat(3)
instance.

In the first part of the proof, we show that, for each truth assignment that satisfies all
clauses of the Min-Weight-Sat(3) instance, there exists a corresponding feasible solution of
the constructed FC-USPR instance. So, let x ∈ {true, false}n be such a truth assignment.

For each clause Ch, at least one literal evaluates to true. The index of the corresponding
binary variable is denoted by i(h) ∈ {1, . . . , n}. If more than one literals evaluate to true in
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Figure 11: Constructed FC-USPR instance.

Ch, then i(h) w.l.o.g. denotes the lexicographically first one. We define the corresponding
metric λ = λ(x) ∈ ZA

+ as

λa :=































1, if a ∈ ⋃

i:xi=true{(qi, v
1
i ), (v1

i , v
2
i ), (v2

i , ri)}
or a ∈ ⋃

i:xi=false{(qi, v̄
1
i ), (v̄1

i , v̄
2
i ), (v̄2

i , ri)}
or a ∈ ⋃

h:Ch=(x̄i(h)∨...){(sh, v1
i(h)), (v2

i(h), th)}
or a ∈ ⋃

h:Ch=(xi(h)∨...){(sh, v̄1
i(h)), (v̄2

i(h), th)}, and

2, otherwise.

This metric λ defines an USPR for the commodities in K. If the boolean variable xi is true,
then we route commodity (qi, ri) on path P+

i := (qi, v
1
i , v2

i , ri), otherwise on path P−
i :=

(qi, v̄
1
i , v̄

2
i , ri). If the boolean variable xi(h) occurs negated in Ch, then we route commodity

(sh, th) along the path Qh
i := (sh, v1

i , v2
i , th). (Note that x̄i(h) then is true by definition of i(h).)

Otherwise, if the boolean variable xi(h) occurs unnegated (and evaluates to true) in clause

Ch, then commodity (sh, th) is routed via path Q̄h
i := (sh, v̄1

i , v̄
2
i , th). Figure 12 illustrates this

routing.
Since each variable xi occurs in at most two clauses negated and in at most two clauses

unnegated in the given Min-Weight-Sat(3) instance, any arc (v1
i , v

2
i ) or (v̄1

i , v̄
2
i ) is contained

in at most two commodity routing paths. All other arcs a ∈ A are contained in at most one
shortest path with respect to λ. Hence, the flows that are induced by the corresponding
USPR satisfy the given capacities.

Let F ⊆ A be the set of arcs contained in the induced routing paths. Then (F, λ) defines
a feasible solution of the FC-USPR instance. Clearly, (qi, v

1
i ) ∈ F if and only if the boolean

variable xi is true. Hence, we have
∑

a∈F

wa =
∑

i: xi=true

wi ,

i.e., the weight of the truth assignment x is the same as the cost of its corresponding FC-
USPR solution (F, λ). This immediately implies

w(λopt) ≤ w(xopt) . (2)

In the second part of the proof, we show that any feasible solution of the constructed
FC-USPR instance defines a truth assignment satisfying all clauses. Let (F, λ) be such a
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Figure 12: Partial routing in D corresponding to a truth assignment with xi = false and
clauses Ch = (x̄i ∨ . . .) and Ck = (x̄i ∨ . . .).

feasible solution. First, observe that each commodity (qi, ri), i ∈ {0, . . . , n}, is routed either
on path P+

i or on path P−
i . Any other (qi, ri)-path contains some arc a ∈ AH , whose capacity

ca = 1 is insufficient to accommodate the demand d(qi,ri) = 2 of commodity (qi, ri) . Thus,
we can define the truth assignment x = x(λ) ∈ {true, false}n as

xi :=

{

true, if P+
i is the (unique) shortest (qi, ri)-path w.r.t. λ, and

false, otherwise.

If the shortest (sh, th)-path w.r.t. λ contains the vertex v1
i , then commodity (qi, ri) must be

routed on the path P−
i in the USPR defined by λ. Otherwise, the capacity of arc (v1

i , v
2
i )

would be violated. Analogously, commodity (qi, ri) must be routed via P+
i if v̄1

i is contained
in the routing path of some commodity (sh, th). According to our construction, this implies
that the corresponding clause Ch evaluates to true for the truth assignment x defined by the
given routing. Hence, the constructed truth assignment x satisfies all clauses.

The arc set F of the given FC-USPR solution contains all arcs that belong to some of
the routing paths. For each boolean variable xi that was set to true in the constructed truth
assignment x, the arc (qi, v

1
i ) is contained in the routing path for commodity (qi, ri) and

therefore also belongs to the set F . Hence, we have

∑

a∈F

wa ≥
∑

i: xi=true

wi . (3)

Together (2) and (3) imply that any ǫ-approximate solution of the constructed FC-USPR
instance corresponds to an ǫ-approximate solution of the original Min-Weight-Sat(3) in-
stance. Thus, the given reduction is a PTAS-reduction from Min-Weight-Sat(3) to FC-
USPR. As Min-Weight-Sat(3) is NPO-complete, so is FC-USPR. �

Theorem 4.6 immediately yields the following corollary:

Corollary 4.7 For any ǫ > 0, it is NP-hard to approximate FC-USPR within a factor of
2〈I〉

1−ǫ

, where 〈I〉 is the encoding size of the FC-USPR instance I.

Note that any NPO problem can be approximated within a factor of O(2〈I〉
ǫ

) for some ǫ > 0,
if at least one feasible solution can be computed in polynomial time. This is due to the
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polynomial bound on the computation time of the objective function. Such problems belong
to the class exp–APX . As for FC-USPR already the problem of finding a feasible solution
is NP-hard, this problem is even harder than exp–APX problems.

A construction analogous to Theorem 2.2 yields that Theorem 4.6 and Corollary 4.7
hold even if the underlying digraph is a bidirected ring. Furthermore, Theorem 4.6 and
Corollary 4.7 carry over to the fixed charge network design problem with unsplittable flow
routing instead of unsplittable shortest path routing. In the above proof, we only used the
requirement that all commodities are routed unsplit. Our construction implicitly guarantees
the existence of a compatible metric for every unsplittable flow routing that satisfies the given
capacities.

5 Approximation algorithms

In this section, we present polynomial time approximation algorithms for the minimum conges-
tion problem Min-Con-USPR and for the capacitated network design problem Cap-USPR
for general underlying digraphs. The fixed charge network design problem FC-USPR is not
approximable within any reasonable quality guarantee, unless P = NP .

5.1 The minimum congestion problem

By Theorem 2.2, Min-Con-USPR is NP-hard to approximate within a factor of O(|V |1−ǫ).
In the following, we show how to compute min{|K|, |A|}-approximate solutions.

We begin by showing how to approximate Min-Con-USPR within a factor of |K|. Note
that, in contrast to the Generalized Steiner Network problem, this is not trivial: We
have to ensure that there exist a compatible metric for the chosen routing paths, i.e., a metric
such that each routing path is the unique shortest path between its terminals.

Definiton 5.1 For each path P ∈ P, let cmin(P ) := min{ca : a ∈ P} be the thickness of P .

An obvious optimal solution for an USPR instance with only one commodity (s, t) is to
route (s, t) via an (s, t)-path Φ(s,t) of maximum thickness, i.e., a path with cmin(Φ(s,t)) =
max{cmin(P ) : P ∈ P(s, t)}. Choosing a maximum thickness (s, t)-path Φ(s,t) for each
commodity (s, t) therefore yields an unsplittable flow routing whose congestion is at most
|K| times the congestion of an optimal unsplittable flow routing in the multicommodity case.

Note that maximum thickness paths are not necessarily unique. Furthermore, it also may
be impossible to enforce uniqueness by a small perturbation of the capacities. In order to
guarantee the existence of a compatible metric for the chosen paths, we need to consider all
capacities on the paths instead of only the bottleneck capacity.

Definiton 5.2 For each path P ∈ P, the capacity pattern cseq(P ) of P is the non-decreasingly
sorted sequence of its arc capacities, i.e., cseq(P ) := (ca1 , . . . , ca|P |

) with ai ∈ P , ai 6= aj , and
cai

≤ cai+1).

The lexicographic order on the cseq-sequences defines a prefix-monotone total order on the
paths. In contrast to the order by path thickness, ties in the cseq-order can be broken consis-
tently by an arbitrarily small perturbation of the capacities (or via a secondary lexicographical
ordering of the paths according to their arc numbers), for example. It is not difficult to verify
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that, if each path Φ(s,t) is the unique cseq-maximum (s, t)-path with respect to (a pertur-

bation of) the arc capacities c, then there exists a metric λ ∈ ZA
+ such that each Φ(s,t) is a

unique shortest (s, t)-path w.r.t. λ. This leads to the following simple algorithm.

Algorithm 5.1 ThickestPath

1. Compute the cseq-maximal (s, t)-path Φ(s,t) for each commodity (s, t) ∈ K with
respect to (a perturbation) of the capacities ca, a ∈ A.

2. Find a metric λ ∈ ZA
+ such that each path Φ(s,t), (s, t) ∈ K, is the unique shortest

(s, t)-path w.r.t. λ.

3. Return λ.

Theorem 5.3 ThickestPath is an |K|-approximation algorithm for Min-Con-USPR.

Proof. Obviously, any cseq-maximal (s, t)-path is a maximum thickness (s, t)-path. Hence, as
we route each commodity (s, t) ∈ K on the cseq-maximal path with respect to (a perturbation
of) the capacities ca, the paths Φ(s,t) form a routing with congestion at most |K| times the
congestion of an optimal solution.

As the lexicographic order on the cseq-sequences defines a prefix-monotone total order on
the paths, the cseq-maximal (s, t)-paths can be found in polynomial time using a standard
labeling algorithm. If the ties in the cseq-order are broken consistently (by an appropriate
perturbation), these paths form an unsplittable shortest path path routing. A compatible
metric then can be computed in polynomial time using the linear programming and rounding
approaches discussed in [6, 9]. �

Our second approximation algorithm, whose performance guarantee is independent of the
number of commodities, is based on the multicommodity flow relaxation of the Min-Con-
USPR problem. In a fractional multicommodity flow (MCF) routing, the demand of each
commodity (s, t) may be distributed arbitrarily among the paths P(s, t). Such a routing can
be expressed as an assignment x : P → [0, 1], where each xP denotes the fraction of the
demand d(s,t) that is sent along P ∈ P(s, t). The problem of finding an MCF routing of
minimal congestion can be formulated as a linear program as follows:

min L (CON-LP)
∑

P∈P(s,t)

xP = 1 ∀ (s, t) ∈ K

∑

(s,t)∈K

∑

P∈P(s,t):a∈P

d(s,t) · xP ≤ L · ca ∀ a ∈ A (4)

L ≥ 1

0 ≤ xP ≤ 1 ∀ (s, t) ∈ K, P ∈ P(s, t)

Using column generation techniques, (CON-LP) can be solved in polynomial time w.r.t. to
the size of the given problem instance, even though it contains exponentially many path
variables. Let (L∗, x∗) be an optimal solution of (CON-LP). Clearly, L∗ is a lower bound
for the minimum congestion that can be obtained with an unsplittable shortest path routing.
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The total flow across an arc a ∈ A in the corresponding multicommodity flow routing is

fa(x
∗) :=

∑

(s,t)∈K

∑

P∈P(s,t):a∈P

d(s,t)x
∗
P .

Let π∗
a ∈ R+, a ∈ A, be the optimal dual variables corresponding to the constraints (4) in

(CON-LP). It follows from LP duality that all paths P with x∗
P > 0 are shortest paths between

their respective terminal nodes with respect to the metric π∗. However, these paths are not
necessarily uniquely determined shortest paths, and not all shortest paths w.r.t. π∗ have a
positive flow. The idea behind algorithm PenalizeSmallLinks is to start with the optimal dual
variables π∗

a and perturb this metric such that the shortest path is unique for each commodity.

Algorithm 5.2 PenalizeSmallLinks

1. Compute optimal solution (L∗, x∗) of (CON-LP).

Let π∗
a, a ∈ A, be the optimal dual values for (4).

2. Find integer lengths λ′
a ≥ 1 that induce the same shortest paths as π∗

a.

(In particular, all paths P with x∗
P > 0 are shortest paths w.r.t. λ.)

3. Number the arcs idx : A → {1, . . . , |A|} in order of non-increasing fa(x
∗).

4. Return the metric λa := 2|A|+1 · λ′
a + 2idx(a).

Theorem 5.4 PenalizeSmallLinks is an |A|-approximation algorithm for Min-Con-USPR.

Proof. It is easy to see that there exist an integer-valued metric λ′ ∈ ZA
+ that induces exactly

the same shortest paths as the given fractional metric π∗ ∈ RA
+ (whether or not uniqueness

is an issue). Such an integer-valued metric can be computed in polynomial time with linear
programming based scaling and rounding methods, as shown in [6, 9]. Furthermore, for any
integer valued metric λ′ ∈ ZA

+ and any arc numbering idx : A → {1, . . . , |A|}, all shortest
(s, t)-paths in D are unique with respect to the ’perturbed’ metric λa := 2|A|+1 · λ′

a + 2idx(a).
Hence, the metric λ defined in Step 4 of algorithm PenalizeSmallLinks defines an USPR. It
remains to show that the congestion induced of this USPR is at most |A| times the congestion
of the optimum MCF routing.

Let fa(x
∗) and fa(λ) denote the arc flows induced by the optimal solution (L∗, x∗) of

(CON-LP) and by the USPR for metric λ, respectively. Compared to the optimal MCF
flow, an arc a receives additional traffic in the USPR routing only from those arcs a′ with
idx(a′) > idx(a). Hence, we have

fa(λ) ≤
∑

a′: idx(a′)≥idx(a)

fa′(x∗) ≤
∑

a′: fa′(x
∗)≤fa(x∗)

fa′(x∗) ≤ |A| · fa(x
∗) for each a ∈ A.

Consequently, L∗ ≤ maxa∈A fa(λ)/ca ≤ maxa∈a |A| · fa(x
∗)/ca = |A| · L∗. �

In Proposition 3.1, we have already seen that the ratio of Ω(|A|) between the optimal conges-
tion values for USPR and MCF routings may be attained. Together, Theorems 5.3 and 5.4
yield the following corollary.

Corollary 5.5 Min-Con-USPR is approximable within a factor of min{|K|, |A|}.
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Figure 13: Optimal basic solution of (CON-LP) for Example 5.6.

Note that the routing obtained by rounding the optimal fractional multicommodity flow
routing x∗ is not necessarily a valid USPR. In the following example, all basic optimal solutions
of (CON-LP) are integer and thus form unsplittable flow routings, but none of these routings
is an USPR.

Example 5.6 Consider the bidirected ring D = (V,A) consisting of the four nodes V =
{v1, . . . , v4} and the eight arcs A = {(v1, v2), (v2, v1), . . . , (v1, v4)}. Let ca = 1 for all a ∈
A, and consider the four commodities K := {(v1, v3), (v3, v1), (v2, v4), (v4, v2)} with demand
values d(s,t) = 1 for all (s, t) ∈ K.

For this instance of Min-Con-USPR, all basic optimal solutions of (CON-LP) are in-
teger and, up to symmetry, correspond to the unsplittable flow routing illustrated in Figure
13. However, there exists no metric such that all paths of such a routing are unique shortest
paths. One easily verifies that any USPR of the given commodities induces a flow of two or
more on some arc of the bidirected ring.

Algorithms ThickestPath and PenalizeSmallLinks carry over straightforward to the undi-
rected version of Min-Con-USPR, where they have worst case approximation ratios of |K|
and |E|, respectively. In Section 6, we show that PenalizeSmallLinks is a achieves a constant
approximation guarantee of 2 in the special case where the underlying graph is an undirected
cycle.

5.2 The capacitated network design problem

As many other capacitated network design problems, the Cap-USPR problem seems to be
very hard to approximate. No algorithms with non-trivial quality guarantees are known for
general arc capacities and arbitrary commodities.2 However, the uniform and the single-source
version of the problem can be approximated within reasonable bounds.

We say that a Cap-USPR problem is uniform if all all arc (or edge) capacities are
identical. For the uniform Cap-USPR problem with only one commodity, an optimal solution
obviously is given by routing this commodity along a shortest (s, t)-path with respect to the
arc costs w and installing sufficiently many capacity units on the arcs of this path. Sending
each commodity (s, t) along a minimum cost (s, t)-path thus trivially yields a worst case
quality guarantee of |K| for the uniform Cap-USPR problem with multiple commodities.
As such a routing can be easily realized as an unsplittable shortest path routing by setting

2The 2O(
√

log |V | log log |V |) log dmax -approximation algorithm of Charikar and Karagiozova [16] for the Buy-
at-bulk Network Design problem does not carry over to the Cap-USPR problem, as the routings computed
by this algorithm do not necessarily form unsplittable shortest path routings.
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the routing metric λ to an appropriate perturbation of the arc costs w, we get the following
result.

Proposition 5.7 The uniform Cap-USPR problem is approximable within a factor of |K|.

Clearly, Proposition 5.7 holds for both the directed and the undirected problem version.
Note, however, that the above approach is not applicable for the non-uniform Cap-USPR
problem. It is not difficult to construct examples where overlaying the optimal routing paths
of the single commodity problems does not yield an unsplittable shortest path routing for the
corresponding multicommodity problem.

For the undirected uniform Cap-USPR problem, the trivial |K| bound can be improved
to O(log |V |) using a probabilistic approximation of the arc costs by dominating tree met-
rics.3 Given an undirected graph G = (V,E), the metric λ ∈ RE

+ is a tree metric if
there exists a tree T in G such that all shortest paths with respect to λ are fully con-
tained in T . A metric λ dominates another metric µ if distλ(s, t) ≥ distµ(s, t) for all
(s, t) ∈ V 2. The stretch of a dominating metric λ with respect to a metric µ is stretch(λ, µ) :=
max{distλ(s, t)/distµ(s, t) : , (s, t) ∈ V 2}. Bartal [4] showed that any metric in an undirected
graph can be probabilistically approximated by a distribution over dominating tree metrics
such that the expected stretch is O(log2 |V |). This result was later improved by Fakcharoen-
phol et al. [23] to an expected stretch of only O(log |V |). Charikar et al. [15] showed how
to derandomize this probabilistic approximation, i.e., how to approximate a metric with a
distribution over only polynomially many tree metrics.

Based on these results, Awerbuch and Azar [3] proposed an approximation algorithm for
the undirected uniform Buy-at-bulk network design problem. As all solutions computed
by this algorithm are trees, it carries over directly to the undirected uniform Cap-USPR
problem. The derandomized version of Awerbuch and Azar’s algorithm works as follows:
First, we compute polynomially many tree metrics λi ∈ RE

+, i ∈ I, that probabilistically
approximate the given arc costs w. For each tree metric, we then compute the cost of the
solution that is given by routing each commodity along a shortest path with respect to λi and
installing sufficient edge capacities. At the end, we return the best of these solutions. The
performance guarantee of O(log |V |) follows straightforward from [3] and [23].

Theorem 5.8 ([3],[23]) The undirected uniform Cap-USPR problem is approximable within
a factor of O(log |V |).

Note that in planar graphs any metric can be probabilistically approximated by tree metrics
with constant expected stretch. Hence, Awerbuch and Azar’s algorithm yields a constant
worst-case guarantee for the undirected uniform Cap-USPR problem on planar graphs.

For the non-uniform and for the directed Cap-USPR problem, the technique of using
probabilistic approximations by tree metrics utterly fails.

Another interesting variant of the problem is the single-source version, where all com-
modities share the same source terminal. Single-source network design problems have been
considered in the literature for various capacity and routing paradigms. Most proposed so-
lution techniques, however, enforce that the routing paths form a tree and, therefore, can be
applied directly for the single-source Cap-USPR problem.

3Alternatively, also the technique of approximating the underlying graph by a so-called light-weight distance-
preserving spanner with respect to its edge cost function can be applied to obtain a O(log |V |)-approximation
algorithm for the undirected uniform Cap-USPR problem, cf. Mansour and Peleg [37].
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A straightforward approach to compute a solution for the single-source problem is to
iteratively assign to each commodity the cheapest path such that the new path together with
the already assigned paths forms an arborescence. If the commodities are considered in order
of decreasing demands, this simple algorithm achieves a worst-case guarantee of |K|. Clearly,
this approach works for both the directed and the undirected single-source problem.

Proposition 5.9 The single-source Cap-USPR problem is approximable within a factor of
|K| in general.

For the general directed single-source Cap-USPR problem, no better approximation algo-
rithm is known. The undirected problem version can be solved using the algorithms proposed
by Guha et al. [30], Gupta et al. [31], Talwar [47], or Meyerson et al. [38] for similar network
design problems. These algorithms yield a constant factor approximation for the uniform
and an O(log |K|)-approximation for the non-uniform undirected single-source Cap-USPR
problem.

6 Special cases

In this section, we present specialized algorithms that achieve constant factor approximation
guarantees for Min-Con-USPR and Cap-USPR in the special cases where the underlying
graph is a bidirected ring or an undirected cycle. As mentioned above, FC-USPR remains
NPO-complete even in these special cases.

6.1 Min-Con-USPR on an undirected cycle

Algorithm PenalizeSmallLinks presented in Section 5 carries over straightforward to the undi-
rected version of Min-Con-USPR. In the special case where the underlying graph G = (V,E)
is an undirected cycle, there are only two possible routing paths for each commodity. For any
edge e ∈ E, one of these two paths for each commodity contains e. Hence, perturbing the
length of one minimum flow edge emin := arg min fe(x

∗) suffices to ensure that all shortest
paths are unique. This yields the following theorem.

Theorem 6.1 Algorithm PenalizeSmallLinks achieves a 2-approximation guarantee for Min-
Con-USPR on an undirected cycle.

Theorem 6.1 extends straightforward to the case where all blocks of the underlying undirected
graph are cycles.

Cosares and Saniee [17] and Schrijver et. al. [45] propose algorithms for the undirected ring
loading problem (which is equivalent to the minimum congestion unsplittable flow problem on
a cycle with unit capacities) that are based on rounding the optimal solution of (CON-LP).
This approach also works for the undirected Min-Con-USPR problem if the rounding pro-
cedure is slightly adapted in order to guarantee that the resulting paths form an unsplittable
shortest paths routing.

6.2 Cap-USPR on an undirected cycle

Let G = (V,E) be an undirected cycle with edge capacities ce ∈ Z+ and edge costs we ∈ Z+

for all e ∈ E, and let K ⊆ V (2) be a set of undirected commodities with demand values
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d(s,t) ∈ Z+ for all (s, t) ∈ K. Consider the following linear programming relaxation of the
undirected Cap-USPR problem:

min
∑

e∈E

weze (CAP-LP)

∑

P∈P(s,t)

xP = 1 ∀ (s, t) ∈ K

∑

(s,t)∈K

∑

P∈P(s,t):e∈P

d(s,t) · xP ≤ ceze ∀ e ∈ E (5)

ze ≥ 0 ∀ e ∈ E

0 ≤ xP ≤ 1 ∀ (s, t) ∈ K, P ∈ P(s, t)

The idea of our approximation algorithm is to round an optimal solution of (z∗, x∗) of
(CAP-LP) to obtain an integer solution ([z], [x]) of (CAP-LP) such that the corresponding
routing paths Q := {P : [x]P = 1} can be realized as an USPR.

It is well known (and follows directly from LP duality), that an optimal solution of
(CAP-LP) can be constructed by routing all commodities on shortest paths w.r.t. the edge
lengths we/ce and installing exactly the capacities that are consumed by this routing. For an
appropriate perturbation of these lengths, the shortest paths are unique and form an USPR.
In such a special optimal solution (z∗, x∗) of (CAP-LP), all xP variables are integer and
correspond to an USPR. Only the ze variables may attain fractional values and need to be
rounded up. However, the optimal fractional solution values z∗e may be arbitrarily small and
rounding them all up may increase the cost by an arbitrarily large factor.

If we knew the topology of the optimal Cap-USPR solution in advance, then we could
apply the above method in the subgraph defined by this topology. The additional cost of
rounding up the capacity multipliers z∗e then were bounded by the cost of the optimal solution.
In the special case where the underlying graph is an undirected cycle, we do not need to now
the optimal solution’s topology in advance. We can simply enumerate all possible solution
topologies, as demonstrated in algorithm EnumerateAndRound.

Algorithm 6.1 EnumerateAndRound

1. Compute solution (λ0, z0) as follows:

1.1 Set λ0
e :=

{

Mwe/ce + 1, if e = e0,

Mwe/ce, otherwise,

for some arbitrary e0 ∈ E and M := 2Πe∈Ece.

1.2 Set z0
e := ⌈fe(λ

0)/ce⌉ for all e ∈ E.

2. For each l ∈ E, compute solution (λl, zl) as follows:

2.1 Set λl
e :=

{

|E|, if e = l,

1, otherwise.

2.2 Set zl
e := ⌈fe(λ

l)/ce⌉ for all e ∈ E.

3. Return minimum cost solution of (λ0, z0) and (λl, zl), l ∈ E.

Theorem 6.2 EnumerateAndRound is a 2-approximation algorithm for Cap-USPR on an
undirected cycle.
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Proof. The metrics λl, l ∈ E, clearly induce uniquely determined shortest paths between all
node pairs. The metric λ0 defined in Step 1.2 is a perturbation of the metric we/ce. Since
λ0

e0
is odd and all other lengths λ0

e are even, also λ0 defines unique shortest paths between all
node pairs. Hence, all metrics λ0 and λl, l ∈ E, define valid USPRs, and the corresponding
solutions (λ0, z0) and (λl, zl) are feasible.

Let (λopt, zopt) be the optimal solution of the given Cap-USPR instance.
First, assume that zopt

e ≥ 1 for all e ∈ E. In this case, we have

w(z0) =
∑

e∈E

wez
0
e =

∑

e∈E

we⌈fe(λ
0)/ce⌉

≤
∑

e∈E

we

(

fe(λ
0)/ce + zopt

e

)

= w(z∗) + w(zopt) ≤ 2w(zopt) ,

which implies that (λ0, z0) is a 2-approximate solution.
If this is not the case, we have zopt

l = 0 for some l ∈ E. As G − l is a path, the routing
of all commodities is uniquely determined in this case. Hence, the metric λl constructed in
algorithm EnumerateAndRound and the optimal solution’s metric λopt induce the same shortest
paths, and thus define the same USPR. Clearly, zl is a minium cost capacity installation for
this routing. Therefore, (λl, zl) is an optimal solution in this case.

Consequently, EnumerateAndRound is a 2-approximation algorithm. �

Theorem 6.2 generalizes straightforward to undirected Cap-USPR instances where all blocks
of the underlying graph are cycles.

6.3 Min-Con-USPR on a bidirected ring

For Min-Con-USPR on a bidirected ring, neither the perturbation technique used in algo-
rithm PenalizeSmallLinks nor naive rounding of an optimal solution of the linear programming
relaxation leads to a constant factor approximation: The perturbation technique produces
|A|/2-approximate solutions in the worst case, and the rounding approach may find non-USPR
integer routings as illustrated in Example 5.6.

The idea of our algorithm is to remove some arc from the given bidirected ring and round
the optimal fractional routing in the residual digraph. The following two lemmas show that
any routing obtained this way is a valid USPR.

Definiton 6.3 Two paths P1, P2 ∈ P are said to be conflicting, if there are two nodes s, t ∈
V such that P1 and P2 both contain an (s, t)-subpath P1[s, t] and P2[s, t], respectively, and
P1[s, t] 6= P2[s, t].

Lemma 6.4 Let D = (V,A) be a bidirected ring. Then there exists an optimal solution
(L∗, x∗) of (CON-LP) such that x∗

P1
= 0 or x∗

P2
= 0 for any pair of conflicting paths P1 ∈

P(s1, t1) and P2 ∈ P(s2, t2) with (s1, t1) 6= (s2, t2). Furthermore, such a solution (L∗, x∗) can
be found in polynomial time.

Proof. Suppose we have an optimal solution x∗ of (CON-LP) with x∗
P1

> 0 and x∗
P2

> 0 for
two conflicting paths P1 ∈ P(s1, t1) and P2 ∈ P(s2, t2) with (s1, t1) 6= (s2, t2). Let P̄1 be the
opposite (s1, t1)-path to P1 and let P̄2 be the opposite (s2, t2)-path to P2. Since P1 and P2

conflict, we have P̄1 ( P2 and P̄2 ( P1. We may assume w.l.o.g. that x∗
P1

carries less flow,
i.e., d(s1,t1)x

∗
P1

≤ d(s2,t2)x
∗
P2

. Let α := d(s1,t1)x
∗
P1

.
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(a) Original routing x∗.
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(b) Uncrossed routing x′.

Figure 14: Uncrossing the routing of two parallel commodities.

Then we construct another solution x′ of (CON-LP) by ’uncrossing’ the routing of the
two commodities (s1, t1) and (s2, t2), as shown in Figure 14. For commodity (s1, t1), we shift
the entire flow of value α from path P1 to its opposite path P̄1. Simultaneously, we also shift
a flow of value α from P2 to P̄2 for commodity (s2, t2). Formally, x′ is given as

x′
P1

:= 0 , x′
P̄1

:= 1 ,

x′
P2

:= x∗
P2

+ α/d(s2,t2) , x′
P̄2

:= x∗
P̄2

− α/d(s2,t2) , and

x′
P := x∗

P , for all P 6∈ {P1, P̄1, P2, P̄2}.

One easily verifies that fa(x
′) ≤ fa(x

∗) for all a ∈ A, i.e., x′ is also an optimal solution
of (CON-LP). Furthermore, we have

∑

a∈A fa(x
′) <

∑

a∈A fa(x
∗). Thus, an optimal solu-

tion x∗ of (CON-LP) which in addition minimizes
∑

a∈A fa(x) (over all optimal solutions of
(CON-LP)) has the required properties.

We can find such a solution x∗ as follows: First, we solve (CON-LP) to determine the
optimal value L∗. Then, we solve (CON-LP) with an additional linear constraint L ≤ L∗ and
the objective function replaced by min

∑

a∈A fa(x). The optimal solution x∗ of this second
linear program then has x∗

P1
= 0 or x∗

P2
= 0 for any pair of conflicting paths P1 ∈ P(s1, t1)

and P2 ∈ P(s2, t2) with (s1, t1) 6= (s2, t2). �

Lemma 6.5 Let D = (V,A) be a bidirected ring and a0 ∈ A. Let Q ⊆ P be a set of paths
that contains no pair of conflicting paths and such that a0 6∈ P for all P ∈ Q. Then there
exists a compatible metric λ ∈ ZA

+ for Q, i.e., a metric λ such that each path P ∈ Q is the
unique shortest path between its terminals w.r.t. λ.

Proof. W.l.o.g., we may assume that the nodes of D are labeled v1 to vn in a counter-
clockwise manner and that a0 = (vn, v1). We denote a1 = (v1, vn).

Suppose a1 6∈ P for all P ∈ Q. Then all paths P ∈ Q are unique shortest paths for the
metric

λa :=

{

|V |, if a ∈ {a0, a1}, and

1, otherwise.
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Figure 15: Path sets Q0, Q1, and Q2 in a bidirected ring.

So, we may assume that a1 ∈ P for some P ∈ Q. We distinguish three types of paths in Q:

Q0 := {P ∈ Q : P = (vi, vi+1, . . . , vj) with i < j} ,

Q1 := {P ∈ Q : a1 ∈ P} , and

Q2 := {P ∈ Q : P = (vj , vj−1, . . . , vi) with i < j} .

The set Q0 consists of all clockwise oriented paths of Q, the set Q1 of all counter-clockwise
oriented paths of Q that contain a1, and the set Q2 of all remaining counter-clockwise oriented
paths of Q, see Figure 15. As no path of Q contains a0, the three sets Q0, Q1, and Q2 form
a partition of Q.

First, we show that there is a compatible metric for the smaller path set Q0 ∪ Q1. For
this, we consider these paths in an undirected setting. Let G = (V,E) be the undirected cycle
with E := {vivi+1 : i = 1, . . . , n}, where vn+1 = v1. Recall that a1 ∈ P for all P ∈ Q1, and
a1 6∈ P for all P ∈ Q0. Hence, there are no two directed paths in Q0 ∪Q1 that correspond to
the same undirected path. Furthermore, the set of undirected paths corresponding to Q0∪Q1

contains no pair of conflicting undirected paths. It was shown by Ben-Ameur and Gourdin [6]
that in this case there exists a metric λ′ ∈ RE

+ in the undirected cycle G that is compatible
with the undirected path set corresponding to Q0 ∪ Q1. Clearly, the corresponding directed
metric λ′′ ∈ RA

+ with λ′′
(u,v) := λ′

uv for all (u, v) ∈ A is compatible with the directed path set
Q0 ∪ Q1 in D.

Now, we modify this metric such that it is compatible with the entire path set Q. Let
M := 1 +

∑

a∈A\{a0}
λ′′

a. Since no path in Q0 ∪ Q1 contains the arc a0, the metric λ ∈ RA
+

defined as

λa :=

{

M, if a = a0, and

λ′′
a, otherwise,

is compatible with Q0 ∪ Q1. Furthermore, any path in Q2 is shorter than its clockwise
counterpart with respect to λ. Thus, all paths Q are uniquely determined shortest paths
w.r.t. λ between their terminals. �

Lemma 6.4 and Lemma 6.5 lead to the constant factor approximation algorithm Bidirect-

edRingRounding: In the first step, we compute an optimal multicommodity flow routing x∗

with the additional properties stated in Lemma 6.4. Then we remove the least utilized arc
amin = arg min fa(x

∗) from the bidirected ring. Then we ’round’ the optimal MCF routing
in such a way, that no routing path uses amin and no pairs of confliction paths are created.
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Algorithm 6.2 BidirectedRingRounding

1. Compute an optimal solution (L∗, x∗) of (CON-LP) with x∗
P1

= 0 or x∗
P2

= 0 for

any pair of conflicting paths P1 ∈ P(s1, t1) and P2 ∈ P(s2, t2) with (s1, t1) 6= (s2, t2).

2. Find arc amin := arg min fa(x
∗).

Let āmin be the reverse arc of amin.

3. Define [x] ∈ {0, 1}P as

[x]P :=











0, if amin ∈ P or x∗
P < 0.5

or if x∗
P = 0.5 and āmin ∈ P , and

1, otherwise.

4. Compute a compatible metric λ for the path set Q := {P ∈ P : [x]P = 1}.
5. Return λ.

By Lemma 6.5, the routing obtained this way is an USPR of the given commodities. We
can compute a compatible metric for this routing in polynomial with the linear programming
approaches presented in [6, 9], for example.

Theorem 6.6 BidirectedRingRounding is a 3-approximation algorithm for Min-Con-USPR
on a bidirected ring.

Proof. It follows immediately from Lemmas 6.4 and 6.5 that algorithm BidirectedRingRound-

ing computes a valid solution for Min-Con-USPR. It remains to show that this solution has
a congestion of at most three times the optimal solution’s congestion.

In Step 3 of algorithm BidirectedRingRounding, we shift all flows on paths across arc amin

to the respective opposite flow paths, and we round path variables xp with x∗
p ≥ 0.5 to 1.

Hence, for any arc a ∈ A, we have fa([x]) ≤ 2fa(x
∗) + famin

(x∗) ≤ 3fa(x
∗). �

Algorithm BidirectedRingRounding and Theorem 6.6 straightforward carry over to the case
where all strongly connected components of D are bidirected rings (or subgraphs of bidirected
rings).

6.4 Cap-USPR on a bidirected ring

In this final section, we show how to approximate Cap-USPR on a bidirected ring within a
constant factor. In principle, we use the same approach as for the undirected problem version:
We compute one solution (λ0, z0) that is a 2-approximation of the optimal solution (λopt, zopt)
if zopt

a ≥ 1 for all a ∈ A, and |A| many solutions (λl, zl), l ∈ A, to cope with the cases where
zopt
l = 0 for some l ∈ A.

In contrast to the undirected cycle case, the Cap-USPR problem remains NP-hard on a
bidirected ring even with the restriction zl = 0 for some arc l ∈ A. However, it is possible to
approximate the restricted problem within a constant factor by rounding the optimal solution
of the following linear programming relaxation of Cap-USPR:
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min
∑

a∈A

waza (CAP-LP2)

∑

P∈P(s,t)

xP = 1 ∀ (s, t) ∈ K

∑

(s,t)∈K

∑

P∈P(s,t):a∈P

d(s,t) · xP ≤ caza ∀ a ∈ A

xP ≤ za ∀P ∈ P, a ∈ P (6)

za ≥ 0 ∀ a ∈ A

0 ≤ xP ≤ 1 ∀ (s, t) ∈ K, P ∈ P(s, t)

(CAP-LP2) is the directed version of (CAP-LP) strengthened by the inequalities (6). The
inequalities (6) are trivially valid for any integer solution of the directed version of (CAP-LP).
Hence, any optimal solution of (CAP-LP2) provides a lower bound on the optimal solution
value for Cap-USPR. If D is a bidirected ring, these inequalities close a large part of the
integrality gap of (CAP-LP) and the strengthened formulation remains polynomially large.

Analogous to the previous section, an optimal solution of (CAP-LP2) can be turned into
an USPR by removing one arc and rounding the fractional flows in the residual graph.

Lemma 6.7 Let D = (V,A) be a bidirected ring. Then there exists an optimal solution
(L∗, x∗) of (CAP-LP2) such that x∗

P1
+x∗

P2
≤ 1 for any pair of conflicting paths P1 ∈ P(s1, t1)

and P2 ∈ P(s2, t2) with (s1, t1) 6= (s2, t2). Furthermore, such a solution (L∗, x∗) can be found
in polynomial time.

Lemma 6.7 leads straightforward to the 4-approximation algorithm EnumerateAndRound2.

Algorithm 6.3 EnumerateAndRound2

1. Compute solution (λ0, z0) as follows:

1.1 Set λ0
a :=

{

Mwa/ca + 1, if a ∈ {(v0, v1), (v1, v0)},
Mwa/ca, otherwise,

with M := 2Πa∈Aca.

1.2 Set z0
a := ⌈fa(λ

0)/ca⌉ for all a ∈ A.

2. For each l ∈ A, compute solution (λl, zl) as follows:

2.1 Compute an optimal solution (zl∗, xl∗) of (CAP-LP2) with the restriction
zl
l = 0 such that xl∗

P1
+xl∗

P2
≤ 1 for any pair of conflicting paths P1 ∈ P(s1, t1)

and P2 ∈ P(s2, t2) with (s1, t1) 6= (s2, t2).

2.2 Let l̄ be the reverse arc of l.

2.3 Define [xl] ∈ {0, 1}P as

[x]lP :=

{

0, if l ∈ P or if xl∗
P < 0.5 or if xl∗

P = 0.5 and l̄ ∈ P , and

1, otherwise.

2.4. Compute a compatible metric λl for the path set Ql := {P ∈ P : [x]lP = 1}.
2.5 Set zl

a := ⌈fa(λ
l)/ca⌉ for all a ∈ a.

3. Return minimum cost solution of (λ0, z0) and (λl, zl), l ∈ A.
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Theorem 6.8 EnumerateAndRound2 is a 4-approximation algorithm for Cap-USPR on a
bidirected ring.

Proof. Analogous to the proof of Theorem 6.6, it follows from Lemma 6.5 and Lemma 6.7
that the path sets Ql are valid USPRs, i.e., contain a uniquely determined shortest (s, t)-path
for each (s, t) ∈ K w.r.t. the metrics λl computed in Step 2.4. The metric λ0 defined in Step
1.2 is a perturbation of the metric wa/ca. As λ0

(v0,v1) and λ0
(v1,v0)

are odd and all other lengths

λ0
a are even, also λ0 defines unique shortest paths between all node pairs. Hence, all solutions

(λ0, z0) and (λl, zl) are feasible.
Let (λopt, zopt) be the optimal solution of the given Cap-USPR instance. Analogous to

the undirected case, it follows that (λ0, z0) is a 2-approximate solution if zopt
a ≥ 1 for all

a ∈ A. So, assume that zopt
l = 0 for some l ∈ A. Due to inequalities (6), we then have

zl∗
a ≥ 0.5 for each arc a ∈ A with ⌈zl∗

a ⌉ ≥ 1. Hence, we have

w(zl) =
∑

a∈A

waz
l
a =

∑

a∈A

wa⌈zl∗
a ⌉ ≤

∑

a∈A

wa 4zl∗
a = 4w(zl∗) ≤ 4w(zopt) .

Consequently, algorithm EnumerateAndRound2 returns a 4-approximate solution in the
worst case. �

Algorithm EnumerateAndRound2 and Theorem 6.8 generalize straightforward to instances
where all strongly connected components of the underlying digraph are bidirected rings.

7 Concluding remarks

In this paper, we have shown that it is NP-hard to approximate Min-Con-USPR within a
factor of O(|V |1−ǫ) in general and Cap-USPR within a factor of O(2log1−ǫ |V |) in the directed
or 2 − ǫ in the undirected case. The fixed charge network design problem FC-USPR was
proven to be NPO-complete. We presented simple |A|- and |K|-approximation algorithms
for Min-Con-USPR in general networks and we illustrated how known techniques can be
used to approximate several special cases of Cap-USPR. For the special cases where the
underlying graph is an undirected cycle or a bidirected ring, constant factor approximation
algorithms for Min-Con-USPR and Cap-USPR were proposed.

We also constructed examples where the minimum congestion obtainable with unsplit-
table shortest path routing is a factor of Ω(|V |2) larger than the congestion of an optimal
unsplittable flow routing or an optimal shortest multi-path routing, and a factor of Ω(|V |)
larger than the congestion of an optimal unsplittable source-invariant routing.

It remains open whether the inapproximability threshold of θ(|V |1−ǫ) for Min-Con-USPR
is tight or whether approximations better than min{|A|, |K|} can be achieved. It is also
not known how to compute approximate solutions with reasonable quality guarantees for
the general Cap-USPR problem. The methods known for the corresponding Generalized
Steiner network or Buy-at-Bulk Network Design problem versions do not necessarily
yield feasible solutions for the Cap-USPR problem.
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[10] A. Bley, M. Grötschel, and R. Wessäly, Design of broadband virtual private networks:
Model and heuristics for the B-WiN, Robust Communication Networks: Interconnection
and Survivability (N. Dean, D.F. Hsu, and R. Ravi, eds.), DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, vol. 53, American Mathematical Soci-
ety, 1998, pp. 1–16.

[11] A. Bley and T. Koch, Integer programming approaches to access and backbone IP-network
planning, ZIB Preprint ZR-02-41, Konrad-Zuse-Zentrum für Informationstechnik Berlin,
2002.

[12] P. Broström and K. Holmberg, Determining the non-existence of a compatible OSPF
metric, Technical Report LiTH-MAT-R-2004-06, Linköping University, April 2004.
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